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Abstract—Significant work on vulnerabilities focuses on buffer overflows, in which data exceeding the bounds of an array is loaded

into the array. The loading continues past the array boundary, causing variables and state information located adjacent to the array to

change. As the process is not programmed to check for these additional changes, the process acts incorrectly. The incorrect action

often places the system in a nonsecure state. This work develops a taxonomy of buffer overflow vulnerabilities based upon

characteristics, or preconditions that must hold for an exploitable buffer overflow to exist. We analyze several software and hardware

countermeasures to validate the approach. We then discuss alternate approaches to ameliorating this vulnerability.

Index Terms—Protection mechanisms, software/program verification, security and privacy, arrays.
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1 INTRODUCTION

BUFFER overflows occur when a sequence of bytes of length
n is placed into an array, or buffer, of length less than n.

This simple error is all too common. In this paper, we focus
on the buffer overflows that cause security problems.

It is well documented that buffer overflows can cause
security problems. For example, a buffer overflow allowed
a worm entry into a large number of UNIX systems in 1988
[1], [2], [3]. The trend has continued, with buffer overflows
providing entry points for worms such as Blaster [4],
Slammer [5], Apache/mod_ssl [6], and Code Red [7], [8].
Buffer overflows have also created other vulnerabilities in
various programs and systems. For example, the Common
Vulnerabilities and Exposures list [9] reported 100 buffer
overflows identified in 2011 (so far), 413 identified in 2010,
587 identified in 2009, and 611 identified in 2008. The
problem continues to exist despite efforts to eliminate it.

In this paper, we examine the causes for buffer overflow
vulnerabilities by looking at the factors that create them. We
present a classification scheme that distinguishes among
the different types of buffer overflow vulnerabilities, and use
this scheme to demonstrate the limits of proposed solutions.
This suggests more effective solutions for handling multiple
classes of buffer overflows. We do this by first deriving the
preconditions necessary for the vulnerability to exist based
on how these vulnerabilities are exploited, and then use
pseudocode to refine these preconditions into common
characteristics. We classify buffer overflows and their
mitigations based on the characteristics each involves. Our

objective is to show that classification based on these
characteristics provides a systematic way to develop
defenses for buffer overflows, and that in fact if any of the
characteristics do not hold, the buffer overflow either does
not exist or is not exploitable.

Numerous taxonomies of vulnerabilities [10], [11], [12],
[13] present classifications based on general categories such
as “unexpected change” or “logic error.” This work
expands upon Bishop’s proposed classification for buffer
overflows [14]. Cowan et al. [15] analyzed techniques for
defending against buffer overflows; his scheme can be
derived from the classification scheme we shall present.
Other work in the specific vulnerability area of buffer
overflow focuses on either attacks or defenses, and we will
analyze it in the context of our classification scheme.

Section 2 of this paper provides some background
illuminating key characteristics of the buffer overflow
problem, as well as the principles underlying our classifica-
tion scheme. The next sections present our classification of
buffer overflows and analyzes it. We then examine proposed
solutions in light of our classification. We conclude with some
thoughts on future directions for the analysis and remedia-
tion (or elimination) of buffer overflow vulnerabilities.

2 BACKGROUND

Architectural considerations are key to understanding
buffer overflow attacks and defenses. The following discus-
sion gives a high-level overview of such considerations and
attacks. Aleph-One [16] and Conover [17] present detailed
descriptions of how these attacks work.

2.1 Architectural Considerations

During program execution, buffer overflows can occur in
three different areas of process memory: the data area, the
stack, and the heap. The effects are constrained by the area
in which the overflow occurs.

The data area of process memory provides space for
nontransient variables such as global or static variables.
These are defined before the process begins executing and
are not deleted. They may or may not be initialized, but the
memory for this area is typically contiguous. Variables in
this area are bound to fixed virtual memory locations in the
process address space.
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The stack contains data and variables that are allocated
and deallocated as the process executes. The space allocated
to the stack grows as functions are called because they
add variables and other data to the stack, and shrinks as
functions return because the variables and other data that
functions allocated on the stack are released. On many
systems, return addresses, processor status information,
and call frame pointers are also placed on the stack.
Variables on the stack are not bound to fixed virtual
addresses. That is, the variable x in function plugh may
have an address of 1,000 on the first call to plugh, and an
address of 12,345 on the second call to plugh.

The heap is typically used for memory allocation done
under the control of the program, for example by the
process requesting that the system allocate memory for an
array. When dynamically loadable modules are used, the
modules are often loaded into the heap and then executed.
Once assigned, memory in the heap remains bound to the
variable until the process deallocates it.

The goals of buffer overflows are to change variables,
return addresses, or function pointers. Variables and func-
tion pointers may be modified by overflows in any area,
while return addresses, typically stored on the stack, may be
modified only on the stack. Changing return addresses and
function pointers alters the flow of control (including
causing the program to crash), while changing variables
results in changes to data. If the modified variable is used in a
conditional expression later, changes to data may also alter
the control flow. This suggests two broad classes of buffer
overflow attacks.

2.2 Data Buffer Overflow

A data buffer overflow occurs when input overwrites
existing data, causing the program to act in a manner that
violates the (explicit or implicit) security policy. In terms of
architecture, it requires that an array and a variable be
allocated such that overflow from the array alters the
contents of the variable. The variable controls some aspect
of security-critical behavior.

An example of this is the apocryphal login program
buffer overflow. In that program, the buffer holding the
user-input password and the buffer holding the hashed
value of the password were adjacent. The user-input buffer
was 80 characters long. The program prompted the user for
a login name, retrieved the hashed password corresponding
to that login and stored it in the second buffer. The user was
then prompted for the password. The user entered the
password, which was then hashed and compared to the
stored hash; a match authenticated the user. The vulner-
ability arose because the length of the password that the
user entered was not checked. The attacker would pick any
password of length 8, and generate the corresponding hash.
The attacker would then enter the password, hit 72 spaces,
and then type in the hash corresponding to the entered
password. That overwrote the retrieved hash. Then, the
program computed the hash of the entered password and
compared that with the stored hash—which, having been
supplied by the user, matched. This authenticated the user,
regardless of whether the user knew the actual password
corresponding to the account.

