
Testing C Programs for Buffer Overflow Vulnerabilities

Eric Haugh
haugh@cs.ucdavis.edu

Matt Bishop
�

bishop@cs.ucdavis.edu

University of California at Davis

Abstract

Security vulnerabilities often result from buffer over-
flows. A testing technique that instruments programs
with code that keeps track of memory buffers, and checks
arguments to functions to determine if they satisfy cer-
tain conditions, warns when a buffer overflow may oc-
cur. It does so when executed with ”normal” test data
as opposed to test data designed to trigger buffer over-
flows. A tool using this method was developed and eval-
uated by testing three widely used, open source software
packages. This evaluation shows that the tool is useful
for finding buffer overflow flaws, that it has a low false
positive rate, and compares well with other techniques.

1 Introduction

Buffer overflow vulnerabilities are one of the most
common security flaws [6]. Over the past few years,
they have accounted for up to 50% of the advisories is-
sued by CERT, demonstrating just how serious the is-
sue is. The infamous Internet worm of 1988 exploited a
buffer overflow vulnerability in the

�������	��
�������
server

program[8].
A buffer overflow flaw typically results when a pro-

grammer fails to do bounds checking when writing data
into a fixed length buffer, or does the bounds check-
ing incorrectly (for example, the check is off-by-one)
[15, 20].

In the classic scenario, the buffer is located on the pro-
gram stack, and the value written over is the return ad-
dress for the current stack frame [1, 23]. The return ad-
dress is changed to point back into the buffer, and when
the function in which the overflow occurred returns, the
program jumps to the bogus return address and begins
executing the contents of the buffer. Since the contents
of the buffer were determined by the attacker, she can

�
This work was funded by the National Aeronautics and Space Ad-

ministration’s Jet Propulsion Laboratory through contract 1215858 to
the University of California at Davis.

then execute any code that fits into the buffer, with the
same privileges as the program.

Overflowable buffers allocated on the heap or the data
segment also pose a threat, though they are typically
harder for an attacker to exploit. The attacker must find
some value in memory she can overwrite that is security
critical, such as a user id or a filename. Sometimes a
function pointer stored on the heap can be changed to
point to an arbitrary location, so that when the pointer
is dereferenced, code of the attacker’s choosing will be
executed. Such attacks have occurred [4, 19].

Traditional testing methods, such as statement or
branch coverage, do little to find buffer overflow vulner-
abilities [25]. The problem is that the program values
and execution paths needed to reveal a security flaw do
not show up during regular operation; hence, they are
also unlikely to show up during testing. We propose us-
ing a testing method that tracks possible buffer lengths
as the program executes. Library functions have pre-
conditions defining when buffer overflow will not occur.
If the lengths could cause these conditions to be vio-
lated, buffer overflow could occur (even if it does not in
this particular execution). This ameliorates the problem
above.

Section 2 reviews some of the many approaches to
the problem of detecting buffer overflow flaws in source
code. Section 3 presents an approach to aid a tester to
find buffer overflow vulnerabilities. This involves in-
strumenting a source program, testing the program, and
then using the warnings generated by the instrumenta-
tion as an indicator of likely buffer overflow conditions.
Section 4 describes a tool that implements this approach.
Section 5 presents the results of using this tool on three
open source software packages, and section 6 discusses
these results and compares the approach with previous
approaches. Section 7 concludes.

Throughout this paper we focus on the C program-
ming language. C provides little syntactic checking of
bounds, and C programs and functions tend to be very
terse, with (unfortunately) a minimum of error check-
ing. Hence there are many C programs that suffer from
security problems, including buffer overflows. But the

1

method works for any similar language.

2 Previous Work

Work analyzing programs for buffer overflows falls
into two classes: static analysis and dynamic analysis.

2.1 Static Analysis

A number of tools examine source code for buffer
overflow. ������� , typical of a large class of these tools,
scans C and C++ source code for known dangerous li-
brary calls [22]. It also does a small amount of checking
on the arguments to these calls and reports the sever-
ity of the threat. For example, library calls that copy a
fixed-length string into a buffer are rated as less severe
than library calls that copy the contents of an array into a
buffer (presumably, because the programmer knows the
length of the string and not the number of characters in
the array). It also looks for other potential problems such
as race conditions. Other similar tools include �	�	��� [21]
and Splint[16].

