
ACM SIGSOFT Software Engineering Notes vol 22 no 4 July 1997 Page 74

Property-Based Testing; A New Approach
to Testing for Assurance

George Fink & M a t t Bishop
Department o f Computer Science

Univers i ty of California, Davis
emaih gfink,bishop @ cs.ucdavis .edu

Abstract

The goal of software testing analysis is to validate that an
implementation satisfies its specifications. Many errors in
software are caused by generalizable flaws in the source code.
Property-based testing assures that a given program is free
of specified generic flaws. Property-based testing uses prop-
erty specifications and a data-flow analysis of the program to
guide evaluation of test ezecutions for correctness and com-
pleteness.

Introduct ion
Analysts test computer programs to determine if they meet
reliability and assurance goals. In other words, testing vali-
dates semantic properties of a program's behavior. In order
to do this, the actual program must be tested at the source
code level, not at some higher-level description of the pro-
gram. However, to validate high-level properties, the proper-
ties must be formalized, and the results of the testing related
formally to the properties.

Property-based testing [FL94, FKAL94, FHBL95, Fin95] is a
testing methodology that addresses this need. The specifica-
tion of one or more properties drives the testing process, which
assures that the given program meets the stated property. For
example, if an analyst wants to validate that a specific pro-
gram correctly authenticates a user, a property-basted test-
ing procedure tests the implementation of the authentication
mechanisms in the source code to determine if the code meets
the specification of "correctly authenticating the user."

This paper introduces an approach to property-based testing
and an implementation of that approach. First, the analyst
specifies the target property in a low-level specification lan-
guage called TASPEC (Tester's Assistant SPECification lan-
guage). The program is sliced [Wei84] and code irrelevant to
the property disregarded. The Tester's Assistant automati-
cally translates the TASPEC specification into a test oracle
that will check the correctness of program executions with re-
spect to the desired property. A new path-based code cover-
age metric called "iterative contexts" [Fin95, Fin96] efficiently
captures the slice-based computations in the program.

Property-based testing speaks to the following questions:

1. What is to be accomplished or established via testing?
2. What test data should be used?
3. When has enough testing been carried out?
4. How is it determined if a test is a success or a failure?

This paper presents an overview of property-based testing,
its goals, and techniques used to accomplish these goals. The
next section defines the problem, and discusses previous work.
The next section describes property-based testing in general
and its components in particular, illustrating property-based
testing through an example. The final section concludes with
future directions for work on this methodology.

P r o b l e m S t a t e m e n t

Trust that software programs work correctly and precisely
is based upon the belief that authors of the programs have
detected and fixed flaws in the design and implementation.
Many potential flaws can be detected and avoided; however,
systematic and formal analysis (both static and dynamic) of
the finished program increases the assurance that the software
is without critical flaws.

Most errors in programs result from programming and de-
sign mistakes. Many well-known mistakes are still common.
For example, errors in bounds checking, race conditions, and
authentication, continue to be the bane of privileged Unix
programs.

Specifying well-known mistakes formally presents a clear pic-
ture of testing goals. Then, techniques are needed to map
these formal descriptions to tests of actual code. The tests
need to provide formalizable results that relate to the flaw
descriptions. The whole process should be as automatic as
possible, with reusable generic specifications.

R e l a t e d W o r k

Property-based testing is complementary to software engi-
neering life cycle methodologies. Analysis and inspection of
design, requirements, and code help to prevent flaws from
being introduced into source code. Property-based testing
validates that the final product is free of specific flaws. Be-
cause property-based testing concentrates on generic flaws,
it is ideal for focusing analysis late in the development cycle
after program functionality has been established.

Specifications state what a system should or should not do.
Many specification languages support precise expression of
requirements, such as Z [Dil90] and VDM [AI91]. Treating
specifications as bounds of program behavior suggests that
test oracles can be derived from specifications; some specifica-
tion languages like Larch [GH93] and TAOS [Ric94] allow this
to be done automatically. Further, specifications can guide
the generation of test data; ADL [CRS96], TAOS [Ric94],
and VDM [DF93] allow this as does the TASPEC language
presented here. The advantage of using specifications is the
formalism they establish for verifying proper (or improper)
program behavior.

