

Race Conditions, Files, and Security Flaws; or
the Tortoise and the Hare

Redux

Matt Bishop

CSE-95-9

September 1995

– 1 –

Race Conditions, Files, and Security Flaws; or
the Tortoise and the Hare

Redux

Matt Bishop

Department of Computer Science
University of California at Davis

Davis, CA 95616-8562

phone

: (916) 752-8060

email

: bishop@cs.ucdavis.edu

Abstract

A pernicious type of security problem, race conditions create a timing interval in which the
manipulation of resources allows an attacker to gain privileges, read and alter protected files, and
violate the security policy of the site. The majority of these conditions found on applications and
system programs in the UNIX operating system arise during file system manipulation and file
accesses. This paper discusses why race conditions arise, presents some examples, and explores
ways to alleviate the problem of their occurrence in programs, both through modification of sys-
tem calls and careful programming. A tool to scan for potential race conditions, as well as a
library function to analyze the environment dynamically at run time (and thus detect such condi-
tions) are presented.

Introduction

Recently, many privileged UNIX programs have been shown to be seriously flawed, allowing
users to modify privileged files or to create programs with

root

 privileges. The specific flaw is a

race condition

, in which two actions that should be performed atomically are not. This flaw often
arises in privileged programs.

For example, suppose a program that is setuid to

root

 wishes to save data in a file owned by
the user executing the program. The following is a typical fragment of code designed to do this:

if (access(filename, W_OK) == 0){
if ((fd = open(filename, O_WRONLY)) == NULL){

perror(filename);
return(0);

}
/* now write to the file */

The program cannot simply open the target file (the name of which is in the variable

filename

),
because as

root

 that open will always succeed, even if the real user (the user running the program)
would not be able to write to the file. Instead, the program must first check if the real user could
write to the file, and

only if so

 proceed to write to it. The idea is that no user should be able to use
a privileged program to alter a file unless that user could have altered the file without the added
privileges.

So, the first step is to use the system call

access

(2); this returns 0 if the real user has the
desired access to the named file (in this case, write access to the file named in

filename

), and -1 if

– 2 –

not. Then, if the user does have that access, the

root

 program opens the file for writing. If the user
does not, the file is not opened.

The problem with this procedure lies in the implementation: the check,

access

, and the open,

open

(2), are not indivisible with respect to one another. As a result, if the object referred to by

file-
name

 changes between the two function calls, the second object will be opened even though the
access check involved only the first object. This is the race condition, and is the basis for numer-
ous programming flaws in all systems which provide multiple levels of privilege.

In this paper we examine the causes of these flaws in privileged programs written for the
UNIX operating system, and suggest several enhancements to the operating system to enable pro-
grammers to avoid these conditions. The next section provides two well-known and recent exam-
ples of race conditions, to demonstrate that there is a problem; a detailed discussion of the causes
of race conditions in UNIX applications follows, and this leads to the proposed changes in the
fourth section. We then discuss a very primitive race condition analyzer, and avoidance tech-
niques in programming. We conclude with suggestions for future work, in the last section.

Some Race Conditions

The presentation of security flaws in extant programs is a touchy issue, because for those sites
which have not yet patched the holes, such information presents a security risk. For this reason, in
this section we will present two security holes the existence of which was trumpeted widely and
for which fixes are available (see the Endnote). In this way we do not increase the dangers for
those sites which have not yet patched the holes, because the holes are widely known.

The Password Program Race Condition [7]

On SunOS 4.1 (and other) systems, the program

passwd

(1) allows the user to specify the pass-
word file to be used. This enables a race condition allowing any user (

attacker

) to gain access to
any other user’s (

target’s

) accounts. The attack depends upon the user specifying the file

passwd

 is
to use as the password file, which

passwd

 updates as root.

