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Abstract  

The goal of software testing analysis is to validate that an 
implementation satisfies its specifications. Many errors in 
software are caused by generalizable flaws in the source code. 
Property-based testing assures that a given program is free 
of specified generic flaws. Property-based testing uses prop- 
erty specifications and a data-flow analysis of the program to 
guide evaluation of test ezecutions for correctness and com- 
pleteness. 

Introduct ion  
Analysts test computer programs to determine if they meet 
reliability and assurance goals. In other words, testing vali- 
dates semantic properties of a program's behavior. In order 
to do this, the actual program must be tested at the source 
code level, not at some higher-level description of the pro- 
gram. However, to validate high-level properties, the proper- 
ties must be formalized, and the results of the testing related 
formally to the properties. 

Property-based testing [FL94, FKAL94, FHBL95, Fin95] is a 
testing methodology that addresses this need. The specifica- 
tion of one or more properties drives the testing process, which 
assures that the given program meets the stated property. For 
example, if an analyst wants to validate that a specific pro- 
gram correctly authenticates a user, a property-basted test- 
ing procedure tests the implementation of the authentication 
mechanisms in the source code to determine if the code meets 
the specification of "correctly authenticating the user." 

This paper introduces an approach to property-based testing 
and an implementation of that approach. First, the analyst 
specifies the target property in a low-level specification lan- 
guage called TASPEC (Tester's Assistant SPECification lan- 
guage). The program is sliced [Wei84] and code irrelevant to 
the property disregarded. The Tester's Assistant automati- 
cally translates the TASPEC specification into a test oracle 
that will check the correctness of program executions with re- 
spect to the desired property. A new path-based code cover- 
age metric called "iterative contexts" [Fin95, Fin96] efficiently 
captures the slice-based computations in the program. 

Property-based testing speaks to the following questions: 

1. What is to be accomplished or established via testing? 
2. What test data should be used? 
3. When has enough testing been carried out? 
4. How is it determined if a test is a success or a failure? 

This paper presents an overview of property-based testing, 
its goals, and techniques used to accomplish these goals. The 
next section defines the problem, and discusses previous work. 
The next section describes property-based testing in general 
and its components in particular, illustrating property-based 
testing through an example. The final section concludes with 
future directions for work on this methodology. 

P r o b l e m  S t a t e m e n t  

Trust that software programs work correctly and precisely 
is based upon the belief that authors of the programs have 
detected and fixed flaws in the design and implementation. 
Many potential flaws can be detected and avoided; however, 
systematic and formal analysis (both static and dynamic) of 
the finished program increases the assurance that the software 
is without critical flaws. 

Most errors in programs result from programming and de- 
sign mistakes. Many well-known mistakes are still common. 
For example, errors in bounds checking, race conditions, and 
authentication, continue to be the bane of privileged Unix 
programs. 

Specifying well-known mistakes formally presents a clear pic- 
ture of testing goals. Then, techniques are needed to map 
these formal descriptions to tests of actual code. The tests 
need to provide formalizable results that relate to the flaw 
descriptions. The whole process should be as automatic as 
possible, with reusable generic specifications. 

R e l a t e d  W o r k  

Property-based testing is complementary to software engi- 
neering life cycle methodologies. Analysis and inspection of 
design, requirements, and code help to prevent flaws from 
being introduced into source code. Property-based testing 
validates that the final product is free of specific flaws. Be- 
cause property-based testing concentrates on generic flaws, 
it is ideal for focusing analysis late in the development cycle 
after program functionality has been established. 

Specifications state what a system should or should not do. 
Many specification languages support precise expression of 
requirements, such as Z [Dil90] and VDM [AI91]. Treating 
specifications as bounds of program behavior suggests that 
test oracles can be derived from specifications; some specifica- 
tion languages like Larch [GH93] and TAOS [Ric94] allow this 
to be done automatically. Further, specifications can guide 
the generation of test data; ADL [CRS96], TAOS [Ric94], 
and VDM [DF93] allow this as does the TASPEC language 
presented here. The advantage of using specifications is the 
formalism they establish for verifying proper (or improper) 
program behavior. 