Specifications are the basis of formal analytical tehcniques.
Determining which assumptions (axioms) are correct is sub-
stantial, and failing to do so correctly would invalidate the
analysis. For example, if an operation has an unanticipated
side-effect during execution in some situations, formal analy-
sis cannot determine the impact of the side-effect upon cor-

ACM SIGSOFT Software Engineering Notes vol 22 no 4 July 1997 Page 75

rectness. While testing has similar problems, it does test the
actual execution of the program, and can determine the pre-
cise output corresponding to a given input. For example,
thorough testing can determine unanticipated side effects.

Coverage metrics measure testing completeness; how much
of the program has been tested? For property-based test-
ing, a coverage metric must be strong enough to provide for-
mal assurance, but also be feasible to implement and utilize.
Property-based testing uses a new metric called Iterative Con-
texts, which strikes a balance between simple definition-use
(def-use) pair metrics [Lasgo, Nta84, CPRZ89] and stronger
but impractical path coverage metrics [RW85].

T e s t i n g t o V a l i d a t e P r o g r a m s

A test consists of a set of executions of a given program us-
ing different input data for each execution; its purpose is to
determine if the program functions correctly. A test has a
negative result if an error is detected during the test (i.e., the
program crashes or a property is violated). A test has a posi-
tive result if a series of tests produces no error, and the series
of tests is "complete" under some coverage metric. A test has
an "incomplete" result if a series of tests produces no errors
but the series is not complete under the coverage metric.

It is impossible to execute a program on all possible data. So,
testing must approximate this, which may lead to an incorrect
validation. However, for a testing process to be valuable, it
must validate a program with respect to a property with a
high degree of certainty. Property-based testing addresses
this conflict with iterative contexts, a new data-flow coverage
metric.

It is important to understand the relationship between test-
ing and formal verification so that the two can be compared.
The purpose of property-based testing is to establish formal
validation results through testing. To validate that a pro-
gram satisfies a property, the property must hold whenever
the program is executed. Property-based testing assumes that
the specified property captures everything of interest in the
program, because the testing only validates that property.
Additionally, property-based testing assumes that the com-
pleteness of testing can be measured structurally in terms of
source code.

The property specification guides dynamic testing of the pro-
gram. Information derived from the specification determines
what points in the program need to be tested and if a test
execution is correct. The iterative contexts coverage metric,
based upon these points, determines when testing is complete.

Therefore, in property-based testing, checking the correctness
of each execution together with a description of all the rele-
vant executions of the program validates a program with re-
spect to a given property.

T e s t e r ' s A s s i s t a n t

Figure I shows an overview of the implementation of property-
based testing by the Tester's Assistant. To test the source

i Sol
C(

Monitor ~bch~

Tos r, ii!i!iiii!ii!iiiii iiiiiiii

~ ~ St~cificati°ns

Figure 1: Property-based testing and the Tester's Assistant.

code of a program, TASPEC specifications from a variety of
sources are used. Program-independent specifications include
system call, security, and generic flaw specifications. If nec-
essary, program-specific specifications can also be used. The
Tester's Assistant analyzes and tests the code with respect to
the specifications. Three results of the property-based testing
process are: the test suite, the coverage results, and /or flaws
discovered during the test.

Many properties are defined independently of specific pro-
grams (for example, array bounds, race conditions, authenti-
cation), and so can be grouped together in libraries of prop-
erties. These libraries form models of system behavior, which
are significant analytical objects in their own right. They can
be reused and also analyzed by independent means to assess
their completeness 4.

Iterative Contexts

The iterative contexts coverage metric is an ideal met-
ric for satisfying property validation requirements. Itera-
tive contexts are more powerful than other data-flow met-
tics [Lasg0, Nta84, CPRZ89], but are small enough so they
can be satisfied by a reasonable test suite. Given a set of
variables at a point in the program that are of interest, the
optimal metric requires all possible results for that set of vari-
ables; for most sets this requires an infinite number of data
values. Metrics based upon sequences of assignments within
the slice approximate this optimum for given programs.