Wagner et al. used an integer range analysis to lo-
cate potential buffer overflows [25]. They treat C strings
as an abstract data type, and assume that they are only
manipulated by the C Standard Library functions, such
as
��
����� ���� and
��
��� � ���� . They track allocated
memory and the possible length of strings, and when-
ever the maximum length of a string can exceed the
minimum allocated space, a buffer overflow may oc-
cur. Pointer aliasing, the flow-insensitive analysis, and
the way function calls are handled mean that the string
length and allocated memory amount are approxima-
tions, rather than the actual values for each possible ex-
ecution. Hence this method is imprecise. Dor et al. im-
proved this scheme, but required annotation[7].

The problem with static analysis methods is their im-
precision. Because the general problem of detecting
buffer overflow vulnerabilities by scanning source code
is in general undecidable, all such tools use heuristics to
determine where buffer overflow might occur. Dynamic
tools take a different approach.

2.2 Dynamic Analysis

Dynamic analysis examines program execution to de-
termine whether buffer overflows occur during that exe-
cution. Compilers can add code to check bounds or to ar-
range data structures in memory to cause hardware faults
if bounds are exceeded; however, this additional instru-
mentation is often turned off in the name of efficiency.
Various tools augment, or replace, this ability. For ex-
ample, Purify [13] can detect many kinds of memory
errors, including accessing a buffer past its bounds. To

do so, it instrumentsg the compiled program with code
that performs different kinds of memory bookkeeping.

An alternate approach is to test programs. A tool
called Fuzz was used to test standard UNIX utilities by
giving them input consisting of large, random streams
of characters[17]. 25-33% of the programs crashed or
hung. The dominant causes were problems with point-
ers and array dereferencing, including buffer overflow
flaws. Property-based testing [9, 11] checks that pro-
grams satisfy certain properties, including security re-
lated properties. For example, the property that the pro-
gram is free of buffer overflow vulnerabilities is applica-
ble to most programs and can be specified in TASPEC.
During testing, violations of the specification are de-
tected. Software fault injection testing methods make
syntactic changes to the code under test. If the change
can result in a violation of the system security policy, the
tester has found a portion of code that must be correct
in order to avoid the presence of a vulnerability. Ghosh
and O’Connor use this technique to find buffer overflows
[12].

The main problem with dynamic analysis is the need
for test data that causes the overflows. Unless the data
given to the program causes an overflow, these dynamic
techniques will not detect any possible cases where
buffer overflow occurs.

3 Using Buffer Sizes in Dynamic Analysis

We extend Wagner et al.’s method to dynamic execu-
tion. This enables us to detect potential buffer overflows
that do not actually occur during testing, but might have
occurred had different test data been used[14].

Consider the library function
��
����� �
�����

��� ,
which copies a string from

� to

�
�� . Because this
library function does not do any bounds checking, if the
length of

� is longer than the space allocated to

�
�� ,
the data at the end of

� that didn’t fit into

�
�� over-
writes the memory locations that follow

�
�� . This is the
quintessential buffer overflow [1], and if the contents of

� are determined by user input, an attacker may be
able to exploit this to execute arbitrary code or change
data values.

During normal testing, if the string stored in

� is
not long enough, the potential buffer overflow will not
be detected. But, suppose the space allocated to

� is
longer than the space allocated to

�
�� for some execu-
tion of the program. This can be detected at runtime, and
it may indicate a vulnerability. Consider the program
fragment shown in table 1. This has a buffer overflow
condition, because if the user enters more than 100 char-
acters, the library function
��
����� will overflow

�
�� .
This can be detected at runtime, when
��
����� is called,
by noticing that the amount of space allocated to

� is

�� ��

����������	�
�� ��
 �
�� �������	�

� �	� ��

� � ����� �
�� ����� ��

��
����� �
�����

����

Table 1. Unsafe call to
��
���	� �

less than the amount of space allocated to
�
�� .

If the program is instrumented to keep track of how
much space is allocated to each buffer, this potential
overflow can be detected during testing, even if the
buffer overflow did not occur during testing.

