
Multi-Stage Delivery of Malware

Marco Ramilli

Dipartimento di Elettronica Informatica e Sistemistica

University of Bologna

Via Venezia, 52 - 47023 Cesena â ITALY

marco.ramilli@unibo.it

Matt Bishop

Department of Computer Science

University of California, Davis

Davis, CA 95616-8562, USA

bishop@cs.ucdavis.edu

Abstract

Malware signature detectors use patterns of bytes, or

variations of patterns of bytes, to detect malware attempting

to enter a systems. This approach assumes the signatures

are both or sufficient length to identify the malware, and

to distinguish it from non-malware objects entering the sys-

tem. We describe a technique that can increase the difficulty

of both to an arbitrary degree. This technique can exploit

an optimization that many anti-virus systems use to make

inserting the malware simple; fortunately, this particular

exploit is easy to detect, provided the optimization is not

present. We describe some experiments to test the effective-

ness of this technique in evading existing signature-based

malware detectors.

1 Introduction

Ever since Cohen’s 1984 paper [6] described computer

viruses in detail, a battle has raged between virus writers

and anti-virus defenders. The simple computer virus has

evolved into more complex stealth, polymorphic, and meta-

morphic engines. In parallel, anti-virus1 systems have be-

come more complex; no longer are simple scans for code

signatures sufficient. Indeed, these systems now use tech-

niques such as emulation, behavior analysis, sandboxing,

and other forms of isolation to protect systems. The de-

fenses come with a price: data objects (which include

downloaded entities such as applets on the World Wide

Web, files, and email attachments) must be scanned and

tested in other ways for malware. Because of the large

number of different kinds of malware (over 22,000,000 as

of early 2009 [5]), it is considered impractical to scan all

incoming data objects for all types of malware. Thus, sys-

tems differentiate among the vectors used to put malware

1Here, we follow the industry custom of calling anti-malware detection

programs “anti-virus” programs.

on systems. For example, macro viruses intended for Mi-

crosoft Word must be in Word documents to be effective,

and so anti-virus programs typically do not scan incoming

executables for those viruses—but they do scan any incom-

ing Microsoft Word files for them. This creates a “gap” in

protection. If, for example, a macro virus were embedded

in an executable file in such a way that the executable file

would ignore it when executed, but a second program could

locate that virus and load it into an existing Microsoft Word

document in such a way that the virus would be triggered

when the file were opened, the anti-virus programs would

not detect the macro virus’ entry onto the system. The point

of detection would therefore need to be the loading pro-

gram. This view of the malware attack is of a three-step

process. The first step is to place the malware onto the sys-

tem. The second step is to assemble the malware. The third

step is to execute the assembled malware. More customary

views of the process conflate the first and second steps into

one, under the guise of infection (and the third step is the

execution step). Anti-virus programs typically attempt to

block the first two steps by detecting and preventing mal-

ware from entering the system. They require that both steps

have taken place, because their signatures require that spe-

cific parts of the malware be detectable. Anti-virus pro-

grams that seek to detect incoming malware use two pri-

mary techniques. The first, which we call data signature

scanning, is to look for patterns in the incoming data objects

that match known malware—signatures—and, when found,

take some action, for example deleting the incoming data or

quarantining it and notifying the user. The second, behav-

ior signature scanning, emulates the data object’s execu-

tion either statically (determining what instructions would

be executed) or dynamically (placing it in a sandbox and

executing it, with the sandboxing intercepting all system

calls and possibly library calls, looking for patterns that

match behavior of malware). Both techniques assume that

enough of the malware is present in the data object being

examined to trigger an alert. As stated above, these tech-

niques all combine entry onto the system with assembly in

91978-1-4244-9356-2/10/$26.00 c©2010 IEEE

their view of the malware life cycle on a system. Consider

an alternate view. What happens if assembly occurs after

placement on the system? That is, portions of the malware

are placed on a system, then the malware is assembled, and

then it is executed—three distinct steps instead of two. This

view negates the assumption that enough of the malware is

present in the data object to be identified as malware. We

exploit this view by partitioning our malware into multiple

pieces, none of which alone contains enough of a signature

to trigger an anti-virus alert. The pieces are placed onto the

target system, and some time later are assembled together.

