
'.

How 'ro V\,Trite a Sei;uid Prograln

Matt Bishop

May, 1985

Research Ins\;:tute for Adnl.llced Computer Scie:;1ce

N.\.SA Ames Research CellLer

RIACS TR 85.6

Research Institute for Advanced Computer Science

,

~.

,
1 ..

.- .~

How To Write a Setuid Program

Matt Bishop

Research Institute for Advanced Computer Science

NASA Ames Research Center

Moffett Field, CA 94035

ABSTRACT

Setuid programs can pose a grave threat to UNIX systems
because they explicitly violate the protection scheme designed into
UNIX. However, setuid programs are often the only practical solu
tion to problems of maintaining a fully functioning UNIX system.
Because of this paradox, they are among the most difficult pro
grams to write. This paper lists and discusses some simple rules for
writing setuid programs that will decrease an attacker's ability to
use such a program to compromise a UNIX system.

May 23,1985

' .

..

to

How To Write a Setuid Program

Matt Bi8hop

Research Institute for Advanced Computer Science

NASA Ames Research Center

Moffett Field, CA 94035

Introduction

A typical problem in systems programming is often posed as a problem of

keeping records [ALEP71]. Suppose someone has written a program and wishes

to keep a record of its use. This file, which we shall call the hi.to,,, fiJt, must be

writable by the program (so it can be kept up to date), but not by anyone else

(so that the entries in it are accurate.) UNlXt solves this problem by providing

two sets of identifications for processes. The first set, called the ,tal user

identification and group identification (or UID and GID, respectively), indicate

the real user of the process. The second set, called the tJ1tdivt UID and GID,

indicate what rights the process has, which may be, and often are, different from

the real UID and GID. The protection mask of the file which, when executed,

produces the process contains a bit which is called the .etuid bit. (There is

. another such bit for the effective GID.) If that bit is not set, the effective UID of

the process will be that of the penon exeeuting the file; but if the setuid bit is set

(so the program runs in 8etuid mode), the effective UID will be that of the owner

tUNIX is a Trademark of Bell Laboratories.

- 2

of the file, not that of the person executing the file. In either case, the real urn

and GID are those of the person executing the file. So if only the owner of the

history file (who is the user with the same UID as the file) can write on it, the

setuid bit of the file containing the program is turned on, and the UIDs of this

file and the history file are the same, then when someone runs the program, that

process can write into the history file.

These programs are called Bt!tuid program8, and exist to allow ordinary users

to perform functions which they could not perform otherwise. Without them,

many UNIX systems would be quite unusable;' An example'of a setuid program

performing an essential function is a program which lists the active processes on

a system with protected memory. Since memory is protected, normally only the

privileged user root could scan memory to list these processes. However, this

would prevent other users from keeping track of their jobs. As with the history

file, the solution is to use a setuid program, with root privileges, to read memory

and list the active processes.

Setuid programs introduce many security problems [TRUS80]. This paper

describes how to ·write such programs to minimize these problems. The reader

should bear in mind that on some systems, the mere existence of a setuid pro

gram introduces security holes; however, it is possible to eliminate the obvious

ones.

In this paper, all references to the UNIX Programrmr'. Manual.are to either

the 4.2 Berkel~ manual [UPM83] or to the System V manual [UPM84]. As

usual, manual paiS are indicated by following the italicized name with the sec:

.'

. '

- 3

tion number in parentheses.

I. Be 8S Restrictive as Possible in Choosing the UID

The basic rule of computer security is to minimize damage resulting from a

break-in. For this reason, when creating a setuid program, it should be given the

least dangerous UID possible. If, for example, game programs were setuid to

root, and there were a way to get a shell with root privileges from within a game,

the game player could compromise the entire computer system. It would be far

safer to have a user called games and run the game programs setuid to that user.

Then, if there were a way to get a shell from within a game, at worst it would be

setuid to games and only game programs could be compromised.

n. Do Not Write Setuid Shell Scripts

The Berkeley 4.2 Distribution of UNIX allow8 shell scripts to be run with

setuid permissions. To understand how this works, a brief explanation is in

order.