An iterative context is a sequence of assignments defining a
sub-path of a possible program execution. The assignments
are taken from the program slice and represent a possible com-
putation of a value important to the target property. Taken
together, all of the contexts represent many of the possible

4 T h r o u g h a previous i t e r a t ion of p r o p e r t y - b a s e d tes t ing, pe rhaps .

ACM SIGSOFT Software Engineering Notes vol 22 no 4 July 1997 Page 76

computations of values relevant to the property. It is not
possible to represent with a finite set of input data the infi-
nite number of possible computations for some loops, so in
those cases iterative contexts will not completely cover all be-
havior relevant to a property. In a complete test suite, every
context must be represented by at least one test execution in
the suite.

Static Analysis and Slicing

Program slicing [Wei84], the extraction of all code affecting
conformance to a property, reduces the amount of code that
a human tester must inspect manually. Applying automatic
analysis tools to the slice rather than to the whole program
also aids the analyst. Calculating a slice requires detailed
global dependencies; this information is also used to generate
iterative contexts.

TASPEC

TASPEC, the specification language used in the Tester's As-
sistant and developed specifically for property-based testing,
has primitive constructs which enables it to be translated au-
tomatically into slicing criteria and test oracles. TASPEC
includes basic logical and temporal operators as well as lo-
cation specifiers, which associate events with code features.
These events provide the primitive data for analyzing higher-
level semantic features of the program. TASPEC is a flexible
low-level specification language well suited for specifying a
wide range of properties and deriving tests from the property
specifications.

Using location specifiers, generic program-independent prop-
erties in TASPEC map automatically to source code. There-
fore, test oracles can be generated independently of descrip-
tions of specific modules or functions. With the emphasis
on properties and not on full specifications, test oracles can
handle a wider class of behavior than that rigidly defined by
functional specifications. Translations between other specifi-
cation languages and TASPEC can provide additional flexi-
bility to the specification and testing phases of development.
Helmke shows how translations from Z to TASPEC can assist
in requirements traceability [He195].

Execution Monitors

Automatic high-level execution monitors derived automati-
cally from property specifications in TASPEC become test
oracles that assess the correctness of executions. Location
specifiers produce primitive events for the specification state
and the execution monitor processes these elements to raise
higher-level events. The execution monitor checks for consis-
tency between events and the property specification. There-
fore, checking the adherence of a program execution to a com-
plex property specification is automatic.

Figure 2: Ftpd flaw flowchart.

E x a m p l e u s e o f P r o p e r t y - b a s e d test ing

This section describes testing a version the Unix f tpd
(file transfer protocol [CER](FTP) daemon) program with
property-based testing. Property-based testing has eight
steps:

1. Selecting a property; the property is specified in
TASPEC (currently implemented)

2. Static analysis and slicing (currently implemented)

3. Program instrumentation (currently implemented)

4. Initial test case selection and execution

5. Coverage evaluation (partially implemented)

6. Additional test case selection and execution

7. Correctness evaluation (partially implemented)

8. Repeat the last three steps as necessary

Testing ftpd with respect to an authentication property re-
veals a flaw in f tpd's authentication code.

D e s c r i p t i o n o f f t p d a n d i ts f law

Ftp is a Unix program implementing the F T P protocol for
transmitting files across a network. Ftpd, the program de-
scribed here, is a server program that accepts file requests and
processes authentication and other utility commands from re-
mote client programs.

In the version of ftpd released with SunOS 3.2, a security
flaw allows any user to gain permissions to read or write files
owned by any user on the system (including root) [CER]. To
do so, the user logs on with his or her normal user name and
password. As a part of the correct authentication, a flag in the
program is set. The flag records whether the user name has
been authenticated. When a second user name is entered, the
flag is never reset, so even if an incorrect password is entered
for the second user name, the program thinks that the second
user name has been authenticated. Therefore, the user has
the access privilege of the second user name. Figure 2 is a
simplified flow-chart that illustrates the flaw.