This is an example of a direct data buffer overflow. The
data buffer overflow is called indirect if the value changed

indirectly affects the selection or modification of a value that
controls some aspect of security-critical behavior. Attacks
that change pointers to refer to input data fall into this class.

2.3 Executable Buffer Overflow

An executable buffer overflow occurs when executable code
is loaded into a buffer, and some quantity (a return address
or function pointer) is altered to cause that code to be
executed. Its simplest incarnation involves a buffer allocated
on the stack. The data being entered is typically a set of
machine-language instructions to be executed. The value in
the location where the return address is stored is reset to be
the address of the machine instructions in the buffer. As a
result, when the routine returns, and the value in the location
for the return addresses is popped and put into the Program
Counter (PC), the input machine instructions execute.

A good example of this is the fingerd flaw that the
Internet Worm of 1988 exploited [1], [3], [13]. That program
used a library function to load input into a buffer on the
stack. The library function did not check the length of the
input. The buffer was 256 characters long, and was allocated
by the caller. When the library function was called, the
return address was pushed onto the stack beyond the end of
the buffer. The input routine would load the characters into
the buffer. By providing input of more than 256 bytes, the
attacker could overflow the buffer and change the value
stored in the location where the return address had been
placed. On return, the new value would be the location
where execution resumed. The attacker used this to execute
a small program called the “grappling hook” that compiled
and executed a second small program, which in turn pulled
over components of the worm, linked them, and executed
the worm.

Executable buffer overflows may not include the instruc-
tions to be executed in the buffer. Heap spraying attacks
scatter segments of executable code throughout the heap
[18]. Later, a buffer overflow attack can transfer control to
one of those segments. Variants include the JIT spray [19]
and heap feng shui [20]. If a buffer overflow changes the
return address or a function pointer, then the result is an
executable buffer overflow.

If the executable buffer overflow alters process state
information, such as the return address or processor status
word, then the overflow is direct, as in the above example.
If it does not alter process state information, for example
altering a function pointer only, then it is said to be indirect.

2.4 Format Strings and Buffer Overflows

Two aspects of strings that can cause buffer overflows are
relevant to our analysis. The first is the related but distinct
“format string” attack; the second is the internal conversion
of input strings.

A format string attack occurs when an input string
contains formatting commands. The input string itself does
not overflow a buffer, but when it is applied to other data,
the result does. As an example, suppose the array buf is
allocated to have 100 characters. The following code is
intended to print the number “139” into the buf array:

sprintfðbuf; input string; 139Þ;
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If input_string is “%d,” no overflow will occur. But if
input_string is “%d c1 . . . c98,” where c1 . . . c98 are char-
acters, a buffer overflow will occur. In essence, the semantics
of the operation sprintf upon the input string causes the
buffer overflow, rather than the input string itself.

A second instance of this type of expansion occurs when
one inputs a string that is converted to a longer string. When
an input string is converted to Unicode, the conversion adds
several extra characters to enable the decoding engine to
determine which characters were entered. For example, the
“.” character can be encoded as 2 bytes with the hex values
C0 AE, or as 6 bytes with the hex values FC 80 80 80 80 AE
in the UTF-8 scheme. The Basic Greek “�” character would
be represented as %u0394 in an alternate Unicode repre-
sentation. The addition of the extra characters can cause the
transformation of the input string to overflow the buffer (see
for example Esser [21]).

Both these expansions take input strings that will not
themselves overflow the buffer, and transform them into
strings that will overflow the buffer. This adds a new
dimension to the idea of an input string overflowing a
buffer. More precisely, we require either that the input
string overflow the buffer, or that it be transformed in such a
way that it overflows the buffer based upon some property
of the input string. Thus, both of the above examples qualify
as input strings that cause buffer overflows.

However, format string attacks may, or may not, exploit
buffer overflow vulnerabilities. Format string attacks
may write data to arbitrary locations by using the “%n”
formatting element. These attacks do not overflow buffers
because they write data to specific memory locations [22].
Hence, we distinguish between format string vulnerabilities
in general and buffer overflow vulnerabilities. Our work
does not address format string vulnerabilities.

2.5 Summary

The difference between the types of buffer overflows lies in
the use of the values in the locations beyond the buffer.
Direct data buffer overflows change a variable value, and
either a conditional is affected by the variable, or the
variable’s value is output, whereas indirect data buffer
overflows change a pointer, causing the program to use
incorrect data. Direct executable buffer overflows cause the
flow of control to jump to a location other than that to which
the program should have jumped, whereas indirect execu-
table buffer overflows change a pointer, causing the
execution of instructions that should not be executed at
that point in time. The indirect cases are essentially the
same as the direct cases, except that the instructions or data
are already in the process memory.

If a buffer overflow causes the program to crash, either
the program jumps to a nonexecutable location (executable)
or tries to access inaccessible data (data). We do not
consider this case further.

3 PRECONDITIONS

Before we are able to classify buffer overflow vulnerabil-
ities, we must first identify the preconditions necessary for
these vulnerabilities to exist. We identify these precondi-
tions by examining how an attacker might exploit a buffer

overflow vulnerability. We define these initial precondi-
tions such that disabling any single precondition prevents
the exploitation of that vulnerability.

As an example, let us consider a typical problem: a web
server fails to check the length of a string read from the
network. For our purposes, the policy of the site running the
web server is that the web server may execute only a
specified set of commands, and may only reveal the
contents of the web pages it serves. The failure to check
the bounds of the input string allows the attacker to supply
an input string that corrupts the running web server
process, causing it to violate the policy. Adding a check of
the buffer length negates this precondition.

3.1 Executable Buffer Overflow

First, consider a buffer overflow on the stack. Here, the
attacker inputs a string containing no-ops, a small machine-
language program, and multiple copies of an address
corresponding to one in the buffer before the machine
language program. When this string is read and stored on
the stack, it overwrites the return address. When the input
routine returns, the machine-language program is executed.

Stated succinctly, this attack is: “input an extra long
stream of instructions and a return address; the return
address overwrites the one on the stack; on return, the
corrupted address causes a return into the stack and executes
the machine-language program stored there.” Therefore, this
attack has five parts:

1. Input a string that is longer than the array.
2. The string contains, or after transformation contains,

both instructions and a return address.
3. The return address overwrites the one on the stack.
4. On return, the corrupted address causes a return

into the stack.
5. Executes the machine language program stored there.