Under normal conditions, the

passwd

 program accesses files like this:

1. open and read the password file to get the entry for the user; then close password file

2. create and open a temporary file called “ptmp” in the directory of the password file

3. open the password file again, and copy the contents to “ptmp”, updating the changed infor-
mation

4. close the password file and “ptmp” and rename “ptmp” to be the password file

The attack hinges on the race condition arising when the password file is in a directory the
user can write to. Basically, one creates a bogus password file named “.rhosts” with the following
as the first entry and everything else a copy of the regular password file:

localhost

attacker

 :::::

One then puts this in a directory

pwd_dir

, and builds a symbolic link

link

 which resolves to

pwd_dir

. Then invoke

passwd

 giving “

link

/.rhosts” as the name of the password file. Here’s what
happens; the steps A, B,

etc

. are done by the attacker at the points indicated:

1. The process opens and reads “

link

/.rhosts” to get the entry for the user; then it closes that
password file

– 3 –

A. The attacker changes the symbolic link

link

 to point to the

target

’s home directory

target_dir

.

2. The process creates and opens a temporary file called “ptmp” in the directory of the pass-
word file, which in this case is

link

, or (now)

target_dir

.

B. The attacker switches

link

 back to

pwd_dir

.

3. The process opens “

link

/.rhosts” again (which is the password file named in the command
line), and copies the contents to “ptmp”, updating the changed information. Note that
“ptmp” is still in

target_dir

 as it was opened in step 2.

C. The attacker switches

link

 back to

target_dir

.

4. The process closes “

link

/.rhosts” (which involves no interaction with the file name

link

 as
only file descriptors are involved) and “ptmp” and renames “ptmp” to be “

link

/.rhosts”; as

link

 is now

target_dir

, this makes the password file into the victim’s “.rhosts” file. Given the
first line of that file, the attacker can now

rlogin

(1) to the victim’s account.

The Binmail Race Condition [8]

This attack, again usable on many systems, has as its goal being able to write to any file on the

system. It is much more straightforward than the

passwd

 race condition. The program

binmail

1

 is
the program that delivers mail by writing it into the recipient’s mailbox. Here are the steps used to
do so:

1. Use the system call

lstat

2) to get information (file type, protection mode,.

etc

.) about the
mailbox. (If the mailbox does not exist, this is not an error; it will be created at step 2.) Note
the use of

lstat

, to detect symbolic links;

binmail

 will not deliver mail to a symbolic link.

2. Assuming the file is a mailbox (

i.e.

, a regular file and not a symbolic link), append the letter
to the mailbox, as

root

.

The race condition lies between these steps. If the attacker can either delete the mailbox (if it
already exists) or simply create a symbolic link to the file to be written to, then at step 2, the pro-
cess will append the letter to the target file. Note that the appending is done as root, so the file can
be created if it does not exist, and will be altered if it does exist.

Detailed Discussion

These race conditions arise because of the ways in which files (or more generally, objects in
the file tree) may be referred to. The first is by

name

; in this mode, the object is determined by
walking the path name, and the binding occurs at the last component of the name; in other words,
the binding is both late and transient (as it is done anew at each reference). The second is by

descriptor

; in this mode, the object is determined when the descriptor is assigned and from then
until deallocation, the descriptor refers to that object. In other words, the binding is both early and
permanent. (See [2], [6] for a detailed discussion of how the operating system handles names and
descriptors.)

In both the

passwd

 and

binmail

 race conditions, all references to the files involved are made
through names. By altering the meaning of the (fixed) names between references, the attacker

1. Actually, /bin/mail; see

mail

(1)

– 4 –

alters the objects to which those names refer. This is the cause of the problem, and the term “race”
refers to altering the meaning before the names are bound to objects. The same is true for the
example in the introduction; even though the second system call is

open

 (which binds a descriptor
to an object), the initial binding requires the object be located by its name; so the first call,

access

,
uses the name and the second call also uses the name. Again, there is a window of vulnerability in
which the meaning of the name can be changed.

Once bound, descriptors do not suffer this problem. If descriptor

d

 refers to a particular file
named “/tmp/foobar”, and that file is deleted, it will be removed from the file system hierarchy,
but will not be expunged until

d

 is deallocated (closed). Should a new file be named “/tmp/
foobar” after the deletion of the original, but before the descriptor is deallocated, any actions on

d

(such as writing or status requests) will refer to the original file, not the new one.

