
! 

Analyzing the Security of an Existing Computer System 


Matt Bishop 

May, 1986 

Research Institute for Advanced Computer Science 

NASA Ames Research Center 


RIACS TR 86.13 

Research Institute for Advanced Computer Science 





Analyzing the Security of an Existing Computer 

System 


Matt Bi8hop 

Research Institute for Advanced Computer Science 

NASA Ames Research Center 


Moffett Field, CA 94035 


ABSTRACT 

Most work concerning secure computer systems has dealt with 
the design, verification, and implementation of provably secure 
computer systems, or has explored ways of making existing com
puter systems more secure. The problem of locating security holes 
in existing systems has received considerably less attention; 
methods generally rely on "thought experiments" as a critical step 
in the procedure. The difficulty is that such experiments require 
that a large amount of information be available in a format that 
makes correlating the details of various programs straightforward. 
This paper describes a method of providing such a basis for the 
"thought experiment" by writing a special manual for parts of the 
operating system, system programs, and library subroutines. 

1. Introduction 

Published work in the security of computer systems tends to take one of two 

directions. The work may center on anew, secure (possibly provably so) com

puter system, and discuss its design, implementation, and verification, or- the 

techniques used to do any (or all) of these steps. Less commonly, the work may 

report ways of improving the security of an existing system by discussing the 

known problems and methods to counter these threats. Only a few papers[l] 

deal with how to analyze an existing computer system in order to locate security 

Work reported here Wall supported by the National Aeronautics and Space AdmiDiatr ... 
tion under contract NAS2-11S30. 



- 2 

.problems 

At tllis point, we. should" remind ourselves what we are trying to do. Users 

who have legitimate access to the system are authorized U8ers. If the permissions 

on the system are set to allow someone to perform an action, that action is an 

authorized action; if the action is performed in the absence of such permission, it 

is an unauthorized action. A secure system is a system which allows only author

ized users to perform only authorized actions. For example, if a user is not 

known to the system administrator (by an entry in the password file), he is not 

an authorized user and hence should not be able to access the system. Similarly, 

a breach 0/ securitJl occurs whenever an authorized user performs an unauthor

ized action, or when an unauthorized user obtains access to the system. 

There are several reasons to check existing programs. The most important 

is that the design, implementation, and verification of new code takes quite some 

time, during which the new code could not be used. When one realizes that most 

operating systems were not designed with security as the primary consideration, 

the magnitude of such a task becomes apparent. Existing code, on the other 

hand, could be used for increasingly privileged tasks as it is examined in stages 

for security flaws. Second, given that there is already enough existing code to 

keep a nonsecure system functioning, it may be more cost-effective to check the 

code for security holes rather than rewriting it completely. Finally, once it is 

written, new software can be treated like exisfing software. 

Unfortunately, lack of formal verification poses problems. The best way to 

reduce the number of security problems is "to use formal security verification 



- 3 

_ 	methods to.ass.ure,othat the mandatory : .. ' security"controls, employed in the sys

tem can effectively protect ... sensitive information stored or processed by the 

system."[2] To do this, the developers must state their security policy, the 

axioms used to implement the security policy, and using these axioms present a 

mathematical proof that the system satisfies the security policy. Then, they 

must show the implementation of the operating system conforms to the design. 

(LOCUS[3] and PSOS[4] are examples of proposed operating systems for which 

mechanisms of formal verification have been described.) Throughout this pro

cedure is an assumption that the system is designed with this type of verification 

in mind. To submit an existing system to this procedure, one must first decide 

on a security policy, and then model the system mathematically and show that 

the system not only satisfies the security policy, but also is accurately 

represented by the mathematical model. Abstraction of a mathematical descrip

tion from the operating system is far more difficult than implementing the 

operating system from the mathematical description. 

It is important to realize that no method will provide the same degree of 

security as formally verifying a system; however, less rigorous methods can 

reveal security flaws, and make the writing and checking of secure system 

software easier and less prone to error. 