We transform each part of this attack into corresponding
preconditions as follows:

P1. The length of the (possibly transformed) input string
is longer than that of the buffer.

P2. The input (and possibly transformed) string contains
instructions and/or addresses.

P3. Input can change the stored return address without
the change being countered.

P4. The program can jump to memory in the stack.
P5. The program can execute instructions stored in the

stack.

Note that preconditions P2 and P5 seem redundant. They
are not. One may be able to input data that contains valid
instructions, but the process may not execute them due to
Data Execution Prevention (DEP) mechanisms such as the
NX bit [23, p. 143] of AMD or the XD bit [24, pp. 4-43] of
Intel architectures.

Similarly, preconditions P4 and P5 are distinct. Precon-
dition P4 states that the flow of control can transfer into an
area reserved for data. Precondition P5 says instructions
may be executed in that area. If precondition P4 is met and
precondition P5 is not, the program will attempt to execute
instructions, causing an exception.

Now, consider a buffer overflow that does not alter the
return address. Here, the attacker either places instructions
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to be executed into the space of the process that is being
attacked, or locates these instructions in the program. The
placement may occur by supplying the instructions as input,
as part of the environment, as command-line arguments, or
through any other mechanism. Next, the attacker locates an
array followed by a function pointer variable. The attacker
overflows the array, and places the address of the instruc-
tions into the function pointer variable. At a later time, when
the function pointer is invoked, the instructions are
executed, compromising the system.

First, we assume that the instructions are resident in the
heap of the process space. Then the attack takes several steps:

1. Input a string that is longer than the array.
2. The string contains, or after transformation contains,

data and the address of instructions.
3. The address overwrites the function pointer.
4. On invocation, the corrupted pointer causes a jump

to instructions in the heap.
5. The process can execute instructions stored in the

heap.

This leads to the following set of preconditions:

P6. The length of the (possibly transformed) string is
longer than that of the buffer.

P7. The input (and possibly transformed) string contains
addresses.

P8. Input can change the value in the function pointer
variable without being countered.

P9. The program can jump to the heap.
P10.The program can execute instructions in the heap.

Note the parallel between these indirect executable buffer
overflow preconditions and the ones for the direct execu-
table buffer overflow. In particular, if “return address”
replaces “function pointer” and “stack” replaces “heap,” the
two are the same.

3.2 Data Buffer Overflow

Now, consider the data buffer overflow. This attack differs
from the executable buffer overflow in that no new
instructions are executed; data is merely changed, and as
a result the process executes existing instructions that
would otherwise not have been executed. Here, the attacker
locates an array followed by some particular variable
(which may be an array, as in the login example cited
earlier). The attacker overflows the array, and as part of the
overflow sets the variable to the desired value. The new
value causes some unauthorized action to be taken.

This leads to the following steps:

1. Input a string that is longer than the array.
2. The string contains, or after transformation contains,

data that matches the type of the variable to be
changed.

3. The overflow data alters the particular variable’s
value.

4. The program reads that variable’s value.
5. The altered value of the variable causes the program

to execute instructions that the unaltered variable
value would cause not to be executed.

The resulting preconditions are:

P1. The length of the (possibly transformed) string is
longer than that of the buffer.

P2. The input (and possibly transformed) string contains
data of the type of the particular variable.

P3. The value stored in the particular variable can be
changed without being countered.

P4. The particular variable determines which execution
path is to be taken at a future point in the execution
of the process.

The differences between this set of preconditions and the
previous two sets is instructive. The first three are essentially
the same as in the other sets. All involve overflowing the
buffer (precondition P11). All involve changing a memory
location to contain a value that will be interpreted as a
legitimate value (precondition P12). Legitimacy is important,
because the value supplied must be one that the process could
have placed there. Otherwise, the change may be detected
(precondition P13). The last precondition generalizes the
notion of executing input instructions. The instructions are
not input, of course, but must still be executed. There is no
question that the instructions can be executed because the
program has them in one control flow path. This eliminates
the need for a precondition stating that the instructions can
be executed. The only question is whether the instructions
leading to the compromise will be executed, and precondi-
tion P14 speaks to that.

An indirect data buffer overflow is similar to a direct
data buffer overflow, the difference being that the particular
variable being modified points to a value that determines
which execution path is taken. Noting this, we can
immediately state the preconditions:

P15.The length of the (possibly transformed) string is
longer than that of the buffer.

P16.The input (and possibly transformed) string contains
addresses.

P17.The address stored in the particular pointer variable
can be changed without being countered.

P18.The value pointed to by the particular pointer
variable determines which execution path is to be
taken at a future point in the execution of the process.

4 CHARACTERISTICS

Many of the buffer overflow preconditions share simila-
rities. For example, P1, P6, P11, and P15 all capture the
overflowing of the buffer, but do so for different types of
buffer overflow vulnerabilities. We refine these precondi-
tions into a single characteristic, which captures precondi-
tions at a higher level of abstraction using pseudocode.

We first observe that P1, P6, P11, and P15 are all
described as: “length of the (possibly transformed) string is
longer than that of the buffer.” We collapse these precondi-
tions into a single new characteristic len:buff. Let lenðÞ be a
function that returns the length of an array, and let the
variable input refer to the input string (posttransformation)
and variable buffer refer to the destination buffer. The
characteristic len:buff holds when

len:buff , lenðinputÞ > lenðbufferÞ:
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Each type of buffer overflow vulnerability also contains a
precondition based on the type of information that may be
included in the input string. For example, precondition P2 is
described as “the input (and possibly transformed) string
may contain instructions and/or addresses” and precondi-
tions P7 and P16 are described as “the input (and possibly
transformed) string may contain addresses.” We define two
pseudofunctions to capture these preconditions: the func-
tion typeðÞ returns the data type of a particular variable, and
the function containsðÞ returns true when a string may
contain a particular data type. Let the data types for
variables addr and inst be a memory address and
instruction, respectively. We define the characteristics
con:addr and con:inst as follows:

con:addr, containsðinput; typeðaddrÞÞ
con:inst, containsðinput; typeðinstÞÞ:

These characteristics are not mutually exclusive. If the input
string may contain both addresses and instructions, then
both con:addr and con:inst hold. This allows us to capture
precondition P2, which requires both data types.