Solution #1: Do descriptor binding first

This leads to the idea that the object should be bound to the descriptor first, and then all refer-
ences to the object will refer to the intended object. For example, the first two lines of the

xterm

code shown in the introduction would be replaced by:

if ((fd = open(filename, O_WRONLY)) == NULL){
if (access(filename, W_OK) == 0){

This is appealing, because the first line appears to bind the object referred to by

filename

 to the
process. Hence the second line clearly refers to that object. But as with anything appealing in
computer security, this won’t work; if the meaning of the name can be switched between the two
calls, the first will open the original object, and the second reference will check access permis-
sions on the new object (which, presumably, allow the object to be written to).

The mistaken and seductive belief here is the object being bound to the process. It is really
bound to the descriptor

fd

, so there is no assurance that an alternate identification of the object
will be bound to the same object. Indeed, that is what happens here; the late binding of the name
allows the meaning of the name to be altered.

Solution #2: Make versions of file manipulation system calls that use descriptors, not names

This leads to a second solution, one which (unfortunately) requires kernel modification. The
idea is to eliminate as much dependence on the name of an object as is possible. For example, in
the

xterm

 hole, the two first lines would be replaced by:

if ((fd = open(filename, O_WRONLY)) == NULL){
if (faccess(fileno(fp), W_OK) == 0){

Here,

faccess

 is a system call which works like the

access

 system call, except that it uses a
descriptor rather than a name. Because it uses the descriptor associated with the object opened in
the previous line, the access check refers to the object opened for writing, even if the meaning of
the name in

filename

 is changed between the open and the access.

This solution is quite appealing, because it allows elimination of a large class of race condi-
tions; many system calls which use names have descriptor equivalents. Not all do, however, and
the proposal is to augment those which do not have descriptor equivalents.

Some system calls are designed to work with the file hierarchy; these quite naturally use the
representation of the object name induced by that hierarchy. For example, the

mkdir

(1) system

– 5 –

call uses a directory name; so, if a privileged program needed to create a directory owned by the
user, it would do so with:

if (mkdir(“/tmp/bishop”) >= 0){
if (chown(“/tmp/bishop”, 1324, 25) < 0){

perror(“/tmp/bishop”);
/* proceed with error handling */

}
}

and a race condition still arises. This suggests one more simple modification.

Solution #2A: Use solution #2 and define a new mode of

open

, O_ACCESS:

The goal is to associate an object and a file descriptor without constraining the mode of
access. So, we propose augmenting the semantics of open(2), which currently does such binding
but also either creates the object or constrains access.

When the second argument (which says how to open the object) is O_ACCESS, the following
occurs:

1. If the object does not exist, the name is reserved and an inode is allocated, both in core and
on the disk. The type of the object is “reserved”, which is a type distinct from all other
object types (directory, file, socket, etc.) This file type is transient, and may be altered by
subsequent system calls (for example, to mkdir(2), mknod(2), and open(2)). When one of
those system calls is issued, the “reserved” attribute changes to the appropriate file type.

2. If the object exists, this is like an open except that neither read nor write permission is
granted. A subsequent open can add these if the semantics are appropriate.

The intent of these modifications is to bind the object to a file descriptor (creating the object, if
necessary) and then making all accesses to the object through the descriptor. While it is tempting
to use the existing modes of the open system call for this, it is not possible to “add” access modes,
which means one would need to open the object for reading, writing and appending; further, if the
object did not exist, this would create a regular file, whereas the object being bound might need to
be a directory or a queue.

Then the above fragment becomes:
if ((fd = open(“/tmp/bishop”, O_ACCESS)) >= 0){

if (fmkdir(fd) < 0 || fchown(fd, 1324, 25) < 0){
perror(“/tmp/bishop”);
/* proceed with error handling */

}
}

Now the race condition does not arise, because only one binding occurs (at the open); all other
operations are on that object and none other.

As was noted above, this requires modifications to the kernel. Simply building a new inter-
face, or a new library, will not do, because that merely pushes the system calls that create the pos-
sibility for a race condition down to a lower level of abstraction. It does not eliminate the
problem; in fact, it arguably makes the problem worse, as now the conditions can occur in the
interface to a system call, eliminating the trust that can be reposed in the atomicity of those calls.