This approach does not eliminate false positives. For
example:

�� ��

����������	�
�� ��
 �
�� �������	�

� �	� ��

� � ����� �
�� ����� ��

��������	�����������

��
����� �
�����

����

Even though the call to
� �	� ��
 can place a string of

length up to 199 in

� , the null assignment just before
the call to
��
����� ���� means that

� always contains
a string of length 99 or less. So in this case, the call to

��
����� is safe.

If the buffers passed to
��
����� are dynamically al-
located, it may not be possible to compute their actual
allocations until execution. Consider this code:

�� ��

����������	�
�� ��
�� �
��

� �	� ��

� � ����� �
�� ����� ��

�
�� ��� ��������
 ��� ��� �� � ��
����
��
!�����

���#"$��� �%

��
����� �
�����

����

If the input is 199 characters, the space allocated to
�
��

will be less than the space allocated to

� , and a warn-
ing will be issued. However, no buffer overflow can oc-
cur because the amount of space allocated to

�
�� is allo-
cated dynamically to be the length of the string in

� .

Other common C library functions amenable to this
analysis are listed below. The property to be tested is
also shown. We refer to these as “interesting functions.”
For our purposes, we limited our analysis to these; the
interested reader is encouraged to find other functions
and derive the relevant property. In this list, the notation&('#)�*
�+ means the length of the string stored in the buffer

 , and , &(&(-�./*
0+ means the amount of space allocated to

 .

1.
��
��� �
 ��
�1 � ����2 ��
 is , &(&3-�.0*
�+54 &3')�*
�+76
, &(&3-�.0*
�1 � ���#2 + ?

2.
��
 � �� � �
����

� � � �%

is

� 6 &3'#)�*(8�9;: +=<?>
, &(&3-�.0* �
��@+ ?

3.
 ��
���� � �� �
����BA#C�
!A �

����
 is , &(&3-�.0* �
��@+D4
, &(&3-�.0*

� + ?

4.
 �	�
 ��� � � �
���� � �EA#C�
FA �

����
 is
� <G, &(&3-�.0* �
���+ ?

5.
� �	� ��

 � � �FH�H�H ��
 is , &(&(-�./*
0+I4 �

?

6.
� ��� ���� �
�����

� � � ��

is
� <J, &3&(-�.0* �
���+ ?

7.
� ��� 	���� �
����

� � � � ��

is
� <

, &(&3-�.0* �
��@+ ?
8.

� �����K�@L	� �
����

� � � �%

is
� <�, &(&3-�.0* �
���+ ?

9. M /� ���

� � �
���� � ��

is
� <G, &(&(-�./* �
���+ ?

When a security analyst obtains a report of possible
security problems, she may wish to prioritize the order
in which she investigates problems. ������� prioritized the
list of vulnerabilities it found, and we employ a sim-
ilar technique. For example, when the destination of

��
����� is dynamically allocated, the programmer had
to calculate how much space to allocate. If the alloca-
tion is too small for one case, we believe it is likely the
case for all executions of the program. Then the pro-
gram will misbehave during normal testing anyway. Of
course, there will be exceptions, but our experience indi-
cates that overflows involving dynamic allocation occur
less often than those involving one or more buffers of
static size. A similar argument applies to
��
��� � ���
and
 ��
 ��� � ������ . When the destination and the source
buffers are both statically allocated, a “type 0” warn-
ing is issued. When the destination is dynamically al-
located, a “type 2” warning occurs (whether the source
is dynamically or statically allocated). When the source
is dynamically allocated but the destination is statically
allocated, a “type 1” error arises. Table 2 summarizes
these warnings.

The benefit of this dynamic approach is that there is no
need to make approximations to deal with pointers and
casts, which make C difficult to analyze statically. At

Type Description
0 source and destination statically allocated
1 source dynamically allocated, destination

statically allocated
2 destination dynamically allocated

Table 2. Warning Types

any point in the execution of the program, the value of
any variable is known. Because of the necessary impre-
cision with a static approach for a language like C, any
warning generated by a static overflow detection tool
must be investigated by inspection. With the dynamic
approach outlined above, the tester must still investigate
each warning by inspection, as well as generate a set of
test cases to satisfy some coverage metric. But because
the dynamic approach will suffer from less imprecision,
the number of false positives is potentially less. If the
test set must be generated for functional testing of the
application, this approach is more likely to result in less
work for the tester, while still providing a similar level
of accuracy.