We take a similar approach to capture precondition
P16, described as “the input (and possibly transformed)
string may contain data of the type of the particular
variable.” We define the variable ctrlvar to represent the
“particular variable” that affects the control flow of the
process, and capture this precondition with the character-
istic con:ctrl as follows:

con:ctrl, containsðinput; typeðctrlvarÞÞ:

We also observe that each type of buffer overflow
vulnerability involves some sort of modification. For
example, precondition P3 involves modification of a stored
return address, P8 involves modification of a function
pointer, and both P13 and P17 involve direct or indirect
modification of a control flow variable. To capture these
preconditions, we define a function modifyðÞ to determine
whether a variable or pointer may be modified without
being countered. We again use the variable ctrlvar to
represent a variable that affects the control flow of the
process, and use the pointer variable ctrlptr to refer to a
pointer to that control flow variable. We also add variables
retnadd to reference a return address and funcptr to
reference a function pointer. The following characteristics
mod:radd, mod:fptr, mod:cvar, and mod:cptr capture pre-
conditions P3, P8, P13, and P17, respectively:

mod:radd, modifyðretnaddÞ
mod:fptr, modifyðfuncptrÞ
mod:cvar, modifyðctrlvarÞ
mod:cptr, modifyðctrlptrÞ:

Executable buffer overflow vulnerabilities have other
similarities. For example, both P4 and P9 involve jumping
into either a stack or heap, and characteristics P5 and P10
involve executing instructions in the stack or heap. We use
the variables stack and heap to reference the different types
of memory, and the functions jumpðÞ and executeðÞ to
determine whether a process may jump to and execute
instructions in the stack or heap. This allows us to capture

preconditions P4, P9, P5, and P10 with the following
characteristics:

jmp:stack, jumpðstackÞ
jmp:heap, jumpðheapÞ
exe:stack, executeðstackÞ
exe:heap, executeðheapÞ:

Finally, data buffer overflow vulnerabilities both require
a variable that affects which execution path is taken at a
future point of execution. Specifically, P14 is described as
“the particular variable determines which execution path is
to be taken at a future point in the execution of the process,”
and P18 is described as “the value pointed to by the
particular pointer variable determines which execution path
is to be taken at a future point in the execution of the
process.” We use the variables ctrlvar and ctrlptr as before,
and the function flowðÞ to determine whether a variable or
pointer affects the execution path of the process. We capture
both P14 and P18 with the characteristic flow:ctrl as follows:

flow:ctrl, flowðctrlvarÞ:

Using characteristics and pseudocode to describe vulner-
abilities allows us to precisely capture the similarities
between different vulnerability types. For example, all buffer
overflow vulnerability types contain the len:buff character-
istic. Indirect buffer overflow vulnerabilities require the
con:addr characteristic, and modify a pointer (mod:fptr or
mod:cptr). We summarize all of these characteristics and the
associated preconditions in Table 1.

We define classes of buffer overflow vulnerabilities by
mapping the preconditions for each type of buffer overflow
with the associated characteristic. For example, a direct
executable buffer overflow has preconditions P1, P2, P3, P4,
and P5. The associated set of characteristics for a direct and
indirect executable buffer overflow are:

dir:exec ¼ flen:buff; con:addr; con:inst

mod:radd; jmp:stack; exe:stackg
ind:exec ¼ flen:buff; con:addr;mod:fptr

jmp:heap; exe:heapg:

We repeat this process for the remaining buffer overflow
vulnerability types to obtain:

dir:data ¼ flen:buff; con:ctrl;mod:cvar; flow:ctrlg
ind:data ¼ flen:buff; con:addr;mod:cptr; flow:ctrlg:

We use these basic characteristic sets as a basis for
classification [14], [25]. For example, any vulnerability that
contains the len:buff, con:addr, mod:cptr, and flw:ctrl
characteristics will be classified as an indirect data buffer
overflow. However, if any one characteristic is missing,
that type of buffer overflow vulnerability is not exploi-
table. We discuss the necessity and sufficiency of these
characteristics next.

5 ANALYSIS

We now show that the above characteristics are both
necessary and sufficient for the four types of buffer over-
flows to exist and be exploitable. If the basic characteristic
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sets for each type of buffer overflow vulnerability are both
necessary and sufficient, then disabling any single character-
istic disables the associated vulnerability [14]. Furthermore,
if the characteristic is removed from the system entirely, the
associated class of buffer overflow vulnerabilities are also
disabled. We focus on direct executable buffer overflows in
our discussion, but the necessity and sufficiency of the
characteristics for other types of buffer overflows may be
demonstrated in a similar manner.

5.1 Necessity and Sufficiency

Consider the characteristics for a direct executable buffer
overflow. We first establish necessity.

. len:buff. The length the (possibly transformed) input
string is longer than that of the buffer. The necessity of
this characteristic is clear: if the length of the input
string is not longer than that of the buffer, the input
string will fit within the buffer, and no overflow
occurs.

. con:addr and con:inst. The input (and possibly
transformed) string may contain instructions and ad-
dresses. Assume the contrary. The return address is
the datum to be altered. It is the address of a
particular instruction that is to be executed, and the
succeeding instructions are then to be executed. If
the return address is overwritten with data that is
not an address, it cannot transfer control to the
desired instruction when the function returns. This
may cause the program to terminate, but that is not
an executable buffer overflow attack. Hence, the
input string must contain a valid address with which
to overwrite the location storing the return address.

. mod:radd. Input can change the stored return address
without the change being countered. Again, assume the
contrary. If the stored return address cannot be
overwritten, control cannot be transferred to the input
instructions using this particular attack. If the change
is countered, the process takes action to counter the
attack (such as terminating or causing some other
exception). Hence, both parts of this characteristic
must hold.

. jmp:stack. The program can jump to memory in the
stack. When the return address is loaded into the

program counter, it will contain the address of a
location on the stack (specifically, one in the buffer
that was overflowed). If control cannot be trans-
ferred to that location, the instructions cannot be
executed. Hence for the attack to succeed, the
process must be able to transfer the flow of control
to a location in the stack.

. exe:stack. The program can execute instructions stored
in the stack. If the program cannot execute instruc-
tions on the stack, the input instructions will not be
executed as they reside on the stack. The attack
requires they be executed. This characteristic ensures
they can be.