2. 	 The Starting Point 

Given that mathematical verification is not suitable, let us look at other 

methods of testing, and improving, system security. The most obvious is an ad 

hoe approach of trying types of attacks that have proven successful on this, or 



- 4 

_.otheI;, ..,.opem.ting systems.}n the: past~" Although doing so is··very effective in dis

covering specific security problems, it does not provide a broad, systematic 

approach for discovering flaws in the security of computer systems, or for testing 

new components. 

A generalization of this method will provide a foundation for analyzing 

security problems. One technique for penetrating operating systems involves a 

formal strategy called the "Flaw Hypothesis MethodologY."[5] It consists of four 

parts: knowing how the target operating system interacts with users, hypothesiz

ing a flaw in that interaction, confirming that the flaw exists (through "thought 

experiments" and actual testing), and generalizing the flaw, and similar flaws, to 

a design or implementation deficiency in that operating system. Clearly, the 

most difficult part is taking the first step, from the knowledge of the operating 

system to the supposition of flaws. 

Before discussing ways to make this easier, let us try to categorize the main 

areas in which problems arise, to gain some insight about where to look. Bisbey, 

Carlstedt, and Hollingsworth at the University of Southern California's Informa

tion Sciences Institute have identified several categories of system flaws which 

can produce security violations. The following list summarizes them by listing 

main areas, each broken into sub-areas:* 

(1) Improper protection (initialization and enforcement): 

(la) 	 improper choice of initial protection domain; for example, an incorrect 

choice of a protection domain or security partition leading to a user 

* This organization is from Peter Neumann[6]. 



, 


- 5 

" _ :. peing.able ·to accesS' and. change--an audit trail; 

(lb) improper .isolation of implementation detail; for example, allowing 

users to bypass operating system controls and write to absolute 

input/output addresses; 

(lc) improper change; for example, allowing data to be inconsistent while 

still in use, by letting one process change a database file while 

another, different process is accessing that file; 

(ld) improper naming; for example, allowing two different programs to 

have the same name; 

(le) improper deallocation or deletion; for example, leaving old data in 

memory deallocated by one process and reallocated to another pro

cess, enabling the second process to access the information used by 

the first; 

(2) 	 Improper validation; for example, not checking critical conditions and 

parameters, leading to a process' addressing memory not in its memory 

space by referencing through an out-of-bounds pointer value; 

(3) 	 Improper synchronization: 

(3a) improper indivisibility; for example, interrupting atomic operations 

such as locking; 

(3b) 	 improper sequencing; such as . allowing race conditions among 

processes vying for resources; 

(4) 	 Improper choice of operand or operation; such as usmg unfair scheduling 

algorithms that block certain processes' or userS from running. 



- 6 

Although . certa.inq., not: complete, this ·1ist ' provides a means of classifying most 

security problems, and is quite suitable 8.S an outline of areas in which problems 

of security will arise. 

Now that we have guidelines on where to look, we must consider how to go 

about looking. Unfortunately, there is no way to do this other than by trial and 

error. (There has been some discussion of problems leading to, and attacks tak

ing advantage of, security flaws in operating systems generally[4,6] , as well as 

discussions of the security of specific operating systems[7,8,9].) Such methods 

may be made more effective if the trials are done systematically rather than at 

random. One technique to systematize the search is to use a dependency graph 

of the control objects in the operating system to study their interaction and look 

for possible problems that may enable an attacker to breach security. Among 

the difficulties with this are the generation of the graph, and its being under

stood by those not familiar with the layout of the graph. 

Before examining another technique, let us analyze the problem of finding 

security holes a bit further. 

3. 	 Laying the Groundwork 

The key point in looking for security flaws is recognizing that the security 

problems we are dealing with arise from interactions between the user and the 

operating system. , Specifically, the user creates a condition using one or more 

programs and then executes another program or programs which cause the 

operating system to ignore specific protections. For example, to copy a pro

tected file, the user must force the operating system to ignore or override this 



- 7 

.prQtec.tiQn-~£or,examplef~y~Tunning a ·program at a,levelof privifege sufficient to 

cause file protections to be ineff~tjve.) 