This combined code is sufficient to act as malware. The

argument that this malware will then be detected by the sys-

tem when it is executed, and therefore this attack is incon-

sequential, assumes that the system has an anti-virus engine

monitoring all processes as they execute—and that the anti-

virus program is correctly configured and correctly identi-

fies all malware as such by its behavior. This assumption is

of course questionable; at any rate, by that argument, no in-

coming data object would need to be checked for malware

because all malware would be detected on execution. The

magnitude of business, and the amount of research into, the

detection of malware as it enters the system demonstrates

that this argument is not widely accepted. Indeed, it vio-

lates the principle of separation of privilege (also known as

“layers of defense”) [16] because it contends that one layer

of defense is sufficient. After a brief survey of related work,

we present the design of our attack, and then report on ex-

periments. We conclude with a discussion of future direc-

tions and some ideas on how to apply this work to defeat

the execution monitoring of anti-virus defenses.

2 Related Work

Multi-stage attacks are well-known. One of the earli-

est was the Internet worm [9], which placed a “grappling

hook” on the target system. When the grappling hook was

executed, the rest of the worm was pulled over. Ptacek

and Newsham [15] used network hop counts to cause pack-

ets to be dropped. This fragmented attack commands into

multiple packets interspersed with irrelevant data that was

discarded after the intrusion detection system of the target

site examined the stream for attacks, but before the stream

reached the target. Other multistage attacks, often in the

guise of malware (see for example [2, 4, 7, 12] are “multi-

stage” in their activation or execution. Models [8, 14, 19]

and interpretative methods such as visualization [13] have

been created and applied to help understand how multi-

stage attacks work and how they spread.Of these attacks,

the Internet worm is closest to what we describe. The main

difference is that the worm uses the grappling hook to pull

over an object file that must be linked to local libraries and

resources in order to execute. Many existing worms work

similarly, exchanging messages with other hosts and copies

of the worm to propagate and to control their spread. Our

attack focuses on constructing the malware from data resi-

dent on the current host.

The computer viruses Dichotomy [10] and RMNS [11]

each consisted of two components. When executed,

they operated as TSRs. Dichotomy intercepted the

“Load and Execute” call, and either infected the file with

the “loader” (that changed the file entry point to invoke the

virus) and the virus body, or simply with the virus body.

RMNS had two parts, one of which intercepted the call, and

the other of which infected files. The infection part infected

the file with the interception code half the time, and the in-

fector the other half of the time. These viruses differ from

our approach because we fragment malware into parts that

can enter a system, and then be combined to create the mal-

ware. The components themselves need not do anything in

particular, or indeed even do anything—until they are as-

sembled in memory.

Sun, Ebringer, and Bostas [17] build on polymorphic

malware that uses encryption to evade detection. This type

of malware encrypts the unpacking routine, which is then

decrypted just before execution and re-encrypted just after

execution (called “multistage unpacking”). Our approach

omits encryption, or indeed any obfuscation beyond the

breaking up of the malware in multiple chunks that can then

be reassembled and executed. A second difference is that

we evade only detection at the injection of the malware com-

ponents. Once the malware is assembled and executed, it is

susceptible to detection through behavioral analysis.

Current work on evading signature-based anti-virus tech-

niques focuses on obfuscation-based systems, including

self-encrypting, polymorphic, and metamorphic malware.

Self-encrypting malware was first found in the Cascade

virus [3], and consisted of an initial decryption routine fol-

lowed by the encrypted virus. By altering the key (based

on the size of the file), the body of the virus would ap-

pear to change. The next stage grew from the need to hide

the decryption routine. Polymorphism, in which instruc-

tions are replaced by equivalent instructions, helped hide

those routines. Indeed, tools such as the Mutation Engine

and the TridenT Polymorphic Engine automated genera-

tion of polymorphic malware [18]. However, enough non-

metamorphic malware is still in use that signature-based

scanning is productive. Current anti-virus engines use a va-

riety of techniques to speed the checking of incoming data

objects. Most notably, they look for malware relevant to

the type of data object being analyzed. For example, the

Melissa worm [1] is a worm that is loaded into Microsoft

Word documents, and is then executed by the Visual Basic

interpreter. Thus, anti-virus systems typically do not check

incoming executable data objects for Melissa, because exe-

cuting a program will not cause Melissa to run; but editing

92 2010 5th International Conference on Malicious and Unwanted Software

2010 5th International Conference on Malicious and Unwanted Software 93

Figure 2. Analysis of Zeus in an executable and in a JPG file

can decompose malware in such a way to avoid detec-

tion. Our anti-virus function AV will be the set of anti-

virus detectors at Virus Total, which includes most com-

mercial anti-virus programs as well as open-source ones.