Seeing that these characteristics are sufficient for an
attacker to use a direct executable buffer overflow to
compromise a system merely requires one to follow the
derivation of the characteristics from the preconditions of a
successful attack. We note that there is an assumption that
the executable instructions that are input will cause a
violation of the security policy of the site. But, given that the
program performs some security-related action such as
temporarily granting privileges to the process (as do
setuid and setgid programs in the UNIX and Linux
operating systems, for example), this assumption holds.

5.2 Defenses against Buffer Overflow

Given that these characteristics must hold for the various
buffer overflows to occur, the characteristics suggest a
natural way to derive defenses for these attacks. We present
defenses based on the individual characteristics.

Consider first the direct executable buffer overflows. A
defense is sufficient to prevent the attack if it negates the
characteristic. That is, if the characteristic can be estab-
lished not to hold, the particular attack will fail. As before,
consider each characteristic separately.

. len:buff. The length of the input (and possibly
transformed) string is longer than that of the buffer. To
negate this characteristic, the process must never
accept any input that exceeds the buffer length.
Range-checking, bounds checking, and hardware
segmentation may be used to prevent the introduc-
tion of input longer than the receiving buffer. As this
characteristic is common to the four types of buffer
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overflow discussed in this paper, negating this
characteristic eliminates all four types of attacks.

. con:addr and con:inst. The input (and possibly
transformed) string may contain instructions and ad-
dresses. This characteristic is more difficult to handle.
The problem is in the distinction between legitimate
input, and instructions and data. How can one tell if
input is data, or if it is instructions and/or addresses?
This is architecture and implementation dependent.
On many systems instructions are binary and for
many programs data is expected to be ASCII (or
Unicode) characters. However, exceptions abound;
for example, the location 0x61626364 is a valid
location on some architectures, yet corresponds to
the character string “abcd” in the ASCII character
scheme. If arbitrary binary data is to be supplied,
distinguishing among instructions, data, and ad-
dresses is simply infeasible. The best that can be done
to negate this characteristic is to assert that when
input data is to be of a particular form (such as
characters making up a text message or a file name)
that the input is checked before it is placed into the
buffer. Hence, negating this characteristic requires
knowledge specific to both the architecture and
possibly operating system of the computer being
used as well as to the specific domain of the software
being scrutinized.

. mod:radd. Input can change the stored return address
without the change being countered. Several approaches
can negate this characteristic. The first is to store the
return address in a memory location protected from
being altered by the running process. This requires
either a special architecture with tag bits, or a special
memory page or segment with write permission
turned off. A second approach is to store the return
address in a location other than the program stack.
This approach requires that the “Return Address
Stack (RAS)” (for want of a better name) be in a
different segment than all program variables, so any
attempt to overflow into it will cause a fault. A third
approach is to store a copy of the return address in a
variable as part of the prologue of the function call,
and then when the function is to return, have its
epilogue compare the return address on the stack
with the stored return address; if the two differ, the
return address has been altered. Again, note these
checks and changes can be implemented in either
hardware or software.

. jmp:stack. The program can jump to memory in the
stack. The negation of this characteristic is similar to
classical address bounds checking. The system notes
the addresses of memory that belong to the program
stack. Before the return address is placed into the
program counter, it is checked to determine whether
it lies within the memory allocated to the stack. If so,
a fault occurs. Again, the checking can be imple-
mented in either hardware or software.

. exe:stack. The program can execute instructions stored
in the stack. The negation of this characteristic is
similar to a technique used in older architectures. In
those systems, instructions (called “text”) were

stored in an executable portion of memory, and
data (including the stack) was stored in a nonexe-
cutable portion of memory. Modern architectures
can use execution privileges on segments and pages
to disable the ability to execute data as instructions.

Continuing with other types of buffer overflows, we note
that many of the characteristics are the same as for the
direct executable buffer overflow. We present ameliorations
only for those that differ.

. mod:fptr. Input can change the value in the function
pointer variable without being detected (indirect execu-
table buffer overflow). This is similar to the return
address being changed without detection (mod:-
radd). However, there are two key differences. The
first is that the function pointer is a variable, not an
element of the program state, so the computer
system cannot store it in a special area without
being told to do so. To the underlying architecture,
the function pointer is simply a program variable. In
order to store the function pointer into a different
segment of memory, the compiler must generate
special directives. Hence, applying the counter-
measure of storing the function pointer in a special
area of memory requires that the compiler be
modified to indicate this.

The second difference is the ability to store the
pointer in read-only memory. If that were done, only
the operating system could modify it. This is not
feasible simply because the function pointer is
program data, and the process will modify the value
during the execution of the program—otherwise, it
should be a constant and can be stored in read-only
memory. An interesting approximation to this scheme
is to notice that changes to the value of the function
pointer should occur only by assignment to that
memory location (either by directly using the variable
or indirectly using a pointer). The compiler could
“wrap” each such assignment with code that turns off
read-only permission to that location or page, per-
forms the assignment, and then restores read-only
permission. This way, should a buffer overflow
attempt to overwrite that location, the read-only
access would detect the attempted write and object.

The fact that the program controls the variables
suggests an approach based on Biba’s integrity
model [26]. Define two integrity classes Untrusted
and Trusted. Any variable to which the program
assigns a value is placed into the Trusted class. Any
variable with a value that depends on input
(whether the input be from a user, the environment,
or some other source not under the program’s
control) is placed into the Untrusted class. The
Trusted class dominates the Untrusted class. When-
ever a program uses a value stored in a variable, it
checks the class of that variable. If the variable is
Trusted, the value is used. If the variable is Untrusted,
the process must check the value to ensure it is
acceptable, and change the class of the variable to
Trusted, before it is used. If the check fails, or the
process cannot check the value, the program stops.
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Applying this idea to the buffer overflow problem,

initially the function pointer value is Trusted,

because it is set by the process. The input data

values are not under the control of the program. So,

each element added to (and beyond) the buffer is

Untrusted. When the value in the function pointer

variable is overwritten, its class is also overwritten

and marked Untrusted. Then, when the program

references the value in the function pointer, it notes

that the value is Untrusted and there is no check

procedure to change the class to Trusted. Hence, the

program aborts.
. jmp:heap. The program can jump to memory in the heap

(indirect executable buffer overflow). The techniques to
prevent this characteristic from holding are the same
as for preventing jumps to memory in the stack
(jmp:stack), using the addresses of memory making
up the heap.