This version of UNIX checks the first line of a shell script to see if it begins

with the two characters '#!'. When such a shell script is executed, the rest of

that line, up to the first 32 characters, is taken as the absolute path name of a

command interpreter, which is then executedt. H the shell script is setuid, the

setuid bits are applied to the command interpreter before execution.

Unfortunately, once . one find8 a setuid shell script, it is very easy either to ·

obtain an interoetiw setuid ahell, or to force the shell to execute any specified

t See cae",(:S) for d.aiIs.

- 4

sequence of commands. This leaves the owner of the shell script open to a devas

tating attack. Under no circumstances should a setuid shell script ever exist on

anr system where security is a concern.

One way to avoid having a setuid shell script is to turn off' the setuid bit on

the shell script, and rather than calling the script directly, use the following pro

gram to call it:

1*
* This is a simple program to run
* a script as though It were setuid
* to the owner of this program. The
* executable of this must be setuld .
* to the owner of the shell script.

*1
maln(argc. argv)

Int argc:

char **argv:

{

1*
* Replace the zeroth argument
* with the path name of the
* shell script.

*1
argv[O] =SCRIPT_FULL_PATH_NAME:

1*
* Overlay the script.

*1
(void) execv(argv[O]. argv):

1*
* If It gets here. the script
* did not run ...
*1

perror(SCRIPT_FULL_PATH_NAME):

exlt(l):

}

In this program, SCRIPT_FULL_PATH_NAME is the fun path name of the shell

script; as the comments indicate, the executable generated by compiling to pro

- 5

gram must be, made setuid to the owner of the shell script. However, the shell

script should not be setuid.

III. Do Not Useerw(2) for Locking

According to its manual page, "The mode given [treat] is arbitrary; it need

not allow writing. This feature has been used ... by programs to construct a sim

pie exclusive locking mechanism." In other words, one way to make a lock file is

to treat a file with an unwritable mode (mode 000 is the most popular for this).

Then, if another user tried to creat the same file, treat would fail, returning -1.

For example:

/*
* This is supposed to provide a reliable locking
* mechanism for programs.

*/
lock(lock_file_name)
char *Iock file name: / * lock file * /
{

return (creat(lock _file_name. 0)):
}

The only problem is that such a scheme does not work when at least one of

the processes has root's UID, because protection modes are ignored when the

effective UID is that of root. Hence, root can overwrite the existing file regardless

of its protection mode.

To do locking in a setuid program, it is best to use link(2). If a link to an

already-exi8ting file is attempted, link fails, even if the process doing the liDking

is a rDot proce.s and the file is not owned by root. Here is an example of a lock

ing routine that uses this:

/*

- 6

* The~e routines provide a reliable locking
* mechanism for processes regardless of what
* user Id they have or who owns them.

*/

#include <errno.h>

extern int errno: / * error code * /

/*
* The locking routine: note you give It the lock
* file name and an existing file name so this
* routine can be used with processes creating
* multiple locks on different file systems.
* It returns 1 If the lock was successful.
* 0 If the lock failed because some other process
* locked this one out. and -1 if the attempt
* failed for any other reason.

*/

lock(existing_file _name. lock_file_name)
char *existlng_file_name: /* name of existing file */
char * lock file name: / * name of lock file * /
{

/*
* Be sure existing_file _name exists
* If It does. creat fails. so we Ignore
* the failure.

*/

(void) creat(exlstlng_file_name, 0);

/** Try to make the link

*/

If (link(exlstlng_file_name, Iock_file_name) == 0)

return (1);
/*
* Oops - It failed. Return the
* appropriate code.

*/

return(errno == EEXIST ? 0 : -1):
}

/** The unlocking routine: It's what you would
* expect. It returns 1 If the unlock succeeded,
*·0 If It failed because the lock file did not
* exist. and -1 If It failed for any other
* reason.

*/

unlock(lock_ file_name)

- -

- -

- 7

char *Iock file name; / * . name of the lock file * /
{

/*

* Try to break the link

*/

If (unllnk(lock_file_name) == 0)

return(l) ;

/*
* Oops - It failed . Return the
* appropriate code.