Unfortunately, any list of methods to do this will contain only a subset of 

all possible methods, since any new system program would add many new ways 

to evade protections. Even if such a list could be made, it would be very 

different for each operating system, because each operating system has its own 

design and implementation philosophy, and the latter often differ in ways that 

affect very subtle points of interaction. Similarly, programs perform different 

tasks, and the work needed to catalogue all of the possible jobs programs may do 

will be endless. Indeed, the required level of security differs, too; programs exe

cuted with special powers (such as root or operator privileges) must be checked 

for security violations that need not be looked for in other nonprivileged pro

grams. 

But the problems that arIse come from the interaction of users with the 

operating system, as we have said. The only two ways for a user to interact 

with the operating system are through programs (software) and through equip

ment attached to the computer (hardware), in the latter case the interface being 

the kernel. So, in order to examine the way users interact with the operating 

system, we must study how the programs interact with the operating system, 

and the device drivers and other routines through which the equipment interacts 

with the kernel. 

Let us deal with individual programs first. To study how they interact with 

the kernel, we shall try to abstract the functionality of the program from the 



- 8 

actualcode.,,· This,will"have-,.t;.wo effects. First; 'it-wiUseparate security problems', 

introduced by the coding of the program from those introduced by the design of 

the program. Then, the design of the program can be checked, both for internal 

security problems and for security problems arising from interaction with other 

programs. Once this is done, the implementation can be examined to ensure 

that it does not introduce other security problems. 

The first step, therefore, is to figure out what the program does, and how it 

goes about doing it. For the first part, system documentation will provide some 

guidance, but because documentation very often is incorrect, incomplete, or 

imprecise, it is not always good to rely on it; hence, for both learning what the 

program does, and how it does it, one must go through the program code. 

Second, one must document all interaction with the operating system (such as 

the files looked at, and how the program uses them.) In particular, one must 

document all error checking and recovery (or the lack of it.) 

As an outline, the following organization for this document would be 

appropriate: 

Name 

This is the name of the program. If the program may be invoked by any of 

several names, all should be listed. 

Actions 

Although similar to a specification, this section should conform to the code and 

not to what the program is supposed to do. This section requires that the 

http:This,will"have-,.t;.wo


- 9 " 

. implem.ent.atio~.b... .examined-. and written 'out · in such .detail '. that · someone not 

familiar with the code could understand not only the action of the program, but 

how it works, and what side effects it has. If library routines or programs 

already documented in this fashion are used, it is often useful to refer to the 

appropriate pages rather than recapitulate the actions of those routines or pro

grams. 

Apparent Assumptions 

This presents any inherent assumptions. For example, if a file is assumed to be 

in a specific format, this should be noted here. If an assumption about the 

meaning of an error condition is made, list it here. 

Files Used 


This section names the system and user files used. It also contains a short 


description. of each, any assumptions made about format, and the system calls 


used to access each. 


System Calls 


This lists all the system calls used. 


Execu~ion Modes 

This is most useful for programs; it describes who may execute the program and 

with what privileges the program executes. 



- 10 

..Known Bugs 


Any known security problems are listed here. As security holes are found, they 


should be added. Note that suspicions should be listed (but marked as suspi


cions) until they are proven or disproven. 


Error Handling 


This describes what happens if errors occur. For example, suppose an index into 


an array is out of bounds; does the program dump core? Suppose a file is not in 


the correct format? Are there checks to ensure any reading or writing succeeds? 


Library Functions Used 


List the names, versions, and dates of any library functions used. 


Manual P age Version 


Give the author, date, version of the program, and system for which this docu


ment was prepared. 


We shall call this document the Set!uritll manual page to distinguish it from the 


usual manual page. (A sample page, for the UNIX* library routine getlogin, fol


lows the references.) 


Of course, in the section, one should document any discovered security prob

lems. 

This documentation should not be confined to the program only. Very 

• UNIX is a Trademark of Bell Laboratories. 