. exe:heap. The program can execute instructions in the
heap (indirect executable buffer overflow). The techni-
ques for this characteristic are the same as those for
preventing execution of instructions stored on the
stack (exe:stack).

. con:ctrl. The input (and possibly transformed) string
may contain data of the type of the particular variable
(direct data buffer overflow). This characteristic im-
poses a constraint more onerous than distinguishing
among data, instructions, and addresses, although
the fundamental underlying problem is the same.
How does one distinguish between the integer byte
0x61 and the character “a” on a Linux or UNIX
system? The problem is that if the bit pattern is
interpreted as an integer, it represents the decimal
number 97; if it is interpreted as a character, it
represents the letter “a.” As with distinguishing
among data, instructions, and addresses, if the
expected type can be characterized in a form that
can be checked, then the amelioration is to perform
the checking before placing the data into the buffer.
This problem is discussed above, in con:addr and
con:inst. The integrity-based technique discussed in
mod:fptr also works here.

. mod:cvar and mod:cptr. The value stored in the
particular variable can be changed without being detected
(direct data buffer overflow). The techniques for this
characteristic are the same as for those of detecting
changes in the value of function pointer variables
(mod:fptr). Both the particular variable and the
function pointer variable are variables in the process
space, so can be treated identically.

. flow:ctrl. The particular variable determines which
execution path is to be taken at a future point in the
execution of the process (direct data buffer overflow). This
characteristic is a function of the program being
exploited. This situation can be detected only when
checks are placed upon the program so that the
“correct path of control” is taken. The problem, of
course, is determining the “correct path of control.”
If the setting of a variable determines which of two
paths may be taken, there are circumstances in

which the selection of either path may be correct.
Determining which is correct given the expected
state of the program, and then comparing that to the
path actually taken, is an interesting process-level
problem in anomaly based intrusion detection.

Similarly, an integrity-based technique such as
the one discussed under mod:fptr would apply for
this characteristic when the variable controlling the
path to be taken is to be set by the program and not
by user input. However, if the variable is to be set by
user input (for example, a string that the user enters
or that is taken from the environment), then the
process cannot determine whether the Untrusted
data is what was originally set or entered. Predicat-
ing the flow of control in a security-related program,
which should have high integrity and assurance,
upon untrusted data is at best careless programming
and in general, is an invitation to compromise.

6 EXAMPLES

Researchers have presented many methods of combating
the buffer overflow problem. This section casts the goals of
those methods into terms of our characteristics, examines
how precise they are, and suggests alternate methods for
handling the buffer overflow problem.

6.1 Segmentation

The memory management technique of segmentation, in
which functions and variables are assigned to different
segments of memory, offers a simple way to negate
characteristic len:buff. If each buffer is placed into its own
segment, any attempt to overflow the buffer will cause a
segment fault, resulting in a trap.

6.2 Integer Analysis to Determine Buffer Overflow

Wagner et al. [27] developed a technique that infers
constraints on the ranges of variable values. This technique
treats strings as an abstract data type and models buffers as
pairs of integers, namely the allocated size and the number
of bytes currently in the buffer. It then traverses the
program’s parse tree and develops a system of integer
range constraints. Once the ranges for all variables have
been inferred, the technique checks a safety property for
each string. If the analysis results in the string’s length lying
in the range ½a; b� and the buffer’s allocated size lying in the
range ½c; d�, then (assuming a downward-growing stack):

1. if b � c then the string never overflows the buffer;
2. if a > d then a buffer overflow will always occur

upon any execution involving that string; and
3. if the ranges overlap then a buffer overflow may

occur.

The intent of this technique is to detect characteristic
len:buff holding, and if so report the problem. Thus, it deals
with all types of buffer overflows. As the technique is static,
both false positives and false negatives are possible. The
authors point out that the tool is a prototype, and so suffers
from several limits (such as not handling many pointer
issues, for example pointer aliasing), and its implementa-
tion could be improved.
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6.3 STOBO

Haugh and Bishop [28] extended the integer analysis model
to include dynamic analysis. In this approach, the integer
constraints are developed and embedded into the program.
They are not analyzed until runtime. Whenever an
operation involving a buffer or string occurs, the appro-
priate constraints are checked using runtime data. This
allows checking of (most kinds of) pointers, and allows
reporting of potential buffer overflows even if the particular
input data does not cause an overflow to occur.

Like the integer analysis approach, this approach
speaks to characteristic len:buff. It deals with all types of
buffer overflows. Because the method is dynamic, it gives
fewer false positives and negatives than does the static
analysis technique.

6.4 Type-Assisted Buffer Overflow Detection

Lhee and Chapin [29] developed a technique to perform
range checking on buffers that the program references.
This is done at runtime, and requires adding a data
structure to the GNU C compiler that describes the type of
automatic and static buffers the types of which are known
at compile time. For dynamically allocated (heap) objects,
the method uses a table that tracks the heap objects and
their sizes. The process then uses these data structures to
perform range checking of arguments to vulnerable string
functions in the C library.

As with the integer analysis techniques, this method
tries to negate characteristic len:buff. Although it focuses
on all types of buffer overflows, the particular method is
based upon the assumption that overflows arise with
string manipulation functions. This means that overflows
arising from non-ASCII data will not be caught. Never-
theless, in the environment which the work was done (that
of C programming), the assumption is valid enough so
that the authors were able to block a large class of buffer
overflow attacks.

6.5 CRED

The C Range Error Detector [30] implements a method of
checking for out-of-bounds addresses that leads to the
detection of buffer overflow attacks. The program replaces
out-of-bounds addresses stored in pointers with the
address of an object in the heap (called the “out-of-bounds
object”). When a pointer is dereferenced, it is checked to see
if it is out-of-bounds. If so, the program terminates with an
error message.

As with the previous three techniques, this method
detects characteristic len:buff holding. Hence, it is suitable
for all buffer overflows. Although the authors of the tool
took pains to ensure that out-of-bounds addresses could be
used in arithmetic operations and comparisons, they did
not address type punning. If a pointer were cast to an
integer, then used as an operand in an arithmetic operation,
and then recast to a pointer, an error may arise if the new
pointer is dereferenced because it could point to a
legitimate object. Similarly, out-of-bounds pointers may be
passed to library functions.