– 6 –

Checking for Race Conditions

Given the relationship between object names and the potential existence of race conditions, it
is possible to write a simple program that scans the source code of programs looking for these
conditions. For example, any access call followed by an open with the same object name is a
potential race condition.

We emphasize potential. Whether or not the race condition can occur depends on environment
[5]. One fix for the binmail hole on many UNIX systems is to set the sticky bit on the mail spool
directory, and then ensure each user always has a mailbox (empty if need be). This prevents the
attacker from placing a symbolic link into the directory with the same name as anyone’s mailbox
after the lstat and before the open, due to the semantics of the sticky bit. But the binmail program
still has the security hole, and should a mailbox ever disappear, the attacker can use that hole to
gain access to another’s account.

Clearly, a fully-developed tool would build a call graph and locate pairs of suspicious system
calls (that is, calls which might lead to a race condition). It would then analyze their arguments
and determine if the arguments representing the object names are (or could be) the same; the latter
will of necessity be imprecise as solving it completely would be equivalent to solving the halting
problem. A list of such pairs of calls would be printed, and the human analyst would analyze them
in light of the environment in which the program would run.

As a prototype, a very simple scanner was built; it was lexically based rather than syntacti-
cally based. It only reported cases where the relevant arguments were identical. So for example,
it would report this sequence as suspicious:
char fname[] = “/tmp/xyzzy”;
if (access(fname, R_OK) >= 0 && (fd = open(fname, O_RDONLY)) >= 0)

...

but not
char fname[] = “/tmp/xyzzy”;
char *p = fname;
if (access(fname, R_OK) >= 0 && (fd = open(p, O_RDONLY)) >= 0)

...

because the arguments are lexically different. Also, the environment was ignored, on the theory
that the developer would use to tool to spot potential problems, eliminate them when he or she
could, and warn the installer (user) about the rest.

This prototype analyzer proved wildly successful, uncovering a serious problem in sendmail
8.6.10; it has been corrected in version 8.6.12. Given its success, we feel that development of the
production-quality scanner described earlier would be quite worthwhile, and are working on a
more complex (although probably not production quality!) scanner.

Prevention is a better strategy than detection; but how realistic is such a strategy?

Current Prevention: Programming and Environment

As we pointed out earlier, race conditions depend on the use of at least one file name. They
also require the ability of the attacker to alter the referent of the name; in the two examples, had
the attacker not been able to alter the referent, the action taken using the file name would have

– 7 –

affected the intended object and there would have been no window of vulnerability. This suggests
two points of analysis, both focussing on environment as the critical factor.

The first is to try to eliminate the use of the file name entirely, except when binding the file
descriptor to the object. An earlier section discussed how this could be done; but currently, UNIX
systems do not provide this flexibility.

The second is to try to control the environment sufficiently so the attacker cannot substitute a
new object for the one referenced by name. Let T be a set of users whom the owner of the privi-
leged program trusts, and let U be all other users. An object is trustworthy if the object bound to
the name at the first reference of the name remains bound throughout the lifetime of the process.
This means an object O is trustworthy if, and only if no member of U can replace O with a new
object O’. So, in the xterm example, the log file name given to xterm would be the object O, and
the password file would be the object O’. In the given scenario, as O is created in the user’s home
directory, the user can replace it with a symbolic link; so, if the user is not in U, the original log
file is not trustworthy. Note that root must always be in T, or no file will be trustworthy.

 When an object is referred to by its name, it must be checked to see if it is trustworthy. To do
this, each of its ancestor directories must be unwriteable by any member of U; further, if any of
those ancestors are symbolic links, the object to which the symbolic link refers, and all its ances-
tor directories, must also be unwriteable by any member of U. Finally, the object itself must not be
a symbolic link, or if it is, all the ancestor directories of the object to which the symbolic link
refers must also be unwriteable by any member of U.

A library function, can_trust(file, T, U), which implements the above and returns 1 if the
object file is trustworthy and 0 if not, is available; see the Endnote.