*/
return(errno == ENOENT ? 0 : -1):

}

Note that the link call requires that its first argument exist, that both

eXisting_file_name and lock_file_name be in the same file system, and

existing file name not be a directory. The above locking routine returJll 1 if the

locking attempt succeeds, 0 if it fails because another process has locked it out,

and -1 if it fails for any other reason. A return -value of -1 means there is some

problem, such as being unable to create exlstlng_file_name. Similarly, the

unlocking routine returns 1 if the unlocking succeeds, 0 if it fails because no lock

ing was done, and -1 if it fails for any other reason.

With 4.2 Berkeley UNIX, an alternative is to use the ./foek{2} system call, but

this has disadvantages (specifically, it creates advisory locks only, and it is not

portable to other versions of UNIX).

The issue of covert channels [LAMP13] also arises here; that is, information

can be sent illicitly by controlling resources. Boweftr, this problem . is much

broader than the scope of this paper, 80 we .hall pus over it.·

.,

- 8

IV. Catch AU Signals

When a process created by running a setuid file dumps core, the core file has

the same UID as the real UID of the proce8st. By setting umaBkst properly, it is

possible to obtain a world-writable file owned by someone else. On some UNIX

systems, a shell can be made to execute commands entered in that file with the

rights of the owner of the file.

To prevent this, setuid programs should catch all signals possible§. H init-

Big, defined below, is called on initialization, any signal will cause an immediate

exit without a core dump:

/** This catches all signals and exits
* without dumping core.

*/
#include <slgnal.h>

/*
* This just exits. Since the signal number
* Is just the first argument to this routine.

*" you can get fancy If you want.

*/
catcherO
{

eXlt(1):

}

/*
t Oil lome version. or UNIX, lach .. 4.2BSD, 110 core file is produced if' the OWDer or the setaid

procesa it root. However, core ilee arc prod.ced ror Pl'Olr&JIUI Ht.id to other UHrI.

*See M(1) ror a dac:riptioll or thet commaad.

§ Note that lOme ai,llala, I.dl .. SIGKILL (ill SyMem V ud 4.2BSD) ud SIGSTOP (ill
4.2BSD), C&JlD~t be ca••ht. Mo~.., oa aome Tenieu or UNIX, nelt .. Venioa 1, tltere it
all iahereat race coaditioD ill ai.nu Itudlera, Wltea a a!tau it ca••ilt, tlte aiaaaJ trap it reaet
to ib default vallie ..d "ell tb Itudler ia caI1ed.. Aa a relak, rec:eiYiaJ the lame ai.Du im
mediately after a pre'Yiou ODe will caue tiM ai.aal to take efFect l'eIardIea of wiletJaer it ia be
ill. trapped. Os laclt a veraioa or UNIX, ai.aal. C&IlJlot beely ca••Jat. However, it a ai.llal
is beiq ituru, nadia. the proceu a ai.aal will 110' caue tJae defaalt action to be reiaa'atecij
10, li.Il" c:&Il be aalely ianored.

- 9

* This Initializes the signal catching
* vectors to call the above routine. Note
* any signal (Including the process control

* ones like "child just exited") will cause

* It to be called (You may want to change
* that: see the text.) If you want to allow
* those signals which don't cause core dumps
* to be Ignored, put the code in here.
*/

InitsigO

{

register int I: / * counter * /

/*
* On any signal. call catcher
* unless the signal is being ignored

*/

for(1 =1: I < NSIG: 1++)

If (slgnal(l. SIG_IGN) != SIG_IGN)

(VOid) signal(l. catcher):

}

With these two routines, catching any of SIGQUIT, SIGILL, SIGTRAP,

SIGIOT, SIGFPE; SIGBUS, SIGSEGV, or SIGSYS will not cause a core

dump.

Note that all of SIGCHLD, SIGCONT, SIGTSTP, SIGTTIN, and

SIGTTOU also cause an exit. Unless there is a specific reason not to do this,

this is a good idea, because if data is kept in a world-writable file, or data or lock

files in a world-writable directory such as "/tmp", one can easily change infor

mation the process (presumably) relies. upon. Note, however, that if the .V"

tem(3) call is used, the SIGCBLD signal will be sent to the procea when the

command given .vnem is finished; in this case, it would be wise to ignore

SIGCBLD.