6.6 Jump Pointer Control

Hardware/Software Address Protection (HSAP) [31] fo-
cuses on memory locations that store an address to a code

segment: return addresses and function pointers. HSAP
handles them differently.

In the case of return addresses, HSAP adds hardware
bounds checking. When a return address is popped,
before it is put in the program counter, the system checks
that the address is equal to or greater than the value of the
frame pointer. If so, the return address is returning into
the stack, enabling characteristic jmp:stack. The system
aborts the process.

HSAP uses a special hardware register containing a
random key to handle function pointers. A key is randomly
assigned to this special register. Every function pointer
value is XORed with this key when stored. When a function
pointer is invoked, a special jump instruction XORs the
value in the variable with the value in the register. If the
value in the function pointer was assigned by the process,
the resulting address is that of the right function. If not, the
address will be invalid and cause the program to terminate.
This ensures characteristic mod:fptr will be false.

HSAP handles both types of executable buffer over-
flows. It does not handle data buffer overflows. However,
if the process were modified to use the random register for
all pointer variables, HSAP would also block the indirect
data buffer overflow (specifically, characteristic mod:cptr).
It is not clear if this technique could be generalized to
handle direct data buffer overflows. The problem is how to
make the assignments to variables when input occurs. The
data that is written out of bounds would have to not use
the special register, and the data written in bounds would
have to use that register. But if this distinction could be
made, the use of the register would be unnecessary.

6.7 StackGuard, MemGuard, and PointGuard

StackGuard [32] is designed to thwart direct executable
buffer overflows. It inserts a canary, or random number
computed at runtime, into the stack between the return
address and any variables. Before the function returns, the
canary is popped and compared with its original value. If
the two differ, the canary has been altered, and (presum-
ably) the return address has also been altered. The process
is then terminated.

StackGuard works because it detects a violation of
characteristic mod:radd. It asserts that the return address
has been changed, and therefore a buffer overflow occurs. If
a buffer overflow attack were used to alter the return
address, the attacker would need to overlay the canary with
data containing the value of the original canary. As the
canary is generated randomly, this is highly unlikely unless
the attacker can observe the executing process (and if the
attacker can do so, the attacker probably does not need to
compromise the system using a buffer overflow attack).

Although the design and intent of StackGuard is to check
for changes to the return address stored on the stack,
StackGuard does not actually do so. It instead checks a word
near the return address. This allows both false positives and
false negatives to occur. A false positive may occur if, for
example, the data used in the buffer overflow is long enough
to overwrite the canary but not long enough to overwrite the
return address. A false negative may occur if the canary’s
value is not altered, as mentioned above. An alternate
approach addresses these problems. Rather than generating
a canary, determine the value of the return address before
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the function is invoked, and store that in memory (not on the
stack) before the call. Then, check the value of the return
address itself before executing the return. This eliminates
false negatives, because if the return address has changed,
characteristic mod:radd is satisfied, so every executable
buffer overflow will be detected. It does not eliminate false
positives, because the return address may change for
reasons other than buffer overflow attacks (perhaps the
program does so as part of an unusual but planned change
of the flow of control). But it reduces the number of possible
false positives compared to StackGuard, and could be
implemented by changing the function prologue and
epilogue routines in the GNU C compiler.

MemGuard, described in the same paper, is a general-
ization of StackGuard that uses virtual memory protection
mechanisms to protect specific memory locations such as
the return address. MemGuard allows a precise implemen-
tation of characteristics mod:radd, mod:fptr, mod:cvar, and
mod:cptr, because the specific location of the return address
(or variable) can be marked as immutable, so any attempt to
change it will cause a trap. However, experiments showed
the overhead of MemGuard is unacceptably high.

PointGuard [33] is a generalization of StackGuard.
PointGuard places canaries next to all function pointers,
and whenever a function pointer is dereferenced, the canary
is validated. The techniques used are otherwise the same as
for StackGuard. PointGuard attempts to detect character-
istics mod:fptr and mod:cptr, and suffers from the same
problems as StackGuard.

6.8 Split Control and Data Stacks

SmashGuard [33] provides microarchitectural hardware
support to detect changes to the return address. It copies
the return address and frame pointer to a small hardware
stack as well as the process stack. On return, the return
address from the process stack is compared to that on the
hardware stack. If they differ, the program terminates.

This method handles direct executable buffer overflows
only. It negates characteristic mod:radd by detecting the
change to the return address. The discussion of counter-
measures explains why this approach does not generalize
well to the other types of buffer overflow attacks. Further,
the implementation of SmashGuard must keep the addi-
tional hardware stack in an area that the process cannot alter.

An alternate implementation is to do this in software
rather than hardware [34]. The software implementation
stores a copy of the return address on a stack specially
allocated by the compiler. The prologue of a function call is
altered to save the return address; the epilogue is altered to
compare the two values. The hardware version, designed for
greater efficiency, causes the placement of the return address
on the second stack, and its comparison with the other stored
return address, to occur as part of the call and return
operations. Both methods cause program termination if the
comparison fails. This checks for characteristic mod:radd,
and negates it when it is found to hold.

Minezone RAD and read-only RAD [35] use variants of
this technique. Minezone RAD allocates “guard pages” that
are write-protected before and after the memory allocated
to the special stack to hold return addresses. Read-only
RAD sets the location holding the pushed address to read-
only after it is pushed onto the stack. Gadaleta et al. [36]

examine changes to the call and return instructions that
have the same effect as read-only RAD. All these techniques
split the control and data stacks, and so are categorized as
negating characteristic mod:radd.

6.9 Secure Return Address Stack (SRAS)

Branch prediction applied to function return enables an
interesting technique to detect buffer overflow [34]. This
method is based on the Return Address Stack used in
modern processors. In normal operations RAS mispredic-
tions are the result of speculative updates of the stack and
overflows due to limited RAS size. But buffer overflows can
cause these mispredictions. The difference between the two
is that when a buffer overflow is the cause, an exception
handler cannot trace back to the previous stack frame, the
address of which will have been overwritten as a side effect
of the overflow. Such a handler incurs high overhead, and
the authors develop a way to eliminate the speculative
nature of the predictions, obviating the need for the indirect
referencing of the exception handler. This attempts to
negate characteristic mod:radd by detecting changes to the
return address.