4 The Tool

The tool ��������� (Systematic Testing Of Buffer Over-
flows) implements these ideas. It takes as input the
source files of a program � to be tested, and generates
an instrumented version of each file, which when com-
piled creates ��� . The input files must be preprocessed
before being input to ��������� . When executed, �	� has the
same behavior as � , except information about the test-
ing coverage achieved and the warnings that were gen-
erated are emitted to a trace file. The coverage metric
used by ��������� is called “interesting function coverage.”
This is a simple metric that is satisfied when every func-
tion call to one of the interesting functions is executed.
Clearly, interesting function coverage is subsumed by
statement coverage. This metric was chosen for its sim-
plicity, and because it is relatively easy for a tester to
satisfy.

To keep track of the buffers that the programmer may
pass to an interesting function, �����
��� creates special
function calls which appear in �	� . One call is added
for each variable declaration that declares a buffer, and
one for each C Standard Library function that manages
dynamically allocated memory. Also, each call to an in-
teresting function is replaced with a call to a wrapper
function, which then invokes the interesting function.

Consider how ��������� would modify the following
code fragment:

LF��� � � 1 � ��
����
 M�1 �$� � ������	 � M�1 ��� � ������	 � M�1 ��� ��������	�
� � ���
���1 � �5� �

In the ��������� output, this will appear as:

LF��� � � 1 � !� � �
����
 M�1 �$� � ������	 � M�1 ��� � ������	 � M�1 ��� ��������	�

��� ��������� � ���

�� �
�� ��
� � M�1 �� M�1 ��� �

 ������� �� M�1 �$� � ��

��� ��������� �
�� � �� � M�1 � M�1 ��� �
 ������� �� M�1 ����� ��

��� ��������� �
�� � �� � M�1 � M�1 ��� �
 ������� �� M�1 ����� ��
� � ���
���1 � �5� �

The new function calls record the fact that new buffers
have come into scope. Each of these calls place the start-
ing address of a buffer onto a list, along with the size of
the buffer.

The function ��������� ���

��
�� ��
� M�1 �� �
does some additional work compared to
���������
�� � �� M�1 �� � : it scans the list of already

recorded statically allocated buffers, and removes any
entries for buffers whose lifetime has ended. An alter-
native for removing expired buffers would be to insert
instrumentation at the point each buffer expires (e.g., at
all return statements within the function). However, the
use of non-local jumps, such as

����� ����� � ���
, means

that some buffers would not be removed from the list
when they are no longer in use.

To keep track of dynamic memory, each call to
one of the C Standard Library functions

��������� ����
,�������� ���

,

	�	������� ���

, and
�
	� � ���

are replaced
with a wrapper function. The first of these three wrap-
pers record the starting address paired with the buffer
length, which is placed on a list of dynamically allocated
buffers. This list is separate from the two lists used for
statically allocated buffers. The wrapper for

�
	� � ����
removes the freed buffer from the list.

Sometimes a programmer will allocate an amount of
memory using

� ������� ���
or

 ������� ����
that is con-

stant across different executions of the program. For ex-
ample:

� �
5�J� �����@� ���� ��

It is better to treat the memory pointed to by
� �
 as stat-

ically allocated, with respect to issuing warnings. When
the amount of memory allocated by a call to

��������� ����
or

��������� ����
is determined by a constant expression, a

different wrapper function is used that tracks that mem-
ory seperately from memory dynamically allocated with
a non-constant expression.