This brings us to our next point.

- 10

V. 	Check Data for Consistency

When writing a setuid program~ it is often tempting to assume data upon

which decisions are based is reliable. For example, consider a spooler. One

setuid process spools jobs, and another (called the daemon) runs them. The ~

mon should not assume that the spooled jobs were spooled by the setuid pr0

gram; it should try to verify this by other means, for example, checking that the

owner of the command file is the same as the owner of the spooler, and that the

file has not been changed since being spooled.

The precise information to be stored depends a lot on what is being done.

For example, with a printing spooler, at a minimum the device number and

inode number associated with each data file should be stored, since those two

numbers uniquely identify any file on the system; in addition, storing the time of

· last modification is useful, as that will enable the daemon to determine if the

data has changed since the job was spooled. All this information should be

obtained tw;ee - once by the spooling program, which stores it in the control

file, and once again by the daemon process, which then compares it to the data

stored in the control file. If anll of the stored quantities are different, the

integrity of the data file is suspect, and appropriate action should be taken.

.With a printinlspooler, for example, the job should not print the file.

VI. Make No AS8UlDptions About Recovery Of Errors

If the setuid program encounters an tUlexpected situation that the program

is not prepared to handle (such as running out of tile descriptors), the program

should not attempt to correct for the situation. It should stop. This is the

- 11

opposite of the standard programming maxim about robustness of programs, but

there is a very good reason for this rule. When a program tries to handle an

unknown or unexpected situation, very often the programmer has made certain

assumptions which do not hold up; for example, he may assume that lack of file

descriptors means there is a problem with the system that requires the user to be

given root privileges to fix. Such assumptions can pose extreme danger to the

system and its users.

When writing a setuid program, keep track of things that can go wrong - a

command too long, an input line too long, data in the wrong format, a failed

system call, and so forth - and at each step ask, "if this occurred, what should

be done?" If in any case the answer is "assume ...", at that point the setuid pro

gram should 8top. Do not attempt to recover unless recovery is guaranteed; it is

too easy to produce undesirable side-eff'ects while trying to recover.

Once again, when writing a setuid program, if you are not sure how to han

dIe a condition, exit. That way, the user cannot do any damage as a result of

encountering (or creating) the condition.

For an excellent discussion of error detection and recovery under UNIX, see

"Can't Happen or /* NOTREACHED * / or Real Programs Dump Core" in the

.1985 Wintt:, USENIX Prott:t:dinp ([DARW85]).

VD. Cloae All But NeeeslUll')' File Deeeripton Before CalBaa accf

This is another requirement that most Rtuid programs overlook. The

t Ezu is a leDeric lerm Cor a nmber of .ya~ aM library calla; , ... are cIe.cribed by 'he
manul pal. csce(2) in llae Sya~m V 1DU1Ialaad caew(2) aad csccI(S) ill lI.. 4.2 BSD m...•
al.

- 12

problem of failing to do this becomes especially acute when the program being

ezee'ed may be a user program rather than a system one. IT, for example, the

setuid program were reading a sensitive file, and that file had descriptor number

9, then the user program could also rea4 the sensitive file (because, 88 the

manual page warns, "[djescriptors open in the calling process remain open in the

new process ... ")

The easiest way to prevent this is to set a flag indicating that a sensitive file

is to be closed whenever an exec occurs. The flag should be set immediately after

opening the file. Let the sensitive file's descriptor be SENSITIVE_DESC. In both

System V and 4.2 BSD, the system call

fcntl(SENSITIVE_DESC. F _SETFD. 1)

will cause the file to close across ezecs; in both Version 7 and 4.2 BSD, the call

IoctI(SENSITIVE_DESC. FIOCLEX. NULL)

will have the same effect. (See /cntl(2) and ioetl(2) for more information.)