ACM SIGSOFT Software Engineering Notes vol 22 no 4 July 1997 Page 77

location rune setuid(uid) result 1
{assert permissions_granted(uid); }

location rune crypt(password, salt) result eneryptpwd{
assert password_entered(encryptpwd); }

location func getpwnam(name) resul~ pwent{
assert user_password(name,

pwent ~ pw_passwd, pwent ~ pw_uid);
}

location func strcmp(sl, s2) result 0{
assert equal(sl, s2); }

password_entered(pwdl) A
user_password(name, pwd2, uid) A
equal(pwdl, pwd2){assert authentieated(uid); }

Figure 3: Property specification for authentication.

S e l e c t i n g / i d e n t i f y i n g a property

The first step in property-based testing is to choose a prop-
erty or properties from a selection of generic properties, and to
write any specific program-specific properties to test. Prop-
erty specifications are written in TASPEC. In the case of ftpd,
a generic property is used.

A portion of the property library is a set of properties which
describe a security model. One high-level property specifica-
tion requires that authentication occur before any permissions
are granted:

authenticated(uid) before permissions_granted(uid).

The library also contains low-level definitions of the predicates
authenticated and permissions_granted, shown in Figure 3.
In TASPEC actions within curly braces occur when the con-
dition (either a program location or a logical predicate about
the specification state) before the curly braces occurs. For ex-
ample, the s e t u i d (u i d) location, when executed, causes the
permissions_granted predicate to be true in the specification
state.

The authentication property can be selected by hand. Option-
ally, an automatic tool could compare location specifiers (code
templates) in the property specifications with the source code
of ftpd to evaluate the relevance of properties in the library.
The definition of permissions_granted involves the s e t u i d
system call ~. The property, then, forms a pre-eondition for
the s e t u i d system call. Since ftpd contains s e t u i d , the au-
thentication property can be automatically chosen as an im-
portant property for which to test.

SotuJ.dis used here as an amalgam of the many different permissions-
setting system calls (seteuld is actual ly used by f tpd) .

Static ana lys i s a n d sl icing

The Tester's Assistant statically analyzes the source code for
ftpd. Ftpd contains about 3000 lines of C code, 1700 lines of
which are machine-generated by lex and yace. The static anal-
ysis produces a data-flow graph for ftpd. The ftpd data-flow
graph has 6148 nodes and 31912 edges. The data-flow graph
is used in other steps of the process: program instrumenta-
tion, coverage evaluation, additional test case generation, and
correctness evaluation.

Next, slices of f tpd are derived from the data-flow graph. First
the slicer generates a slice of ftpd with respect to the selected
authentication property. The human tester inspects the slice
manually, but even in the sliced code (represented in Figure 2)
the flaw is subtle enough that it goes unnoticed. At this point
the human tester can request additional slices based upon any
other criteria that can aid in the tester's understanding of
ftpd.

Program instrumentat ion

The Tester's Assistant produces an alternate version of ftpd
to execute during testing. The alternate version has the same
functionality as ftpd, but has additional data-gathering mod-
ules, so that coverage and correctness can be evaluated from
test results. Every section of source code corresponding to a
location specifier in the property has code added to record if
and when the section of code is executed. The added code is
used later in correctness evaluation. The assignments in the
source code that are significant for coverage evaluation are
also tagged to record when the assignments are executed. The
Tester's Assistant instruments only the slice relative to the
selected authentication property. The instrumented source is
then compiled, at which point f tpd is ready to be executed.

In i t i a l test executions

The instrumented ftpd is executed several times with vari-
ous test data. There are three ways to generate test da ta
for ftpd: First, use any available test data that was used in
initial testing and debugging. Second, have the analyst gener-
ate simple test data from a description of f tpd's functionality.
Finally, if there are any specifications of ftpd, the specifica-
tions can be used to generate test data. Generating test da ta
from specifications is not specifically part of property-based
testing, but other testing methodologies contain the necessary
algorithms [CRS96, DF93].

The first method is simplest, because no extra work is required
and the test suite is likely to be fairly complete. However, if
these test cases aren' t available, the analyst creates some test
cases by reading the ftpd manual page. Figure 4 shows some
sample test cases.