We assume that Virus Total uses well configured and up-

to-date AV engines. We also assume that the anti-virus

tools there perform a static signature analysis on the given

files. We consider two well-known pieces of malware, Zeus

(also known as Trojan.Zbot) and Spreder (also known as

W32.HLLP.Spreda). As a control, we embedded Zeus into

a Windows executable and then ran it through Virus Total.

Figure 2 (left) shows that all but 4 anti-virus tools found the

virus. Similarly, all but 8 anti-virus tools were able to detect

Spreder. Thus, we know that both these pieces of malware

will be detected by most anti-virus software.

Our first question is how to decompose the malware into

components that will evade the anti-virus software. Prelim-

inary to this is the question of whether we have to break it

into components. Can we instead embed the entire malware

into a file of the wrong type, and then have the main actor

trigger its execution?

4.1 First Approach

As noted in the introduction, the large amount of mal-

ware means that scanning every incoming data object

for every malware is generally prohibitively expensive—it

would delay incoming data objects too long. So, modern

anti-virus software makes an obvious optimization. An ex-

ecutable infector embedded in a JPG (image) file will not

execute when the JPG file is displayed, because the bytes in

the file are interpreted as a JPG image. Thus, anti-virus soft-

ware will only look for malware that is triggered when the

JPG image is displayed. To verify this, we embedded Zeus

in a JPG file. Figure 2 (right) shows that none of the anti-

virus software products in Virus Total detected Zeus in that

file. Contrast this with Figure 2 (left), where all but 4 anti-

virus products detected Zeus. Interestingly, the effects of

adding Zeus to the JPG file vary depend on how it is embed-

ded. If placed immediately after the JPG header, Figure 3

(left) shows that the image is obviously corrupted. If placed

just before the JPG trailer, Figure 3 (center) shows the cor-

ruption is minimal. And if placed after the JPG trailer, Fig-

ure 3 (right), no corruption is apparent. Thus, an attacker

can embed malware into a file of an arbitrary type, and then

inject it and the main actor into the system. If the main ac-

tor escapes detection, then it can execute the malware. We

now turn to the case where all datatypes are checked for a

particular virus.

4.2 Second Approach

Now we consider breaking down malware into a set of

components that cannot be detected. We assume that the

nature of the anti-virus software on the target system is not

known; thus, we use a mechanism like Virus Total to check

our components against multiple anti-virus software prod-

ucts. If we do know the particular anti-virus software on

the target system, we need only consider it and not others.

We use an iterative approach. A simple program takes as

94 2010 5th International Conference on Malicious and Unwanted Software

Figure 3. Image with Zeus embedded: just after the JPG header (left), just before the JPG trailer

(center),after the JPG trailer (right)

input a set of files into which the malware is to be embed-

ded, the number of components that the malware is to be

broken into, and the malware. It breaks the malware into

components and embeds one component into each file. We

decomposed Spreder into three parts, and embedded it in a

JPG file. Only one of the anti-virus software under Virus

Total detected the corruption of the container files, and that

one identified the malware incorrectly (and as “suspected”);

see Figure 4 (left). Rearranging the signatures by hand

eliminated this alert, as shown in Figure 4 (right). Split-

ting Spreder into 2 components and embedding them in an

MP3 file also escaped detection; Figure 5 shows the results

of one such scan.

Our results for Zeus were similar. With Zeus, out of 42

anti-malware tools tested, only 7 reported potential malware

on one or more of the components. These results suggest

that, for the majority of anti-virus programs in use today,

this technique would enable malware to evade detection by

anti-virus signature scanning. These results indicate that,

for the malware tested, at least 35 of the AV functions de-

scribed above exist.

4.3 Main Actor

The main actor is a simple program. It locates the mal-

ware components and loads them into memory. The key to

its success is its execution. The main actor can be executed

exactly the same way that malware is executed. Phishing,

injection into a process or program, or other techniques en-

able this. For example, if a worm can inject specific in-

structions into a process through a buffer overflow, or an

SQI injection attack can enable the uploading of an exe-

cutable containing the main actor, then the main actor can

load the components already resident on the system into

memory, constructing the malware (and then executing it).

Other techniques include the use of DNS cache poisoning

and SEO abuse. For demonstration purposes, we imple-

mented this in the .NET framework. Using the common re-

flection technique, namely the ability of a managed code to

read its own metadata for the purpose of finding assemblies,

modules and type information at runtime, this program re-

constructs the malware’s code inside a memory buffer as

shown in the following listing, and then executes it.