Specifications are the basis of formal analytical tehcniques. 
Determining which assumptions (axioms) are correct is sub- 
stantial, and failing to do so correctly would invalidate the 
analysis. For example, if an operation has an unanticipated 
side-effect during execution in some situations, formal analy- 
sis cannot determine the impact of the side-effect upon cor- 
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rectness. While testing has similar problems, it does test the 
actual execution of the program, and can determine the pre- 
cise output  corresponding to a given input. For example, 
thorough testing can determine unanticipated side effects. 

Coverage metrics measure testing completeness; how much 
of the program has been tested? For property-based test- 
ing, a coverage metric must be strong enough to provide for- 
mal assurance, but  also be feasible to implement and utilize. 
Property-based testing uses a new metric called Iterative Con- 
texts, which strikes a balance between simple definition-use 
(def-use) pair metrics [Lasgo, Nta84, CPRZ89] and stronger 
but impractical path coverage metrics [RW85]. 

T e s t i n g  t o  V a l i d a t e  P r o g r a m s  

A test consists of a set of executions of a given program us- 
ing different input data  for each execution; its purpose is to 
determine if the program functions correctly. A test has a 
negative result if an error is detected during the test (i.e., the 
program crashes or a property is violated). A test has a posi- 
tive result if a series of tests produces no error, and the series 
of tests is "complete" under some coverage metric. A test has 
an "incomplete" result if a series of tests produces no errors 
but the series is not complete under the coverage metric. 

It is impossible to execute a program on all possible data. So, 
testing must approximate this, which may lead to an incorrect 
validation. However, for a testing process to be valuable, it 
must validate a program with respect to a property with a 
high degree of certainty. Property-based testing addresses 
this conflict with iterative contexts, a new data-flow coverage 
metric. 

It is important  to understand the relationship between test- 
ing and formal verification so that  the two can be compared. 
The purpose of property-based testing is to establish formal 
validation results through testing. To validate that  a pro- 
gram satisfies a property, the property must hold whenever 
the program is executed. Property-based testing assumes that 
the specified property captures everything of interest in the 
program, because the testing only validates that  property. 
Additionally, property-based testing assumes that  the com- 
pleteness of testing can be measured structurally in terms of 
source code. 

The property specification guides dynamic testing of the pro- 
gram. Information derived from the specification determines 
what points in the program need to be tested and if a test 
execution is correct. The iterative contexts coverage metric, 
based upon these points, determines when testing is complete. 

Therefore, in property-based testing, checking the correctness 
of each execution together with a description of all the rele- 
vant executions of the program validates a program with re- 
spect to a given property. 

T e s t e r ' s  A s s i s t a n t  

Figure I shows an overview of the implementation of property- 
based testing by the Tester's Assistant. To test the source 
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Figure 1: Property-based testing and the Tester's Assistant. 

code of a program, TASPEC specifications from a variety of 
sources are used. Program-independent specifications include 
system call, security, and generic flaw specifications. If  nec- 
essary, program-specific specifications can also be used. The 
Tester's Assistant analyzes and tests the code with respect to 
the specifications. Three results of the property-based testing 
process are: the test suite, the coverage results, and /or  flaws 
discovered during the test. 

Many properties are defined independently of specific pro- 
grams (for example, array bounds, race conditions, authenti- 
cation), and so can be grouped together in libraries of prop- 
erties. These libraries form models of system behavior, which 
are significant analytical objects in their own right. They can 
be reused and also analyzed by independent means to assess 
their completeness 4. 

Iterative Contexts  

The iterative contexts coverage metric is an ideal met- 
ric for satisfying property validation requirements. Itera- 
tive contexts are more powerful than other data-flow met- 
tics [Lasg0, Nta84, CPRZ89], but are small enough so they 
can be satisfied by a reasonable test suite. Given a set of 
variables at a point in the program that  are of interest, the 
optimal metric requires all possible results for that  set of vari- 
ables; for most sets this requires an infinite number of data  
values. Metrics based upon sequences of assignments within 
the slice approximate this optimum for given programs. 

An iterative context is a sequence of assignments defining a 
sub-path of a possible program execution. The assignments 
are taken from the program slice and represent a possible com- 
putation of a value important  to the target property. Taken 
together, all of the contexts represent many of the possible 

4 T h r o u g h  a previous  i t e r a t ion  of p r o p e r t y - b a s e d  tes t ing,  pe rhaps .  
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computations of values relevant to the property. It is not 
possible to represent with a finite set of input data  the infi- 
nite number of possible computations for some loops, so in 
those cases iterative contexts will not completely cover all be- 
havior relevant to a property. In a complete test suite, every 
context must be represented by at least one test execution in 
the suite. 