The test executions are then evaluated for coverage and cor-
rectness. None of the four executions result in a violation
of the authentication property. However, coverage evaluation

ACM SIGSOFT Software Engineering Notes vol 22 no 4 July 1997 Page 78

Test Case 1

u s e r < u s e r n a m e >

pass <incorrect password>
retr filename

Test Case 2

user <user name>

pass <correct password>
retr filename (no access permissions)

Test Case 3

u s e r < u s e r name>
p a s s < c o r r e c t password>
cwd d i r e c t o r y
retr filenamel filename2

Test Case 4

U S e r < u s e r n a m e >

p a s s < c o r r e c t password>
l i s t

"User" enters a user name, "pass" enters a password, "retr"
retrieves a file, "cwd" changes directory, and "list" lists a
directory.

Figure 4: Four initial test cases for ftpd.

reveals that f tpd has not been completely tested, so more test
eases must be found and executed.

C o v e r a g e e v a l u a t i o n

While f tpd executes with each given test data, the coverage
instrumentation writes a file recording the execution history of
the slice. The execution history indicates which path in ftpd
was executed. The initial test executions yield several execu-
tion histories. The execution histories are compared with the
coverage metric. Property-based testing uses iterative con-
texts. Each context is an ordered sequence of assignments,
which defines a sub-path of the program. For a history to
match a context, the assignments must be executed in order
with no intervening and interfering assignments. The contexts
are generated using static analysis and the data-flow graph,

For the (abstracted) fragment of f tpd source

(1) logged_i~a= O;
(2) while(i)
(3) swi tch(cmd) {
(4) u s e r : name = r e a d () ;
(5) p a s s = r e a d () ;
(6) i f (m a t c h (n a m e , p a s s))
(7) l ogged iJa = 1;
(8) b r e a k ;

(9) g e t : i f (l o g g e d _ ~ a)
(10) s e t u i d (n a m e) ;
(l l) }

the contexts required include

{{4, 5, 6, 10}, {4, 5, 6, 4, 10}, {4, 10, 4, 5, 6}}

The execution histories are compared with the set of contexts
to see which histories match which contexts. The unmatched
contexts are coverage gaps.

The execution histories from the four initial test cases are

{{4, 10, 4, 5, 6}, {4, 5, 6, 10}, {4, 5, 6, 10}, {4, 5, 6}.

The second and third execution histories are identical because
their behavior relative to the property specification is identi-
cal. The context {4, 5, 6, 4,10} is a coverage gap in the initial
test data, and corresponds to the flaw in ftpd.

A d d i t i o n a l t e s t cases

In order to complete the coverage metric, additional execu-
tions of ftpd are necessary, with different test da ta tha t ad-
dresses the coverage gaps. This paper does not present a
method to produce this additional test da ta automatically,
and the problem is not trivial.

A human tester produces additional test da ta by examin-
ing the contexts not covered and the code corresponding to
the contexts. For the contexts and code in ftpd, there is
a close correspondence between input statements and state-
ment numbers in the uncovered context (Statements 4 and 5).
The uncovered context {4, 5, 6, 4, 10} is executed by the the
following test script:

u s e r < G s e r l P s n a m e >

pass <user l ' s password>
u s e r < u s e r 2>

pass <random s t r i n g >
retr filename

Correctness evaluation of this execution detects that the flaw
exists in ftpd.

Future versions of the Tester's Assistant may be able to au-
tomate some of the steps in generating test da ta for gaps
in coverage using techniques based upon symbolic execu-
tion [DOgl].

C o r r e c t n e s s e v a l u a t i o n

During each test execution, a file records the activated
TASPEC primitives. The TASPEC evaluation engine pro-
cesses this data and compares it with the property specifi-
cation. If the data violates the property specification, then

ACM SIGSOFT Software Engineering Notes vol 22 no 4 July 1997 Page 79

the human tester is informed that the test caused an error
condition.