Consider the output from ��������� in table 3. The

��
����� ��� wrapper first scans each buffer list, compar-
ing

� �
$� with each entry of each list until a match is
found. Each entry consists of a buffer starting address
and length, so it is easy to compute whether or not

� �
%�
points to an element of the buffer represented by the en-
try. Since

� �
%� points to the 19th element of M�1 � , the

����
 M�1 �I� ����	�

����
 ��� �
%� � ��� �
F��

��� ��������� �
�� � �� � M�1 � M�1 � �
 ������� �� M�1 ��� ��

� �
F��� ��� ��������� � /���
�� � � ��� � � �����@� ���	��

H�H�H� �
%�E� M�1 � " ����

��� ��������� �
��
����� � �
%� � � �
�����

Table 3. Sample ��������� output

wrapper computes the effective buffer size of
� �
$� to

be 10, and remembers that
� �
%� matched an entry from

the list of statically allocated buffers. Then each list is
scanned again for

� �
F� , which is found on the list of
dynamically allocated buffers of constant size, and has
a length of 20. Then the wrapper compares 20 to 10,
finds that

� �
F� points to a buffer of static length that’s
larger than the one of static length pointed to by

� �
%� ,
and generates a type 0 warning.

5 Evaluation

�����
��� was used to test three versions of the popluar
ftp server wu-ftpd: 2.4.2-beta-18, 2.5.0, and 2.6.2. The
first two were chosen to see if ��������� could uncover
their known vulnerabilities, and the third to see if ���������
could uncover new ones. ������� was also used to ana-
lyze 2.6.2, so that ������� and �����
��� could be compared.
The net-tools-1.46 package for Linux was tested next.
This package consists of several commands related to
networking, along with a support library. It was cho-
sen so that testing with �����
��� could be compared to the
tool developed by Wagner[25], which found a number of
buffer overflow flaws in net-tools-1.46. All testing was
done using Redhat 7.2 for the i386.

5.1 wu-ftpd

2.4.2-beta-18 is known to have an exploitable buffer
overflow flaw due to a misuse of
��
��� � ���� [2]. This
call to
��
��� � ���� was flagged by ��������� with a “type
0” warning. Two known overflow flaws exist in 2.5.0[3],
the first of which was another misuse of
��
��� � ���� ,
which was again uncovered with a “type 0” warning.
The second flaw was caused by a series of calls to

 ��
���� � �� ��� and
��
���	� ���� . Two of the calls to

 ��
���� � �� ��� were flagged by �����
��� , one with a “type
0” warning and the other with a “type 1” warning.

A number of buffer overflow flaws in wu-ftpd-2.6.2
were uncovered, but none of them appeared to result in
any serious vulnerability. Nonetheless, the ability to un-
cover these flaws still demonstrates the usefulness of the

Function True Positives False Positives Total
sprintf 8 5 13
strcat 5 5 10
strcpy 20 22 42
All 33 32 65

Table 4. ��������� results for wu-ftpd-2.6.2, all
warning types

Function True Positives False Positives Total
sprintf 6 1 7
strcat 1 1 2
strcpy 4 3 7
All 11 5 16

Table 5. ��������� results for wu-ftpd-2.6.2, warn-
ing type 0

Function True Positives False Positives Total
sprintf 2 3 5
strcat 4 4 8
strcpy 16 10 26
All 22 17 39

Table 6. ��������� results for wu-ftpd-2.6.2, warn-
ing type 1

Function True Positives False Positives Total
sprintf 0 1 1
strcpy 0 9 9
All 0 10 10

Table 7. ��������� results for wu-ftpd-2.6.2, warn-
ing type 2

tool.
Tables 4, 5, 6, and 7 summarize the number and types

of warnings generated by the tool. For the purpose of
this paper, a “true positive” means there exists some in-
put to the program under test that results in the function
call writing data past the end of the destination buffer
(even if it turns out this flaw doesn’t represent a security
vulnerability, for the reason stated above). “False posi-
tive” means that for no input to the program under test,
does the function call write past the end of its destination
buffer.

On this program, a “type 2” warning never indicated
the presence of a flaw. Overall, testing with ��������� found
33 buffer overflows, while incurring 32 false positives.
Ignoring “type 2” warnings, the number of false posi-
tives is 22, or 0.67 false positives for every buffer over-

Function True Positives False Positives Total
bcopy 0 3 3
fgets 0 17 17
memcpy 0 5 5
snprintf 0 36 36
sprintf 8 49 57
strcat 5 10 15
strcpy 23 59 82
All 36 179 215

Table 8. ������� results for wu-ftpd-2.6.2

flow discovered.
Table 8 shows the results of testing with ������� . It was

run with a command line parameter that set the sen-
sitivity cutoff to 1. At this cutoff, all vulnerabilities
in the ������� database are reported, except ones at the
level of ��� ��� ��� . This cutoff was chosen because it was
the highest that includes all of the interesting functions
checked by ��������� .