- 11 

,oft.en ,system programs :need to perform a taek such~ a8 looking up a name in a 

table to obtain associated data. 'rhese functions are performed so often that 

they have been collected into a set of library routines. Since these routines affect 

the function of each program in which they are used, it would save time and 

work to document these routines as described above. This would provide one 

reference for each library routine, rather than having the same routine be 

checked once for each program in which it is used (and risking a security hole 

being overlooked once). Similarly, new programs should use library routines 

whenever possible, and rather than duplicating code amongst several programs, 

the code should be changed into a library routine which the programs then call. 

As an example of why documentation that describes the implementation of 

a program or library routine is necessary, consider the getloginO bug, which 

exists on many UNIX systems. According to the manual[lO], "[g]etlogin returns a 

pointer to the login name as found in /etc/utmp." Although accurate, this 

description is very imprecise. Getlogin actually returns the login name of the 

user whose terminal is associated with the input, output, or error streams; this 

mayor may not be the same as the login name of the person who executed the 

program. The security manual page should make this final statement, even 

though the manual page states getlogin's function as indicated.* * 

Because of its complexity and function, the kernel .must be checked 

differently than system programs and libraries. The principle is the same 

analyze the code and document those parts which interact with other programs 

•• See the sample 8ecurity manual page that follow8 the referencel. 



- 12 

and equipment.~ , but, many: security'-manual "pages, not' just60ne, will be written 

for it. Specifically, at least one page, per system call and ,device driver wilLbe 

necessary, stating error conditions and precisely how they are handled, as well as 

how the system calls and device drivers are accessed. Main components of the 

kernel - the initialization routines, the scheduler, and so forth - must also be 

documented, as must any routines that rely on files or specific memory locations 

or any other external factors. 

Hence, the first step to checking the security of programs and the operating 

system is: 

Document each program, svstem call and device driver, and libraru rou

tine thoroughlv, not just as to purpose but also as to its side effu.ts and 

error handling. 

4. 	Hypothesizing the Flaws 

Once a manual page or set of manual pages have been written, the process 

of locating security flaws begins. Unfortunately, the only known approach to 

doing this is largely ad hoc. 

There are analogies in other fields. For example, the only way communica

tions analysts can assess vulnerabilities of communications systems is to study 

the system thoroughly, and then draw on their knowledge of that system, their 

experience, and their knowledge of attacks that worked with other systems, to 

hypothesize security problems. They then test for these suspected flaws. The 

situation is precisely the same for computer security. 



- 13 

.- ;, . As .. with ;;aaalyses of the !Vulnerability of communications systems, we-"can 

draw on past experience • . There have been a number of studies of operating sys

tem security in general and of specific penetrations of various operating systems 

(some of these have been referred to earlier.) These studies provide knowledge of 

attacks that worked with many different systems. Combined with the knowledge 

gleaned from mathematical analyses of other systems and the weaknesses 

uncovered using those tools, all this experience provides a very solid background 

for hypothesizing security flaws. 

The security manual described in the previous section will provide both the 

means of studying the system thoroughly and a reference guide useful in formu

lating hypotheses. As each program or routine algorithm is considered by itself, 

flaws may become apparent. (In fact, this happened with the getlogin manual 

page attached to this report. The second of the section was found by noticing 

the assumption made in step 4 of the algorithm, comparing it to step 3, and 

wondering what would happen if the assumption was invalid.) Correlating pro

grams which use the same system files may reveal that the interaction of some 

such programs presents attackers with opportunities to subvert the system, or 

that these programs make inconsistent assumptions (or invalid assumptions) 

about the data in the file, or the way the file is used. A similar comment holds 

for programs and system calls; special attention should be paid to those system 

calls used to access and manipulate system files. The section on error handling 

.	should be quite fruitful for hypothesizing flaws. Many error condition.s are not 

adequately handled, not handled correctly, or simply ignored. Very often this 

produces unusual situations that may present security holes which a clever 



- 14 

, attacker can-exploit[U,12j. 