Static Analysis and Slicing 

Program slicing [Wei84], the extraction of all code affecting 
conformance to a property, reduces the amount of code that  
a human tester must inspect manually. Applying automatic 
analysis tools to the slice rather than to the whole program 
also aids the analyst. Calculating a slice requires detailed 
global dependencies; this information is also used to generate 
iterative contexts. 

TASPEC 

TASPEC, the specification language used in the Tester's As- 
sistant and developed specifically for property-based testing, 
has primitive constructs which enables it to be translated au- 
tomatically into slicing criteria and test oracles. TASPEC 
includes basic logical and temporal  operators as well as lo- 
cation specifiers, which associate events with code features. 
These events provide the primitive data  for analyzing higher- 
level semantic features of the program. TASPEC is a flexible 
low-level specification language well suited for specifying a 
wide range of properties and deriving tests from the property 
specifications. 

Using location specifiers, generic program-independent prop- 
erties in TASPEC map automatically to source code. There- 
fore, test oracles can be generated independently of descrip- 
tions of specific modules or functions. With the emphasis 
on properties and not on full specifications, test oracles can 
handle a wider class of behavior than that  rigidly defined by 
functional specifications. Translations between other specifi- 
cation languages and TASPEC can provide additional flexi- 
bility to the specification and testing phases of development. 
Helmke shows how translations from Z to TASPEC can assist 
in requirements traceability [He195]. 

Execution Monitors 

Automatic high-level execution monitors derived automati- 
cally from property specifications in TASPEC become test 
oracles that  assess the correctness of executions. Location 
specifiers produce primitive events for the specification state 
and the execution monitor processes these elements to raise 
higher-level events. The execution monitor checks for consis- 
tency between events and the property specification. There- 
fore, checking the adherence of a program execution to a com- 
plex property specification is automatic. 

Figure 2: Ftpd flaw flowchart. 

E x a m p l e  u s e  o f  P r o p e r t y - b a s e d  test ing 

This section describes testing a version the Unix f tpd 
(file transfer protocol [CER](FTP) daemon) program with 
property-based testing. Property-based testing has eight 
steps: 

1. Selecting a property; the property is specified in 
TASPEC (currently implemented) 

2. Static analysis and slicing (currently implemented) 

3. Program instrumentation (currently implemented) 

4. Initial test case selection and execution 

5. Coverage evaluation (partially implemented) 

6. Additional test case selection and execution 

7. Correctness evaluation (partially implemented) 

8. Repeat the last three steps as necessary 

Testing ftpd with respect to an authentication property re- 
veals a flaw in f tpd's  authentication code. 

D e s c r i p t i o n  o f  f t p d  a n d  i ts  f law 

Ftp is a Unix program implementing the F T P  protocol for 
transmitting files across a network. Ftpd,  the program de- 
scribed here, is a server program that  accepts file requests and 
processes authentication and other utility commands from re- 
mote client programs. 

In the version of ftpd released with SunOS 3.2, a security 
flaw allows any user to gain permissions to read or write files 
owned by any user on the system (including root) [CER]. To 
do so, the user logs on with his or her normal user name and 
password. As a part  of the correct authentication, a flag in the 
program is set. The flag records whether the user name has 
been authenticated. When a second user name is entered, the 
flag is never reset, so even if an incorrect password is entered 
for the second user name, the program thinks that  the second 
user name has been authenticated. Therefore, the user has 
the access privilege of the second user name. Figure 2 is a 
simplified flow-chart that  illustrates the flaw. 



ACM SIGSOFT Software Engineering Notes vol 22 no 4 July 1997 Page 77 

location rune setuid(uid) result 1 
{assert permissions_granted(uid); } 

location rune crypt(password, salt) result eneryptpwd{ 
assert password_entered( encryptpwd); } 

location func getpwnam(name) resul~ pwent{ 
assert user_password(name, 

pwent ~ pw_passwd, pwent ~ pw_uid); 
} 

location func strcmp(sl, s2) result 0{ 
assert equal(sl, s2); } 

password_entered(pwdl ) A 
user_password(name, pwd2, uid) A 
equal(pwdl, pwd2){assert  authentieated( uid); } 

Figure 3: Property specification for authentication. 