5.2 net-tools

A test set was developed for each command. The
union of these test sets was considered to satisfy inter-
esting function coverage for the support library, even
though different parts of the support library were cov-
ered by different test sets.

A number of overflow flaws were uncovered. The
results are shown in tables 9, 10, 11, and 12. Ignor-
ing “type 2” warnings, ��������� found 19 buffer overflow
flaws and generated 3 false alarms. This is a false posi-
tive rate of 0.158 false positives per true positive.

For each of the vulnerabilities found by Wagner’s tool,
�����
��� emitted a “type 1” warning. The first flaw found
by Wagner’s tool appears in

��� � � H , from the support
library[24]:

� � �	� � �	� � �	� ��M � ����� � ��������� ��� �

��
 1 � �	� � ��� � � � ������� � �

 ���
	��
 ��� � � � �
 H�
 � � � ��
 �=� � � � � �	��	�� � � �	� � ��

��
���	� � ����� � �	��	�� � � ����� ����

	� ��1
 � �$

The call to
��� � � � �@M � � ����� ���� returns a struct whose

field
� � �����

can have an arbitrary length. This field
is copied by
��
����� �� � into

� �����
, which may have

a length of only 64 bytes. Since the data returned by
�	� � � � ��M � � ��� � ��� can come from over the network, an
attacker may be able to arrange for

�	�
	�� � � �#� �
to have

a length longer than 64.
A few other flaws that appear exploitable were also

found in net-tools-1.46, which are similar to the one just

Function True Positives False Positives Total
sprintf 3 0 3
strcat 6 0 6
strcpy 10 3 13
All 19 3 22

Table 9. ��������� results for net-tools-1.46, all
warning types

Function True Positives False Positives Total
strcat 6 0 6
strcpy 4 2 6
All 10 2 12

Table 10. ��������� results for net-tools-1.46,
warning type 0

Function True Positives False Positives Total
sprintf 3 0 3
strcpy 6 0 6
All 9 0 9

Table 11. ��������� results for net-tools-1.46,
warning type 1

Function True Positives False Positives Total
strcpy 0 1 1
All 0 1 1

Table 12. ��������� results for net-tools-1.46,
warning type 2

described. Unfortunately, data on the number of false
positives and known false negatives generated by Wag-
ner’s tool was not available.

6 Discussion

�����
��� was able to identify known security vulnerabil-
ities in past versions of wu-ftpd, demonstrating its abil-
ity to find known problems. With respect to the limited
sample of programs presented here, ��������� did a good
job of keeping false positives low while still finding
flaws. For wu-ftpd-2.6.2, the false positive rate was 0.67
false positives per true positives, while for net-tools, it
was 0.158. Compare this to a simple tool like ������� ,
which had a false positive rate of 4.97 for wu-ftpd-2.6.2.
Since false positives mean more work on the part of the
analyst who must manually inspect all warnings, it is im-
portant to minimize false positives. Further, the test data
used for functional testing may be used for ��������� , thus
reducing the time needed to test for buffer overflows.

The known false negatives with ��������� were also low,
with zero for wu-ftpd-2.6.2. (Because it is difficult to
know how many flaws exist in a non-trivial program, this
discussion is necessarily about known false negatives,
not all false negatives.)
�����
��� requires that the buffer overflows arise from

programmer misuse of library functions. A test run
on sudo did not uncover a known buffer overflow flaw.
Upon inspection, the known flaw arose because a vari-
able was not properly re-initialized before use. As a re-
sult, ��������� could not detect that the (meaningless) value
in the variable bore no relation to the value needed for
testing the precondition to the interesting function. Such
an analysis is beyond the scope of �����
��� .