A third approach is to consider privilege as an element of environment and examine that fur-
ther. The race condition, actually, is not the problem; the combination of race condition and priv-
ilege is. Specifically, if passwd did not run with root privileges, it would not have been able to
write the “.rhosts” file into the target’s directory. Similarly, if binmail were run with the privileges
of the attacker rather than the privileges of root, it would be unable to open the target file for writ-
ing. So, when writing code that requires accessing files (or creating files) based on the real UID
and/or GID of the process, make the access functions subprocesses which reset the effective UID
and GID to the real UID and GID, and in those subprocesses create or access the files. This way,
the race dcondition still exists, but because it occurs only when no extra privileges are involved, it
is quite harmless. A sample library for writing to files is discussed and presented in [4]. Note this
procedure eliminates the need for any acces system call.

Conclusion

Race conditions are not unique to the UNIX operating system; indeed, the Program Analysis
study [3] and the RISOS study [1] both identified them as extant in a large number of operating
systems and programs. The classic form of this condition has been named the time-of-check to
time-of-use flaw (TOCTTOU flaw) and was first identified in 1974. This august lineage suggests
that race condition flaws will continue to plague systems.

In this paper, we focussed on those race conditions arising due to file system accesses under
the UNIX operating system. We informally examined why these conditions occur, and looked at
various ways to fix the problem. Absent kernel modification, one cannot eliminate the problem;

– 8 –

but the problem of race conditions occurring can be greatly ameliorated, and we looked at both
static (program analysis) and dynamic (run-time analysis) techniques to do this.

Endnote

The passwd and binmail flaws, and their fixes, were publicized by 8LGM. To obtain informa-
tion about them, send a letter to 8lgm-fileserv@8lgm.org with the word “help” as the body of the
message.

The scanner for race conditions is not yet freely available. If and when we release it, it will
reside on nob.cs.ucdavis.edu in /pub/sec-tools. The function can_trust is in that directory (as are
several other goodies).

Acknowledgements. Thanks to Dorothy Denning and Lawrence Snyder, who started me on this
path years ago; to Peter Neumann, who encouraged me and whose sparkling puns enliven any dis-
cussion (and occasionally clear rooms); to Kevin Ziese, Toney Jennings, Dan Teal, and Tim
Grance for their enthusiasm and support, and to Karl Levitt and Bob Abbott for their words of
wisdom and helpful discussions. Special thanks to Michael Dilger, who wrote the prototype race
condition scanner in Perl. This work was supported by grant TDS 94-140 from Trident Data Sys-
tems, Inc. to the University of California at Davis.

References

[1] R. P. Abbott, J. S. Chin, J. E. Donnelley, W. L. Konigsford, S. Tokubo, and D. A. Webb,
“Security Analysis and Enhancements of Computer Operating Systems,” NBSIR 76–1041,
Institute for Computer Sciences and Technology, National Bureau of Standards (Apr. 1976).

[2] M. J. Bach, The Design of the UNIX Operating System, Prentice-Hall, Englewood CLiffs,
NJ (1986).

[3] Bisbey, R. II and Hollingsworth, D., “Protection Analysis Project Final Report,” ISI/RR-78-
13, DTIC AD A056816, USC/Information Sciences Institute (May, 1978).

[4] M. Bishop, “How to Write a Setuid Program,” Technical Report 85.6, Research Institute for
Advanced Computer Science, Moffett Field, CA (May 1985).

[5] M. Bishop and M. Dilger, “Checking for Race Conditions in File Accesses,” submitted to
the Third ACM Conference on Computer and Communication Security.

[6] S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S. Quarterman, The Design and Imple-
mentation of the 4.3BSD UNIX Operating System, Addison-Wesley Publishing Company,
Reading, MA (1989).

[7] 8LGM, “[8lgm]-Advisory-7.UNIX.passwd.11-May-1994,” available from fileserv@bag-
puss.demon.co.uk (May 1994)

[8] 8LGM, “[8lgm]-Advisory-5.UNIX.mail.24-Jan-1992,” available from fileserv@bag-
puss.demon.co.uk (Jan 1992)