6.10 Other Defenses

Address Space Layout Randomization (ASLR) negates
characteristics, mod:radd, mod:fptr, mod:cvar, and cptr by
randomizing the locations at which those variables are stored
[37], [38], [39], [40]. ASLR also has been applied to rearrange
code, which negates jmp:stack and jmp:heap. The rearran-
ging effectively prevents the attacker from knowing what
address needs to be changed, and in many cases the address
would no longer be accessible using a buffer overflow.

A similar idea is to randomize instruction sets on a per-
process basis [41]. For example, every instruction is xored
with an encoding key, When the instruction is to be
executed, it is first xored with the corresponding decoding
key. Should an attacker attempt a direct executable buffer
overflow, it will fail because the injected code is not xored
with an encoding key. This negates the characteristics
exe:stack and exe:heap.

Heap spraying [18] replicates the attack code in numerous
places in memory. NOZZLE [42] statically analyzes objects
on the heap to see if jumping into them cause shell code to
execute. Egele et al. [43] use instruction emulation to identify
the buffers that contain shellcode. In terms of characteristics,
both detect that the characteristic con:inst holds, and take
appropriate action. BuBBle [44] inserts special instructions in
string memory. When the string is read, the mechanism
reconstructs the original string. If execution is attempted, the
special instructions cause an exception. These methods
effectively prevents the execution of input code on the heap,
negating the characteristic exec:heap.

A Structured Exception Handling (SEH) overwrite [45]
overwrites a (function) pointer to an exception handler
and then triggers the exception. Microsoft’s defense, called
a Structured Exception Handling Overwrite Protection
(SEHOP), checks that the exception handler list is intact
before allowing an exception to be invoked [46]. Both SEH
and SEHOP speak to the characteristic mod:fptr.

Several versions of the UNIX and Linux systems disable
execute permission for the stack [47], [48]. This counters
characteristic exe:stack, by preventing the program from
executing instructions on the stack.
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6.11 Summary

The focus of the techniques surveyed lies upon four sets of
characteristics. The first set is that the length of the input is
longer than that of the buffer (characteristic len:buff). The
second set is that a value—the return address or a function
pointer—is altered (characteristics mod:radd, mod:fptr, and
mod:cptr). The third negates exe:stack, the ability to execute
instructions on the stack. The fourth detects branches into
the stack (characteristic jmp:stack). That leaves several other
preconditions unexplored.

The difficulties in ensuring that characteristics con:addr,
con:inst, and con:ctrl do not hold are discussed above. Strict
typing that differentiates between data, addresses, and
instructions is a step toward negating these preconditions.
If all input is of type data, then the execution buffer
overflows and the indirect data buffer overflows are
eliminated because characteristic con:addr is false.

One technique (HSAP) checks for return addresses
within the stack, but not for function pointers pointing to
the heap or to data areas. If instructions were loaded into a
data area, in most systems they could not be executed as
the data area has execute permission turned off. But many
dynamic loading systems load functions into the heap
when they are invoked. On systems like these, turning off
execute permission for the memory making up the heap
would inhibit dynamic loading. So, it is legitimate for a
function pointer to point into the heap if dynamic loading
is used. Various heuristics could help determine if this
were true for any particular process, but the complexity of
the analysis is probably greater than methods that negate
other preconditions. Hence, negating characteristic
jmp:heap is typically not done.

Characteristic mod:cvar asks whether a value has been
modified to cause an action that violates the security policy.
This requires certain simplifying assumptions. The simplest
assumption is that the data is only to be modified by the
program; this leads to the approach based on Biba’s model
discussed earlier.

Characteristic flow:ctrl is a function of the program, and
say that if a buffer overflow changes a variable that does not
affect the flow of control, it has no security implications for
that program. Note that if the value is output and a second
program acts based on that output, the value is affecting the
flow of control of the composition of the programs,
instantiating characteristic flow:ctrl. As all programs invol-
ving security do rely on variables, it is infeasible to negate
this characteristic taken alone.

7 CONCLUSION AND FUTURE WORK

This paper provides a methodology for analyzing buffer
overflow vulnerabilities. It derives specific preconditions that
must hold in order for an attacker to exploit a buffer
overflow vulnerability, and then reframes them in terms of
well-defined characteristics. These are both necessary and
sufficient for the buffer overflows to be exploitable.

The preconditions distinguish among four distinct types
of buffer overflows: direct executable, indirect executable,
direct data, and indirect data. These have common char-
acteristics as well as different characteristics. This suggests
two approaches.

The first approach is to examine the sets of character-
istics, and focus on those common to all types of buffer
overflows. The first is that the length of the input be not
greater than the length of the buffer. So range-checking
compilers, and other tools that check for out-of-bounds
references, work against all buffer overflow attacks. The
second is that the data being loaded must be treated as two
different types: data (for the input) and addresses or
instructions (for the use). This precondition is harder to
detect for the class of direct data buffer overflows, because
the defense must distinguish between the type of the input
data and the type of the data in the variable. An approach
using Biba’s integrity model was briefly discussed.

The other characteristics vary among the different types
of buffer overflows. Approaches to implementing detection
and prevention methods for each were discussed, and a
number of tools that detect buffer overflow attacks were
classified based on the characteristics they negated.

Our characteristics focus solely on the technical aspects
of the programs. As noted, it assumes that a buffer overflow
will cause a security breach. This is not necessarily true. If
the process is running with the attacker’s privileges, an
executable buffer overflow attack will gain the attacker
nothing. Incorporating policy and other environmental
elements into the characteristics in a way that an analyst
can test would greatly enhance this work.

The second approach is to tie the characteristics into
attack models such as the requires/provides attack model
[49], and thus link vulnerabilities with attack models firmly.
In the event that a site encode parts of its policy into a
language capturing this type of model, an automated
reasoning engine could determine what vulnerabilities
were consistent with the site’s policy.

Finally, the development of automated tools to examine
systems for the presence of characteristics would provide
an effective way of detecting potential security vulnerabil-
ities. Preconditions underlie characteristics, which in turn
underlie vulnerabilities, and many are common to more
than one class of vulnerability. This would effectively allow
us to check for vulnerabilities by building on the results
found during checking for other vulnerabilities, making the
process considerably more effective.
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