VID. Reset Effective UIDs Before Calling au

Resetting the effective UlD and GID before calling exec seems obvious, but

it is often overlooked. When it is, the user may find himself running a program

with unexpected privileges. The following version of 8116tem does this:

/*
* This Is like system(3). but resets the
* effective UIO and GID:
* It returns -1 If the setuld/setgld fails.
* otherwise returns what system(3) does

*/

su_system(s)
char *5: /* command */
{

/*

- 13

* Reset the effective UID and GID
* to the real UID and GID

*/

If (setuld(getuldO) == -111 setgld(getgldO) == -1)

retum(-1):

/*
* Now call system(3)

*/

return(system (s)) :

}

IX. Check the Environment of the Process

The environment includes those variables which . are inherited from the

parent process. Among these are the variables PATH (which controls the order

and names of directories searched by the shell for programs to be executed), IFS

(a list of characters which are treated as word separators), and the parent's

uroo.tk, which controls the protection mode of files that the subprocess creates.

Also relevant is any attempt to restrict the process' access to the file system with

the system call ehroot(2).

The ehroot system call, which may be used only by root, will force the pro

cess to treat the argument directory as the root of the file system. For example,

the call

chroot("' /usr/riacs")

will prevent the proeess from ever accessing "loar". However, even though sym

bolic link! are handled properly, be aware that hard links to directories outside

the tree rooted at · the argument directory can be followed; for example, if

"/usr/demD" were linked to "/usr/riaes/demos", the sequence of system callst

t See c/a.,ir(2) for more WOI'IIlatioa •..

- 14

chdlr("/demos") ;
chdlr(")

would make the current working directory be "/usr" Using relative path names

at this point (since an initial "I" is interpreted as "/usr/riacs"), the user could

access any file on the system. Therefore, when using this call, one must be cer

tain that no directories are linked to any of the descendants of the new root.

One of the more insidious threats comes from routines which rely on the

shell to execute a program. (The routines to be wary of here are popen(3), 8J1~

tern, ezeclp(3), and .ezecvpt.) The danger is that the shell will not execute the

program intended. As an example, suppose a program that is setuid to root uses

popento execute the program printfile. As popen uses the shell to execute the

command, all a user needs to do is to alter his PATH environment variable 80

that a private directory is checked before the system directories. Then, he writes

his own program called printfile and puts it in that private directory. This

private copy can do anything he likes. When the popen routine is executed, his

private copy of printfile will be run, with root privileges!

On first blush, limiting the path to a known, safe path would seem to fix the

problem. Alas, it does not. When the Bourne shell sh is used, there is an

environment variable IFS which contains a list of characters that are to be

treated as word separators. For example, if IFS is set to "e", then the shell

command spell(l) will be treated &8 a command sp with one arsument II (since

the "e"is treated as a blank.) Hence, one could foree the setuid process to ex~

cute a program other than the one intended.

*ucel, ud ""1IP are ill MdioD 2 or dle S,.tern V mana!.

- 15

With a setuidprogram, all· subprograms should be- invoked by their full

path name, or some path known to be safe should be prefixed to the command;

and the IFS variable should be explicitly set to the empty string (which makes

white space the only command separators.) The following version of ."nem

. forces the path VANILLA to be used as the execution path for the command:

/*
* This forces system(3) to use the path
* defined in the macro VANILLA. A return of
* -1 means there was not enough space for
* the command and the vanilla path.

*/
#define VANILLA" /usr/ucb:/bln:/usr/bln"

safe__system(s)
char *5: / * command * /
{

char *cmdbuf: / * safe path + command * /

/*
* Allocate space for the command

*/
cmdbuf = malloc((unsigned) (strlen(s)+strlen(VANILLA)+35)):
If (cmdbuf == NULL)

return (-1):
/*

* Prepend the path to the command
*/

(void) sprtntf(cmdbuf. "IFS= : PATH=%s : export PATH IFS : %s".
VANILLA. 5):

/*
* Call su__system(3) so UID/GID get reset
* (see above)
*/

retum(su__system(cmdbuf)):
}

The dan,er from a badly-set umuk is that a world-writable file owned by

the effective UID of a setuid process may be produced. When a setuid proceu

must write to a file owned by the penon who. rnnniDI the letuid prosram, and

- 16

that file must not be writable by anyone else, a subt1~ hut nonetheless dangerous

situation arises. The usual implementation is for the process to create the file,

ehown(2) it to the real UID and real GID of the process, and then write to it.