S e l e c t i n g / i d e n t i f y i n g  a property 

The first step in property-based testing is to choose a prop- 
erty or properties from a selection of generic properties, and to 
write any specific program-specific properties to test. Prop- 
erty specifications are written in TASPEC. In the case of ftpd, 
a generic property is used. 

A portion of the property library is a set of properties which 
describe a security model. One high-level property specifica- 
tion requires that  authentication occur before any permissions 
are granted: 

authenticated( uid) before permissions_granted( uid). 

The library also contains low-level definitions of the predicates 
authenticated and permissions_granted, shown in Figure 3. 
In TASPEC actions within curly braces occur when the con- 
dition (either a program location or a logical predicate about 
the specification state) before the curly braces occurs. For ex- 
ample, the s e t u i d ( u i d )  location, when executed, causes the 
permissions_granted predicate to be true in the specification 
state. 

The authentication property can be selected by hand. Option- 
ally, an automatic tool could compare location specifiers (code 
templates) in the property specifications with the source code 
of ftpd to evaluate the relevance of properties in the library. 
The definition of permissions_granted involves the s e t u i d  
system call ~. The property, then, forms a pre-eondition for 
the s e t u i d  system call. Since ftpd contains s e t u i d ,  the au- 
thentication property can be automatically chosen as an im- 
portant  property for which to test. 

SotuJ.dis used  here  as an  amalgam of  the  many  different permissions- 
setting system calls (seteuld is actual ly used by f tpd) .  

Static ana lys i s  a n d  sl icing 

The Tester's Assistant statically analyzes the source code for 
ftpd. Ftpd contains about  3000 lines of C code, 1700 lines of 
which are machine-generated by lex and yace. The static anal- 
ysis produces a data-flow graph for ftpd. The ftpd data-flow 
graph has 6148 nodes and 31912 edges. The data-flow graph 
is used in other steps of the process: program instrumenta- 
tion, coverage evaluation, additional test case generation, and 
correctness evaluation. 

Next, slices of f tpd  are derived from the data-flow graph. First 
the slicer generates a slice of ftpd with respect to the selected 
authentication property. The human tester inspects the slice 
manually, but even in the sliced code (represented in Figure 2) 
the flaw is subtle enough that  it goes unnoticed. At this point 
the human tester can request additional slices based upon any 
other criteria that  can aid in the tester's understanding of 
ftpd. 

Program instrumentat ion 

The Tester's Assistant produces an alternate version of ftpd 
to execute during testing. The alternate version has the same 
functionality as ftpd, but has additional data-gathering mod- 
ules, so that  coverage and correctness can be evaluated from 
test results. Every section of source code corresponding to a 
location specifier in the property has code added to record if 
and when the section of code is executed. The added code is 
used later in correctness evaluation. The assignments in the 
source code that  are significant for  coverage evaluation are 
also tagged to record when the assignments are executed. The 
Tester's Assistant instruments only the slice relative to the 
selected authentication property. The instrumented source is 
then compiled, at which point f tpd is ready to be executed. 

In i t i a l  test executions 

The instrumented ftpd is executed several times with vari- 
ous test data. There are three ways to generate test da ta  
for ftpd: First, use any available test data  that  was used in 
initial testing and debugging. Second, have the analyst gener- 
ate simple test data  from a description of f tpd's  functionality. 
Finally, if there are any specifications of ftpd, the specifica- 
tions can be used to generate test data. Generating test da ta  
from specifications is not specifically part  of property-based 
testing, but other testing methodologies contain the necessary 
algorithms [CRS96, DF93]. 

The first method is simplest, because no extra work is required 
and the test suite is likely to be fairly complete. However, if 
these test cases aren' t  available, the analyst creates some test 
cases by reading the ftpd manual page. Figure 4 shows some 
sample test cases. 