Some obervations about the interesting functions are
pertinent. First, in all the �����
��� tests, the “type 2”
warnings indicated false positives. This supports the
claim made earlier, that programmers usually determine
the amount of dynamically allocated destination storage
correctly. Secondly, all of the flaws found by ���������
involved
��
����� ���� ,
��
��� � ��� , and
 �
 ��� � � ���� .
�����
��� found none involving functions that take a buffer
length parameter. This suggests that when programmers
fill buffers using functions that take a length parameter,
they tend to use the length parameter correctly.

We should point out that functions like
��
 ������ ,
which takes a length parameter, suffers from other prob-
lems. In many places in the tested programs, the authors
forgot to add a terminating NULL byte to the destina-
tion. The problem is that if the length of the source string
is the same as the length parameter,
��
 � ���� does not
add a NULL byte. The result in the destination is there-
fore semantically not a string, so any future operations or
functions that assume it is a string produce unexpected

results.
The authors of [18] recommend replacing
��
 � ����

with
��
!������ , which takes a length parameter whose
value should be equal to the length of the destination
buffer, making it harder to commit off-by-one errors.
The function also guarantees that the destination will
be null-terminated. None of the functions tested with
��������� that have similar semantics were found to be in-
volved with any buffer overflow flaws. This provides
indirect, empirical evidence that
��
F������ is harder to
misuse than
��
 � ���� .

Testing using ��������� is a special case of property-
based testing[9, 11]. In property-based testing, the tester
writes a specification that associates code locations with
specifications in a language called TASPEC[10]. The
program being tested is then instrumented according to
the specification. In TASPEC, a tester can say, “in-
strument all calls to

� ������� �
.” ��������� instruments all

calls to
� �����@� �

, but does so differently depending on
whether the parameter passed in is represented as a con-
stant expression. Also, TASPEC has no formal mech-
anism for describing different kinds of warnings. It re-
ports all violations consistently. It would be straightfor-
ward to extend TASPEC to support this, though.

Aspect-oriented programming is a way to modularize
cross-cutting concerns. Programming tasks like error-
checking and logging, which are usually spread through-
out source code in object-oriented or procedural lan-
guages, are put into their own module. AspectC[5], an
aspect-oriented extension for C, could be used to par-
tially implement the functionality of ��������� . However,
AspectC does not provide a mechanism for instrument-
ing variable declarations, which would be required to in-
strument statically declared buffers. This suggests that
an aspect extension for C that includes the ability to
specify variable declarations would be useful.

7 Conclusion and Future Work

�����
��� provides a dynamic technique to look for
buffer overflows that the test data does not exercise.
It compares favorably to other tools such as ������� and
Wagner et al.’s static analysis tool because �����
��� takes
advantage of values computed during the execution of
the program.

Although obvious in retrospect, ��������� failed to re-
port several errors that ������� reported. Upon examina-
tion, the ������� reports were generated by potential buffer
overflows arising from segments of code that could not
both be compiled (because they were guarded by �

� �

H�H�H�� ���
 � H�H�H�� ���	��� � preprocessor statements).
These false positives did not occur with ��������� because
��������� reported problems from executing code, and the
code that ������� flagged was never compiled. Hence, on

systems where the code was not compiled, ������� ’s re-
ports were false positives. On systems where the code
was compiled, ��������� reported the same problems that
������� reported.

Several extensions are possible. Extending ��������� to
find vulnerabilities involving direct assignment to buffer
elements would allow it to uncover overflows not related
to functions. This would require ��������� to determine
the possible integer range of the expression used for the
index into the buffer, along the lines of what Wagner’s
tool does. It is hard to see how this information could
be obtained dynamically with “normal” user input, since
such input will probably not cause the value of the index
to be outside the bounds of the buffer.

Lowering the false positive rate is another interest-
ing question. Most false positives arose when flow of
control constructs properly guarded otherwise danger-
ous function calls. Consider this code from wu-ftpd-
2.6.2:

� �
��
F� ��� ������ "����/�
 ������� �� M�1 ��� � �

 �
 ��� � � M�1 � � A ���	� �@2 C�
!A � #� �
 �����	����

This call to
 ��
 ��� � � was flagged by ��������� , but because
it appears in the body of the

� �
statement, it is executed

only when the buffer cannot be overflowed (due to the
condition in the

� �
statement). A more complex flow

analysis might detect this, allowing the (spurious) warn-
ing to be suppressed.