1

2 byte [] b i n = new byte [s t o p − s t a r t + 1] ;

3 f o r (i n t c = 0 ; c <= s t o p − s t a r t ; c ++)

4 b i n [c o u n t e r] = t o t a l b i n [s t a r t + c] ;

5 . . .

6 Assembly a = Assembly . Load (b i n) ;

7 MethodInfo method = a . E n t r y P o i n t ;

8 . . .

9 i f (method != n u l l){
10 o b j e c t o =

11 a . C r e a t e I n s t a n c e (method . Name) ;

12 method . Invoke (o , n u l l) ;

13 }

The “bin” variable collects the ordered malware com-

ponents (lines 2–4). These become executable after being

loaded as into memory (line 6). The CreateInstance method

(line 11) builds the executable object from an entry point

(line 7) that is activated by the invoke function (line 12).

Figure 6 shows our main actor loaded in a Windows 32 sys-

tem.

In theory, determining whether an arbitrary segment of

code is the main actor is undecidable. In practice, the prob-

lem is more limited: can we characterize the main actor in

such a way that it can be detected? The function of the

main actor indicates the characteristic all main actors must

share: the ability to load data from files and then execute

that data. In some environments, it is not possible to distin-

guish between programs that do this for a benign purpose

and programs that do this for a malicious purpose. For ex-

ample, the above programming technique, called reflection,

is widely used in Windows environments, and thus any anti-

virus engine that flags it as a potential problem will create

many false positives.

2010 5th International Conference on Malicious and Unwanted Software 95

Figure 4. Analysis of first part of Spreder in a JPEG file: automatic (left), manually arranged (right)

Figure 5. Detection of second part of Spreder

in an MPEG3 file

Figure 6. Screenshot of the Exploit.

5 Conclusion and Future Work

This paper proposed an alternate view of the steps that

malware uses to attack a system, and this view led to an

application of the philosophy of multi-stage attacks to the

delivery of a malicious payload that exploits the difficulty of

correlating pieces of a malware before they are assembled

into the actual malware itself.

This attack is actually a class of attacks, with many vari-

ations. For example, our experiments divided malware into

roughly equal-sized parts. The malware could have been

broken into random-sized parts, or the part detected as a

signature could itself be fragmented, and the rest of the mal-

ware could be left intact. Or, the malware could be sent in a

file of the wrong type (assuming the anti-virus engine does

not check all files), and the main actor could be sent in a

type of file that would be executed.

The key to creating this attack is determining how to split

the malware to reduce its being detected. Clearly, break-

ing it into components the size of a few bytes works; in-

deed, in that case it may be possible to avoid injecting it

into files, but simply load the bytes from files that happen to

contain them. (In the extreme, one can conceive of a main

actor constructing malware from operating system, config-

uration, and application files.) Scanning an executable to

detect the loading of data and then the execution of that

data is of course undecidable in the general case. In spe-

cific cases it can be done. However, detecting the stan-

dard hooks that enable this, such as the .NET “load binary”

API, will cause many false positives because much software

96 2010 5th International Conference on Malicious and Unwanted Software

uses those APIs. Further, many programs that use reflection

will also be flagged. Thus, this technique appears not to be

amenable to detection by signature scanning.

In fact, one could be more subtle. The attack could mas-

querade as a buffer overflow. For this approach, the main

actor would simply read data into a buffer that was of size

sufficient to hold the malware. The malware is loaded, and

then some extra data, designed to produce a return to the

stack, overwrites the return address on the stack. When the

main actor executes a “return from procedure” instruction,

the malware executes. Note this only works if a buffer over-

flow attack can execute instructions in stack space (some

systems prevent this). Behavior analysis, or analyzing the

program as it executes, will detect this type of attack. Ba-

sically, once the malware is assembled in memory and exe-

cuted, an anti-malware mechanism would not know how the

malware was loaded onto the system; it simply detects its

execution. So this type of attack can be thwarted with cur-

rent technology, but only once the malware is resident. Two

avenues of research will determine how effective this attack

is. The first is to test the attack under varying conditions.

Specifically, our work used the set of anti-malware detec-

tors at VirusTotal. Thus, we can claim only that, against

the tools as configured there, this attack is effective. Alter-

nate configurations might be more effective. This needs to

be checked. The second avenue is to apply this method to

behavioral detection techniques. Specifically, once the mal-

ware is assembled and executed, standard behavioral detec-

tion techniques will flag the executing process as malicious.