The test executions are then evaluated for coverage and cor- 
rectness. None of the four executions result in a violation 
of the authentication property. However, coverage evaluation 
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Test Case 1 

u s e r  < u s e r  n a m e >  

pass <incorrect password> 
retr filename 

Test Case 2 

user <user name> 

pass <correct password> 
retr filename (no access permissions) 

Test Case 3 

u s e r  < u s e r  name> 
p a s s  < c o r r e c t  password> 
cwd d i r e c t o r y  
retr filenamel filename2 

Test Case 4 

U S e r  < u s e r  n a m e >  

p a s s  < c o r r e c t  password> 
l i s t  

"User" enters a user name, "pass" enters a password, "retr" 
retrieves a file, "cwd" changes directory, and "list" lists a 
directory. 

Figure 4: Four initial test cases for ftpd. 

reveals that  f tpd has not been completely tested, so more test 
eases must be found and executed. 

C o v e r a g e  e v a l u a t i o n  

While f tpd executes with each given test data, the coverage 
instrumentation writes a file recording the execution history of 
the slice. The execution history indicates which path in ftpd 
was executed. The initial test executions yield several execu- 
tion histories. The execution histories are compared with the 
coverage metric. Property-based testing uses iterative con- 
texts. Each context is an ordered sequence of assignments, 
which defines a sub-path of the program. For a history to 
match a context, the assignments must be executed in order 
with no intervening and interfering assignments. The contexts 
are generated using static analysis and the data-flow graph, 

For the (abstracted) fragment of f tpd source 

(1) logged_i~a= O; 
(2)  while(i) 
(3)  swi tch(cmd)  { 
(4 )  u s e r :  name = r e a d ( ) ;  
( 5 )  p a s s  = r e a d ( ) ;  
(6 )  i f ( m a t c h ( n a m e , p a s s ) )  
(7)  l ogged  iJa = 1; 
(8)  b r e a k ;  

(9 )  g e t :  i f  ( l o g g e d _ ~ a )  
(10) s e t u i d ( n a m e ) ;  
( l l )  } 

the contexts required include 

{{4, 5, 6, 10}, {4, 5, 6, 4, 10}, {4, 10, 4, 5, 6}} 

The execution histories are compared with the set of contexts 
to see which histories match which contexts. The unmatched 
contexts are coverage gaps. 

The execution histories from the four initial test cases are 

{{4, 10, 4, 5, 6}, {4, 5, 6, 10}, {4, 5, 6, 10}, {4, 5, 6}. 

The second and third execution histories are identical because 
their behavior relative to the property specification is identi- 
cal. The context {4, 5, 6, 4,10} is a coverage gap in the initial 
test data, and corresponds to the flaw in ftpd. 

A d d i t i o n a l  t e s t  cases  

In order to complete the coverage metric, additional execu- 
tions of ftpd are necessary, with different test da ta  tha t  ad- 
dresses the coverage gaps. This paper does not present a 
method to produce this additional test da ta  automatically, 
and the problem is not trivial. 

A human tester produces additional test da ta  by examin- 
ing the contexts not covered and the code corresponding to 
the contexts. For the contexts and code in ftpd, there is 
a close correspondence between input statements and state- 
ment numbers in the uncovered context (Statements 4 and 5). 
The uncovered context {4, 5, 6, 4, 10} is executed by the the 
following test script: 

u s e r  < G s e r  l P s  n a m e >  

pass  <user  l ' s  password> 
u s e r  < u s e r  2> 

pass  <random s t r i n g >  
retr filename 

Correctness evaluation of this execution detects that  the flaw 
exists in ftpd. 

Future versions of the Tester's Assistant may be able to au- 
tomate some of the steps in generating test da ta  for gaps 
in coverage using techniques based upon symbolic execu- 
tion [DOgl]. 

C o r r e c t n e s s  e v a l u a t i o n  

During each test execution, a file records the activated 
TASPEC primitives. The TASPEC evaluation engine pro- 
cesses this data  and compares it with the property specifi- 
cation. If the data  violates the property specification, then 
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the human tester is informed that  the test caused an error 
condition. 

During processing of the correctness records for the additional 
test case given above, the correctness monitor registers that 
there is a correct authentication of user 1. No authentica- 
tion of user 2 is registered, because the password match fails. 
When the file retrieve action occurs, the pe~'missions_g~'anted 
property is registered. However, the retrieve occurs with the 
permissions of user 2, for whom there is no authentication. 
Therefore, the additional test case causes an error condition, 
so ftpd fails the property-based testing with respect to the 
authentication property. 