Hence, the second step to checking the security of programs and the operat

ing system is: 

Drawing on the documentation, past experience, and general knowledge 

0/ operating svstem vulnerabilities, hvpothesize st!CuritV flaws in the co~ 

puter svstem, and test either to confirm or to denv that those flaws exist. 

5. 	 Summary 

When checking an existing computer system for security, both the operating 

system kernel and the system libraries and privileged programs must be exam

ined. (If none of these has security flaws, applications programs will not be able 

to breach security.) They should be examined in the above order; note that this 

will ensure that the operating system calls, which are the basis for system library 

routines and system programs, will be examined before the code using them is 

examined. 

Within each of these aspects, the steps of the "Flaw Hypothesis Method" as 

described in sections 2, 3, and 4 should be used to locate security flaws, paying 

special attention to the problem areas descr~bed in section 2. For each aspect, a 

security manual of the sort described in section 3 should be written and used as 

the basis for examining the interaction of the various components of the kernel, 

the libraries, and the system programs as discussed in section 4. 

While this method will not ensure perfect security of a computer system, it 

will significantly increase the difficulty of an attacker penetrating the system. 



- 15 

At:/mo.ld,em.ent.:.My. deepest thanks:to Ba~einerandPeter Neumann, who 

both made very valuable suggestions towards improving this paper; to Mike 

Long, Bill Wall, and George Hays, for their incisive comments; and to Larry 

Hofman and Bob Brown. 

6. References 

[1] 	 Denning, Dorothy E., An Intrusion-Detection Model, Technical Report 

CSL-149, SRI International, Computer Science Laboratory, 333 Ravens

wood Avenue, Menlo Park, CA 94025 (Nov. 1985) 

[2] 	 -, Trusted Computer System Evaluation Criteria, CSC-STD-OOl-83, Depart

ment of Defense Computer Security Center, Fort George G. Meade, MD 

20755 (Aug. 1983) 

[3] 	 Walker, Bruce, et al. , Specification and Verification of the UCLA UNIX Sec. 

rit'll Kernel, CACM 23(2), pp. 118-131 (Feb. 1980) 

[4] 	 Neumann, Peter G., et al., A Provably Secure Operating System: The System, 

Its Applications, and Proofs, Computer Science Laboratory Report CSL

116, SRI International, Computer Science Laboratory, Menlo Park, CA 

(May 1980) 

[5] 	 Linde, Richard R., Operating System Penetration, in the 1975 National 

Computer Conference Proceedings (AFIPS Conference Proceedings 44), pp. 

361-368 (May 1975) 

[6] 	 Neumann, Peter G., Computer System SecuritJl Evaluation, in the 1978 

National Computer Conference Proceedings (AFIPS Conference Proceedings 

http:At:/mo.ld,em.ent.:.My


- 16 

47), 	PI'. 1087-1095 (Jun. 1978) 

[7] 	 Attanasio, C. R., Markstein, P. W., and Phillips, R., Penetrating an Operat

ing System: a Study of VM/970 Integrity, IBM Systems Journal 15(1), Inter

national Business Machines Corp., pp. 102 - 116 (1979) 

[8] 	 Grampp, F. T., and Morris, R. H., "UNIX Operating System Security", 

AT&T Bell Laboratories Technical Journal 63(8), pp. 1649-1672 (Oct. 

1984) 

[9] 	 Ritchie, Dennis M., "On the Security of UNIX", in UNIX System Manager's 

Manual, 4.2 Berkeley Software Distribution, Virtual VAX*-ll Version, Com

puter Science Division, Department of Electrical Engineering and Computer 

Science, University of California, Berkeley, CA (Mar. 1984), as reprinted by 

the USENIX Association 

[10] 	 -, UNIX Programmer's Manual Reference Guide, 4.2 Berkeley Software Dis

tributio.n, Virtual VAX-ll Version, Computer Science Division, Department 

of Electrical Engineering and Computer Science, University of California, 

Berkeley, CA (Mar. 1984), as reprinted by the USENIX Association 

[11] 	 Bishop, Matt, How to Write a Setuid Program (extended abstract), Proceed

ings of the Spring 1986 Cray User Group (May 1986) 

[12] 	 Darwin, Ian, and Collyer, Geoff, Can't Happen or /* NOTREACHED */ or 

Real Programs Dump Core, 1985 Winter USENIX Proceedings. (January 

1985) 

• V AX is a Trademark of Digital Equipment Corporation. 