During processing of the correctness records for the additional
test case given above, the correctness monitor registers that
there is a correct authentication of user 1. No authentica-
tion of user 2 is registered, because the password match fails.
When the file retrieve action occurs, the pe~'missions_g~'anted
property is registered. However, the retrieve occurs with the
permissions of user 2, for whom there is no authentication.
Therefore, the additional test case causes an error condition,
so ftpd fails the property-based testing with respect to the
authentication property.

A p p l i c a t i o n s t o C o m p u t e r S e c u r i t y

Assuring that computer programs and systems are secure is
an important and difficult problem. Security flaws are still
being discovered in computer programs that have been in
use for many years. Many of the flaws are caused by the
same basic recurring faults [Spa92]. For example, the Inter-
net worm [Spa89] exploited errors in Unix network programs.
Examination of the flaws which caused the errors revealed
them to be of an elementary nature.

It is time for a concerted effort to try to prevent such
flaws from occurring. Therefore, an appropriate initial ap-
plication of property-based testing and the Tester's Assis-
tant is Unix security, specifically for network programs. Se-
curity is a good application of property-based testing be-
cause the parts of programs that relate to security are small,
and generic security properties can be precisely expressed
program-independentally with TASPEC.

S e c u r i t y I s s u e s

Networked systems cause special security problems because
any communication or authentication between networked sys-
tems must be performed entirely through an exchange of in-
formation. The exchange of information is limited by the net-
work structure as well; many networks in use today are asyn-
chronous, and make no strict delivery guarantees for informa-
tion packets. Problems with asynchrony are complicated by
different implementations for the same service protocol, which
may have different performance. Therefore, network services
must be flexible in their implementation of communication
and authentication services. This flexibility can sometimes be
exploited and become a source of security problems, adding to
security problems arising from bad design or implementation.

Network services with Unix involve the client/server model.
The server runs on a host machine, and regulates access to in-
formation on the host by communication with client processes
on other machines on the network. The server can do its task
in one of two ways: by forking off a server-end client process
to handle commands, or by doing all the work internally. In
either case, the server will be interacting with the host system
in a number of ways - reading/writing files, etc.

Most network servers are privileged programs; they are run

with root privileges on the host machine. Unix has a coarse-
grained tri-level file protection scheme. If the access level for a
process cannot fit into this scheme, the process must be given
root level permissions, which override the scheme. Network
services typically do not fit into the tri-level scheme and are
given root permissions, even though root permissions are used
in only one particular function of the program. Therefore, the
server is given excess privileges, which become fertile ground
for exploitable vulnerabilities.

Us ing p r o p e r t y - b a s e d t e s t i n g fo r s e c u r i t y

Formal testing with property-based testing can validate secu-
rity properties of software and thus produce secure systems.
Security-related code is often only a small part of a program's
functionality. Property-based testing focuses on code relevant
to security functionality in great detail, and so efficiently vali-
dates the security-related part of the program without testing
the whole program.

Property-based testing provides a methodology for testing
narrow properties of source code. It produces a specific and
absolute metric for successful testing with respect to those
properties. A successful test validates that properties are not
violated; if these properties form the security policy for the
system, then the system is secure.

Property-based testing uses a security model of the system, as
well as a library of generic flaws (such as [LBMC93, Spa92])
specified in TASPEC, to produce a test process, whereby the
target program can be certified to be free of certain types of
flaws.

C o n c l u d i n g r e m a r k s a n d f u t u r e w o r k

Property-based testing defines a formalized framework for
testing. With property-based testing tools, a tester can pro-
duce a validation that a program satisfies given properties.
Other aspects of the process have not yet been well defined.
How are properties selected? How is it determined that the
properties represent a complete model of a program's possible
failures?

Ongoing research into property-based testing at University of
California-Davis includes:

Tool development: automating more property-based
testing techniques and incorporating them into the
Tester's Assistant, and distributing the tools to gain
a wider evaluation base.

Property specification: specifying generic flaws and fea-
tures of protocol implementions of T C P and NFS, for
example.

Evaluation of iterative contexts: performing empirical
comparisons between iterative contexts and other simi-
lar metrics such as L-contexts [Lasg0].

ACM SIGSOFT Software Engineering Notes vol 22 no 4 July 1997 Page 80

• Case studies: gaining more experience using the
methodology of property-based testing and understand-
ing how it can be applied to different problems.