References

[1] AlephOne. Smashing the stack for fun and profit.
Phrack, 7(49), November 1996.

[2] Cert coordination center, advisory ca-1999-03.
http://www.cert.org/advisories/CA-99-03.html.

[3] Cert coordination center, advisory ca-1999-13.
http://www.cert.org/advisories/CA-1999-13.html.

[4] Cert coordination center, vulnerability note vu#363715.
http://www.kb.cert.org/vuls/id/363715.

[5] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. Us-
ing aspectc to improve the modularity of path-specific
customization in operating system code. In 9th ACM
SIGSOFT Symposium on the Foundations of Software
Engineering, Vienna University of Technology, Austria,
September 2001.

[6] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole.
Buffer overflows: Attacks and defenses for the vulnera-
bility of the decade. In Proceedings of the DARPA Infor-
mation Survivability Conference and Expo, 1999.

[7] N. Dor, M. Rodeh, and M. Sagiv. Cleanness checking of
string manipulations in c programs via integer analysis.
In Proceedings of the Eight International Static Analysis
Symposium, June 2001.

[8] M. Eichin and J. Rochlis. With microscope and tweez-
ers: An analysis of the internet virus of november 1988.

In Proceedings of the 1989 IEEE Computer Society Sym-
posium on Security and Privacy, 1989.

[9] G. Fink and M. Bishop. Property based testing: A new
approach to testing for assurance. ACM SIGSOFT Soft-
ware Engineering Notes, 22(4), July 1997.

[10] G. Fink, M. Helmke, M. Bishop, and K. Levitt. An
interface language between specifications and testing.
Technical Report CSE-95-15, University of California,
Davis, 1995.

[11] G. Fink, C. Ko, M. Archer, and K. Levitt. Toward a
property-based testing environment with application to
security critical software. In Proceedings of the 4th
Irvine Software Symposium, pages 39–48, April 1994.

[12] A. Ghosh, T. O’Connor, and G. McGraw. An automated
approach for identifying potential vulnerabilities in soft-
ware. In Proceedings of the 1998 IEEE Symposium on
Security and Privacy, pages 104–114, May 1998. Oak-
land, CA.

[13] R. Hastings and B. Joyce. Purify: Fast detection of mem-
ory leaks and access errors. In Proceedings of the Winter
USENIX Conference, 1992.

[14] E. Haugh. Testing c programs for buffer overflow vul-
nerabilities. Master’s thesis, University of California at
Davis, September 2002.

[15] O. Kirch. The poisoned nul byte, post
to the bugtraq mailing list, October 1998.
http://www.securityfocus.com/archive/1/10884.

[16] D. Larochelle and D. Evans. Statically detecting likely
buffer overflow vulnerabilities. In USENIX Security
Symposium, Washington, D. C., August 2001.

[17] B. Miller, L. Fredricksen, and B. So. Empirical study of
the reliability of unix utilities. Communications of the
ACM, 33(12):32–44, December 1990.

[18] T. C. Miller and T. de Raadt. strlcpy and strlcat - consis-
tent, safe, string copy and concatenation. In Proceedings
of the 1999 USENIX Annual Technical Conference, June
1999. Monterey, California, USA.

[19] Nsfocus security advisory, sun so-
laris xsun “-co” heap overflow.
http://online.securityfocus.com/archive/1/265370.

[20] Openbsd developers, single-byte buffer over-
flow vulnerability in ftpd, December 2000.
http://www.openbsd.org/advisories/ftpd replydirname.txt.

[21] Secure software solutions, rats, the rough auditing tool
for security. http://www.securesw.com/rats/.

[22] J. Viega, J. Bloch, T. Kohno, and G. McGraw. Its4: A
static vulnerability scanner for c and c++ code. In Pro-
ceedings of the 16th Annual Computer Security Applica-
tions Conference, December 2000.

[23] J. Viega and G. McGraw. Building Secure Software.
Addison-Wesley, Boston, 2002.

[24] D. Wagner. Personal communication, May 2002.
[25] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first

step towards automated detection of buffer overrun vul-
nerabilities. In Symposium on Network and Distributed
Systems Security (NDSS ’00), pages 3–17, February
2000. San Diego CA.