Is it possible to break the executing process up in such a way

that standard behavioral analysis techniques will not detect

the malicious actions? It is clear such an approach works if

the analysis is done on a per-process basis; it is much less

clear this method will work against analysis that examines

the totality of execute of all processes in the system. This

too is an area of future research. The goal of this paper was

to describe an attack that evades anti-malware mechanisms

that guard against injection of malware. It suggests that a

combinatorial explosion could increase the importance of

detecting the execution, rather than the injection of mal-

ware.

Acknowledgements: Many thanks to Richard Ford for his

assistance in tracking down information about Dichotomy

and RMNS, and for his encouragement and advice.

References

[1] Melissa macro virus. CERT Advisory CA-1999-04, CERT,

Pittsburgh, PA, USA, Mar. 1999.
[2] M. Abu Rajab, F. Monrose, and A. Terzis. On the impact of

dynamic addressing on malware propagation. In Proceed-

ings of the 4th ACM workshop on Recurring malcode, pages

51–56, New York, NY, USA, 2006. ACM.

[3] J. Aycock. Computer Ciruses and Malware. Advances

in Information Security. Springer Science+Business Media,

LLC, 2006.
[4] D. Bilar. Noisy defenses: Subverting malware’s OODA

loop. In Proceedings of the 4th annual workshop on Cyber

security and information intelligence research, number 9,

New York, NY, USA, 2008. ACM.
[5] G. Cluley. Av-test.org’s malware count exceeds 22 million.
[6] F. Cohen. Computer viruses: Theory and experiments. In

Proceedings of the 7th DOD/NBS Computer Security Con-

ference, pages 240–263, Sep. 1984.
[7] W. Cui, V. Paxson, and N. C. Weaver. GQ: Realizing a sys-

tem to catch worms in a quarter million places. Technical

Report TR-06-004, International Computer Science Insti-

tute, Berkeley, CA, USA, Sep. 2006.
[8] K. Daley, R. Larson, and J. Dawkins. A structural frame-

work for modeling multi-stage network attacks. In Proceed-

ings of the 2002 International Conference on Parallel Pro-

cessing Workshops, pages 5–10, 2002.
[9] M. Eichin and J. Rochlis. With microscope and tweezers:

An analysis of the internet virus of 1988. In Proceedings of

the 1989 IEEE Symposium on Security and Privacy, pages

326–343, May 1989.
[10] E. Kaspersky. Dichotomy: Double trouble. Virus Bulletin,

pages 8–9, May 1994.
[11] E. Kaspersky. RMNS—the perfect couple. Virus Bulletin,

pages 8–9, May 1995.
[12] R. W. Lo, K. N. Levitt, and R. A. Olsson. MCF: a ma-

licious code filter. Computers & Security, 14(6):541–566,

Nov. 1995.
[13] S. Mathew, R. Giomundo, S. Upadhyaya, M. Sudit, and

A. Stotz. Understanding multistage attacks by attack-track

based visualization of heterogeneous event streams. In Pro-

ceedings of the 3rd international workshop on Visualiza-

tion for computer security, pages 1–6, New York, NY, USA,

2006. ACM.
[14] D. Ourston, S. Matzner, W. Stump, and B. Hopkins. Ap-

plications of hidden markov models to detecting multi-stage

network attacks. In Proceedings of the 36th Hawaii Interna-

tional Conference on Systems Sciences, Los Alamitos, CA,

USA, 2003 2003. IEEE Comput. Soc. 36th Hawaii Interna-

tional Conference on Systems Sciences, 6-9 January 2003,

Big Island, HI, USA.
[15] T. H. Ptacek and T. N. Newsham. Insertion, evasion, and de-

nial of service: Eluding network intrusion detection. Tech-

nical report, Secure Networks, Inc., Jan. 1998.
[16] J. J. Saltzer and M. Schroeder. The protection of information

in computer systems. Proceedings of the IEEE, 63(9):1278–

1308, Sep. 1975.
[17] L. Sun, T. Ebringer, and S. Boztas. An automatic anti-anti-

vmware technique applicable for multi-stage packed mal-

ware. In Proceedings of the 3rd International Conference

on Malicious and Unwanted Software (MALWARE 2008),

pages 17–23, Dec. 1984.
[18] P. Szor. The Art of Computer Virus Research and Defense.

Addison-Wesley Professional, Feb. 2005.
[19] S. J. Templeton and K. Levitt. A requires/provides model

for computer attacks. In Proceedings of the 2000 workshop

on New security paradigms, pages 31–38, New York, NY,

USA, 2000. ACM.

2010 5th International Conference on Malicious and Unwanted Software 97

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