A p p l i c a t i o n s  t o  C o m p u t e r  S e c u r i t y  

Assuring that  computer programs and systems are secure is 
an important  and difficult problem. Security flaws are still 
being discovered in computer programs that  have been in 
use for many years. Many of the flaws are caused by the 
same basic recurring faults [Spa92]. For example, the Inter- 
net worm [Spa89] exploited errors in Unix network programs. 
Examination of the flaws which caused the errors revealed 
them to be of an elementary nature. 

It is time for a concerted effort to try to prevent such 
flaws from occurring. Therefore, an appropriate initial ap- 
plication of property-based testing and the Tester's Assis- 
tant is Unix security, specifically for network programs. Se- 
curity is a good application of property-based testing be- 
cause the parts of programs that  relate to security are small, 
and generic security properties can be precisely expressed 
program-independentally with TASPEC. 

S e c u r i t y  I s s u e s  

Networked systems cause special security problems because 
any communication or authentication between networked sys- 
tems must be performed entirely through an exchange of in- 
formation. The exchange of information is limited by the net- 
work structure as well; many networks in use today are asyn- 
chronous, and make no strict delivery guarantees for informa- 
tion packets. Problems with asynchrony are complicated by 
different implementations for the same service protocol, which 
may have different performance. Therefore, network services 
must be flexible in their implementation of communication 
and authentication services. This flexibility can sometimes be 
exploited and become a source of security problems, adding to 
security problems arising from bad design or implementation. 

Network services with Unix involve the client/server model. 
The server runs on a host machine, and regulates access to in- 
formation on the host by communication with client processes 
on other machines on the network. The server can do its task 
in one of two ways: by forking off a server-end client process 
to handle commands, or by doing all the work internally. In 
either case, the server will be interacting with the host system 
in a number of ways - reading/writing files, etc. 

Most network servers are privileged programs; they are run 

with root privileges on the host machine. Unix has a coarse- 
grained tri-level file protection scheme. If the access level for a 
process cannot fit into this scheme, the process must be given 
root level permissions, which override the scheme. Network 
services typically do not fit into the tri-level scheme and are 
given root permissions, even though root permissions are used 
in only one particular function of the program. Therefore, the 
server is given excess privileges, which become fertile ground 
for exploitable vulnerabilities. 

Us ing  p r o p e r t y - b a s e d  t e s t i n g  fo r  s e c u r i t y  

Formal testing with property-based testing can validate secu- 
rity properties of software and thus produce secure systems. 
Security-related code is often only a small part of a program's 
functionality. Property-based testing focuses on code relevant 
to security functionality in great detail, and so efficiently vali- 
dates the security-related part of the program without testing 
the whole program. 

Property-based testing provides a methodology for testing 
narrow properties of source code. It produces a specific and 
absolute metric for successful testing with respect to those 
properties. A successful test validates that  properties are not 
violated; if these properties form the security policy for the 
system, then the system is secure. 

Property-based testing uses a security model of the system, as 
well as a library of generic flaws (such as [LBMC93, Spa92]) 
specified in TASPEC, to produce a test process, whereby the 
target program can be certified to be free of certain types of 
flaws. 

C o n c l u d i n g  r e m a r k s  a n d  f u t u r e  w o r k  

Property-based testing defines a formalized framework for 
testing. With property-based testing tools, a tester can pro- 
duce a validation that  a program satisfies given properties. 
Other aspects of the process have not yet been well defined. 
How are properties selected? How is it determined that  the 
properties represent a complete model of a program's possible 
failures? 

Ongoing research into property-based testing at University of 
California-Davis includes: 

Tool development: automating more property-based 
testing techniques and incorporating them into the 
Tester's Assistant, and distributing the tools to gain 
a wider evaluation base. 

Property specification: specifying generic flaws and fea- 
tures of protocol implementions of T C P  and NFS, for 
example. 

Evaluation of iterative contexts: performing empirical 
comparisons between iterative contexts and other simi- 
lar metrics such as L-contexts [Lasg0]. 
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• Case studies: gaining more experience using the 
methodology of property-based testing and understand- 
ing how it can be applied to different problems. 

[FL94] 
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