However, if the umask is set to 0, and the process is interrupted after the file is

created but before it is ehowned the process will leave a world-writable file owned

by the user who has the effective UID of the setuid process.

There are two ways to prevent this; the first is fairly simple, but requires

the effective UID to be that of root. (The other method does not suffer from this

restriction; it is described in the next section.) ·The umask(2) system call can be

used to reset the umask within the setuid process 80 that the file is at no time

world-writable; this setting overrides any other, previous settings. Hence, the

following routine should be used, rather than the usual open(2):

/*
* This opens the file: it takes the same parameters as the
* 4.2850 and System V open(2} call: to modify for Version 7.
* change the parameters to open(2) and this routine as appropriate.
*/

Int safe_open (filename. flalS. mode)
char *filename: /* file name * /
Int flags. mode: /* how to open. creation mode */
{

unsigned oumask: /* old umask */

r.lster Int opnval: / * return value of open * /

/* .
* Reset the umask to block non-owner from
* writing to the file.

*/

oumask =umask(022}:

/*
* Open the file . Note the IrouP and wortd write bits
* In the protection mask will be cleared regardless
* of the settlnl of "mode". due to the uma.k call.
*/

opnval = open(filename. flats. mode}:

- 17

f*
* Restore the Initial value of the umask.

*f
(void) umask(oumask):

return (opnval):

}

Upon return, the process can safely chown the file to the real UID and GID of

the process. (Incidentally, only root can chown a file, which is why this method

will not work for programs the effective UID of which is not root.) Note that if

the process is interrupted between the open and the chown the resulting file will

have the same UID and GID as the process' effective UID and GID, but the per

son who ran the process will not be able to write to that file (unless, of course,

his UID and GID are the same as the process' effective UID and GID.)

As a related problem, umaBk is often set to a dangerous value by the parent

process; for example, if a daemon is started at boot time (from the file "fetcfrc"

or "fetcfrc.local"), its default umaBk will be O. Hence, any files it creates will be

created world-writable unless the protection mask used in the system call creat

ing the file is set otherwise. The above routine will set the umask to 022 before

any file is created, so it may be safely used in such situations.

Library routines should be used with great care. In particular, the routine

getlogin(3) should not be used to determine the user's login name, lIince it may

not return the login name expected. Rather, use ,etuid(2) and gdptoVid(3), as

tbe following routine does:

f*
* Routine to retum the login name

* of the user of this process. If

* none. retum the UIO al iii strinl.
* EverYthing Is returned In iii static
* area.

- 18

*/

#Include <pwd.h>

static char retval[BUFSIZ); /* return buffer for UIO */

char *gloglnO

{

register Int *pwd: /* passwd structure * /

/*
* get the structure associated with the real UIO
*/

If ((pwd =getpwuid(getuldO)) == NULL){

/*

* Something's out of date.
* Return the numerical UIO
* as a string.
*/

(void) sprintf(retval. "%d" , getuldO):
return (retval) :

}

return(pwd->pw_name):

}

x. Be Careful With I/O Operations

When a setuid process mWlt write to a file owned by the person who is run

ning the setuid program, and that file mWlt not be writable by anyone else, a

subtle but nonetheless dangeroWl situation ari8es. The usual implementation is

for the process to create the file, ehown it to the real UID and real GID of the

process, and then write to it. However, if the umuk is Bet to 0, and the process

. is interrupted after the file is created but before it is ehotmed, the process will

leave a world-writable file owned by the WIeJ' who has the effective UID of the

setuid process .. .

The second method of preventing a setuid procea from creating a world-

writable file owned by the eft'ective UID of the proceu is far more complex, but

- 19

eliminates the need for any chown system calls.

In this method, the process fork(2}s, and the child resets its effective UID

and GID to the rea] UID and GID. The parent then writes the data to the child

via pipe(2} rather than to the file; meanwhile, the child creates the file and copies

the data from the pipe to the file. That way, the file is never owned by the user

whose UID is the effective UID of the setuid process.