- 17 

. .	 -. Appendix- Security Manual Page 

NAME 

get login - get login name 

INVOCATION 
char -getloginO j 

ACTIONS 

Getlogin returns the user believed to be using the controlling terminal. It 
does this as follows: 

1. 	 Find the first of the file descriptors 0, 1, 2 associated with a terminal by 
running an ioctl(2) on each and seeing which one succeeds; if all fail, 
return O. 

2. 	 Find the device/inode pair corresponding to that terminal by using 
/stat(2), and scan the files in the directory /dev/ until one is found with 
that device/inode pair. If none is found, return O. 

3 . 	 Search the file /etc/ttys for that file name, and count the number of lines 
N skipped before it is found. If not found, return O. 

4. 	 Read the Nth record in /etc/utmp; this corresponds to the user currently 
using that terminal. It is in the format of utmp(5). 

5. 	 Return the contents of the ut_name field of that record. Xote it is kept 
in a static area, and is overwritten the next time getlogin is called. 

APP ARENT ASSUMPTIONS 

The first of the file descriptors 0, 1, and 2 that is associated with a terminal 
is associated with the terminal the user logged in on. 

The number of the (text) line in / etc/ttys describing a terminal corresponds 
to 	the offset into the file /etc/utmp for that terminal. 

FILES USED 

/ etc/ttys List of terminal names, one per line; open(2), read{2}, close(2) 

/etc/utmp List of logged-in users; assu~es each record corresponds to a line 
in /etc/ttys and that the records have the same order; open(2), 
Iseek(2), read(2), close(2) 

/dev/ 	 Directory containing files corresponding to terminals; used to 
determine the name of the controlling terminal;- _open(2), read(2), 
close(2) 



- 18 

. SYSTEM CALLS 

c1ose(2) , /stat(2), ioctl(2), Jseek(2), open(2), read(2), sbrk(2), stat(2) 

EXECUTION MODES 


This is a system library function. 


KNOWN BUGS 

If the first file descriptor found to be associated with a terminal is not asso
ciated with the controlling terminal, the name of the user at the associated 
terminal will be returned, and not the name of the user at the controlling 

terminal. 


If a line is added to or deleted from /etc/ttys, the algorithm used to associ

ate users with their terminal names fails miserably. This problem can be 

corrected by looking in the ut term field of the record and comparing it 

with the name obtained from /etc/ttys. 


ERROR HANDLING 

On error, it is supposed to return o. 
No error check to be sure the lseek(2) to the record in /etc/utmp succeeds. 

No error check to be sure the record in /etc/utmp corresponds to the name 
of the terminal. 


Silently assumes names which are shorter than the space allocated in the 

record for user names are blank padded. 


LIBRARY FUNCTIONS USED 

NAME VERSION DATE 
getlogin.c 4.2 11/14/82 

isatty.c 4.1 (Berkeley) 12/21/80 

ttyslot.c 4.1 (Berkeley) 12/21/80 

ttyname.c 4.3 (Berkeley) 5/7/82 

closedir.c 4.5 (Berkeley) 7/1/83 

opendir.c 4.5 (Berkeley) 7/1/83 

readdir.c 4.5 (Berkeley) 7/1/83 


MANUAL PAGE VERSION 


AUTHOR Matt Bishop 

DATE December 1, 1985 

SYSTEM 4.2 BSD 

VERSION getlogin.c 4.2 (11/14/82) 






RII\c:5 

Mail Stop 230-5 


NASA Ames Research Center 

Moffett Field, CA 94035 


(415) 694-6363 


The Research Institute for Advanced Computer Science 

is operated by 


Universities Space Research Association 

The American City Building 


Suite 311 

Columbia, MO 21044 


(301) 730-2656 