[FL94]

Acknowledgmen t s Part of this work has been supported by
DARPA, under contract USNN00014-94-1-0065. [GH93]

R e f e r e n c e s

[AI91] Derek Andrews and Darrel Ince. Practical Formal
Methods with VDM. McGraw-Hill, 1991.

[He195]
[CER] CERT advisory CA-88:01.ftpd.hole.

[CPRZ89] Lori A. Clarke, Andy Podgurski, Debra J.
Richardson, and Steven J. Zeil. A formal
evaluation of data flow path selection crite-
ria. IEEE Transactions on Software Engineering,
15(11):1318-1331, November 1989.

[CRS96] Juei Chang, Debra J. Richardson, and Sriram
Sankar. Structural specification-based testing
with ADL. Submitted to ISSTA 1996 as a Regular

Paper, 1996. [Nta84]

[DF93] Jeremy Dick and Alain Faivre. Automating the
Generation and Sequencing of Test Cases from
Model-Based Specifications, chapter 4, pages 268-
284. First International Symposium of Formal [Ric94]
Methods Europe Proceedings. Springer-Verlag,
1993.

[Dilg0] Antoni Diller. Z: An Introduction to Formal Meth-
ods. John Wiley g~ Sons, 1990. [RW85]

[DO91] Richard A. DeMino and A. Jefferson Offutt.
Constraint-based automatic test data genera-
tion. IEEE Transactions on Software Engineer-
ing, 17(9):900-910, September 1991. [SpaS9]

[FHBL95] George Fink, Michael Helmke, Matt Bishop, and
Karl Levitt. An interface language between spec-
ifications and testing. Technical Report CSE-95-
15, University of California, Davis, 1995.

[Fin95] George Fink. Discovering security and safety
flaws using property-based testing. PhD thesis, UC
Davis, 1995.

[Fin96] George Fink. Iterative contexts, a complete and
practical data-flow coverage metric. In prepara-
tion, 1996.

[FKAL94] George Fink, Calvin Ks, Myla Archer, and Karl
Levitt. Towards a property-based testing envi-
ronment with applications to security-critical soft-
ware. In Proceedings of the ~th Irvine Software
Symposium, April 1994.

[Las90]

[LBMC93]

[Spa92]

[Wei84]

George Fink and Karl Levitt. Property-based
testing of privileged programs. In Tenth An-
nual Computer Security Applications Conference,
pages 154-163. IEEE Computer Society Press,
December 1994.

John V. Guttag and James J. Homing. Larch:
Langauges and Tools for Formal Specification.
Texts and Monographs in Computer Science.
Springer-Verlag, 1993.

Michael Helmke. A semi-formal approach to the
validation of requirements traceability from Z to
C. Master's thesis, UC Davis, September 1995.

Janusz Laski. Data flow testing in STAD. Journal
of Systems Software, 12:3-14, 1990.

Carl E. Landwehr, Alan R. Bull, John P. Mc-
Dermott, and William S. Choi. A taxonomy of
computer program security flaws, with examples.
Technical Report NRL/FR/5542-93-9591, Naval
Research Laboratory, November 1993.

Simeon C. Ntafos. On required element testing.
IEEE Transactions on Software Engineering, SE-
10(6):795-803, November 1984.

Debra Richardson. TAOS: Testing with analysis
and oracle support. In Proceedings of the 199~
International Symposium on Software Testing and
Analysis, August 1994.

Sandra Rapps and Elaine J. Weyuker. Select-
ing software test data using data flow informa-
tion. IEEE Transactions on Software Engineer-
ing, 11(4):367-375, April 1985.

Eugene. H. Spafford. The internet worm: Cri-
sis and aftermath. Communications of the A CM,
pages 678-687, June 1989.

Eugene H. Spafford. Common system vulnerabil-
ities. Workshop on Future Directions in Intrusion
and Misuses Detection, 1992.

Mark Weiser. Program slicing. IEEE Transactions
on Software Engineering, SE-10(4):352-375, July
1984.