The following routines provide a very primitive interface for this:

/*

* Routines to open. write to. and close a file:
* this Is done with a fork and pipes
• so no chown(2} 'ing need be done
./

#Include <sys/param.h> /. may need to Include <sys/types.h> ./

extern Int errno: /. error code • /

static Int chpld: /. chlld's PIO *I

static int ackline{NOFILE]: /. pipes for acknowledgements. /

unlon{ /. used to pass error of open around • /

char a[l]: / as a char array. /

Int I: / as an integer * /

} !.i_err:

/.
* This opens the file: It takes the same parameters as the
• 4.2BSO and System V open(2} call: to modify for Version 7.
• change the parameters to open(2) and this routine as appropriate.
• The child process Is contained entirely within this routine
./

Int .afe_open(filename. flalS. mode)

char • filename: /. file name * /

Int flail. mode: /* how to open. creation mode ./

{

Int desc[2]: /. pipe for IaformatJon flow * /

Int status[2J: /. pipe for acknowlectcement .* /

Int forkval: /. value retumect from fork(2) • /

/*
* Build the pipes .
• Information to be written to the file
* flows throulh' Me to the child.

- 20

* The status pipe carries acknowledgements ,"

* from the child to the parent.

*/

If (plpe(desc) == -1)

return(-l);
if (pipe(status) == -1){

(void) close(desc[O]):
(void) close(desc[l]):
return (-1):

}

/*
* Spawn the child process.

*/

if ((forkval = forkO) ...:.= -1){

(void) close(desc[O]):
(void) close(desc[l]);
(void) close(status[O]);
(void) close(status[1)):
return (-1);

}
else If (forkval == O){

/*
* This is the child: it never leaves this
* branch of the conditional.
* First, some useful variables.

*/
char buf[BUFSIZ] ; /* I/O buffer */

int fildes = -1 : / * descriptor of output file * /

int ctread: / * count of bytes read * /

/*
* Reset effective UfO. GIO.
*/

If (setuld(getuldO) < 0 II setgld(getgldO) < 0)

_exlt(l) :

/*
* Read only from the desc pipe.
* and write only to the status pipe.
*/

(vcHd) ck>se(desc[l]):
(void) cJose(status[O)) :

/* .'* Open the file as requested .
• Handle an error by exlttn,.

- 21

*/
If ((fildes = open(filename. flags. mode)) < 0)

/*
* Shucks ... pass back the error number.
*/

u err.i =errno:
(Void) wrlte(status[1). u_err.a. slzeof(int)):

exit(O) :
}
/*
* Signal all's well.

*/

u err.1 = -1:

(void) wrlte(status[1). u_err.a . slzeof(lnt)):

/*

* Main loop - just read from the desc pipe
* until there's nothing more to read.
* Do acknowledge every read. though.
*/

u err.! = -1:
whlle((ctread = read (desc[O). buf. BUFSIZ)) > O){

If (write(fildes. buf. ctread) != ctread){
u err.1 = errno:

(void) write(status[1). u_err.a. sizeof(lnt)):

_exit(O):

}
(void) wrlte(status[1). u_err.a. slzeof(lnt)):

}
/*
* We just read an end of file.
* Close the pipe and the lite and quit.

*/

(void) c1ose(status[1)):

(void) close(desc[O]):

(void) c1ose(fildes) ;

_exlt(O):

}
/*
* This 15 the parent process.
* Close the descriptors we don't need.

*/

(y~d) close(status(l));
(void) dose(clesc[O));
/*
* Now save the ItatUI clacrtptor.
*/

ackline[desc[1)] = 5tatUS(O):

- 22

/*
* Get the status of the open (2) .

*/

If 	(read(status[O]. u _err.a. slzeof(lnt)) != slzeof(lnt)){
/*

* No status was sent - assume catastrophe.
*/

(void) close (statu s [0]) :
(void) close(desc[l]):
return (-1):

}

/*

* We read something and It wasn't good, so
* set errno to the error code and quit.

*/

if (u_err.l != -1){

(void) close(status[O)) :

(void) close(desc[l]):

errno =u err.i:

return (-if

}
/*

* Return the pipe descriptor.
*/

return(desc[l]):

}

/*
* This writes to the child/file and
* takes the same parameters as wrlte(2) ..
*/

Int safe_wrlte(fd. buf. bufslz)
int fd: /* file desCriptor from safe_open */
char *buf: j* data to be written * /

Int bufslz: /* number of bytes to be written * /

{

resister Int I: / * counter In a for loop * /
reclster int. tokld: / * bytes written to child * /

/*
* Do this In packets of BUFSIZ
* so you don't flood the pipe.

*/
for(1 	= 0: I < bufslz: I += BUFSIZ){

/*

* See how much to write.

*/

- 23

min =bufslz - I;

If (min> BUFSIZ)

min = BUFSIZ;

,*
* Write It.

*,
If (wrlte(fd. buf. min) != min)

retum(t) ;

/*

* Walt for an acknowledgement;
* If none. assume the worst.
*/ .

If (read(ackllne[fdJ. u_err.a. slzeof(lnt» != slzeof(lnt))
retum(-l);

If (u_err.1 != -1){

errno =u err.l;

return (-if

}
}

}

/*
* This closes the child/file and
* takes the same parameters as close(2).
* Note It walts for the child process.
*/

int safe _close(fd)
Int fd: '* file descriptor from safe_open */
{

register Int wattval: / * process that died * /

/*
* Close the send pipe and the acknowledgement pipe.

(void) doH(fd):*' (void) dose(Kkllne[fd) :
/*

• Watt for the child to bite the bll one.

*/

whUe«wattval = walt(O)) != -1 "eft waltv" 1= chptd):
}

.'

..

- 24

Conclusion

To summarize, the rules to remember when writing a setuid program are:

• be as restrictive as possible in choosing the UID

• do not write setuid shell scripts

• do not use treat for locking

• catch all signals
• check data for consistency

• make no assumptions about recovery of errors

• close all but necessary file descriptors before calling ezee

• reset effective UIDs before calling ezee

• check the environment of the process

• be careful with I/O operations

Setuid programs explicitly violate the protection scheme designed into UNIX.

On systems 	where security is not a problem, this is a blessing, since it enables

many things to be done easily that otherwise would be very difficult; but on BY8

tems where security is a problem, these programs also pose very real threats.

Unfortunately, they are also very necessary, so the designers and implementors

of setuid programs should take great care when writing them.

Ad:nowletlgemenU: Thanks to Bob Brown, Peter Denning, George Gobel, Chris

Kent, Rich Kulawiec, Dawn Maneval, and Kirk Smith, who reviewed an earlier

draft of this paper, and made many constructive suggestions.

References

[ALEP71] 	 Aleph-Null, "Computer R~reations," SoftwGre - Pradi.e Gnd
Ezperienee 1(2) pp. 201 - 204 (April - June 1971)

[DARW85] Darwin, Ian and Collyer, Geoff, "Can't Happen or /*
NOTREACHED * / or Real Programs Dump Core," U~85 Winter
USENlX Proceedings (January 1085) .

. 'l

- 25

[LAMP73] Lampson, Butler, "A Note on the Confinement Problem," CACM
16(10) pp. 613 - 615 (October 1973)

[TRUS80] Truscott, Tom and Ellis, James, "On the Correctness of Set-User-ID
Programs," Department of Computer Science, Duke University
(unpublished)

[UPM83] UNIX Programmer's Manual, -I.t Berkeley Software Distribution,
Virtual VAX-11 Version, Computer Science Division, Department of
Electrical Engineering and Computer Science, University of Califor
nia, Berkeley, CA (August 1983)

[UPM84] UNIX Programmer's Manual, Version 1.0, Silicon Graphics, Inc.,
Mountain View, CA (June 1984)

-'

....

RII\CS

Mail Stop 230-5

NASA Ames Research Center

Moffett Field, CA 94035

(415) 694-6363

The Research Institute for Advanced Computer Science

is operated by

Universities Space Research Association

The American City Building

Suite 311

Columbia, MD 21044

(301) 730-2656

