
Process Migration for Heterogeneous Distributed Systems

Matt Bishop�

Department of Computer Science

University of California at Davis

Mark Valence�

Sassafras Software Inc.

Hanover, NH

Leonard F. Wisniewskiy

Department of Computer Science

Dartmouth College

Dartmouth PCS-TR95-264

August 21, 1995

Abstract

The policies and mechanisms for migrating processes in a distributed system become more

complicated in a heterogeneous environment, where the hosts may di�er in their architecture

and operating systems. These distributed systems include a large quantity and great diversity

of resources which may not be fully utilized without the means to migrate processes to the

idle resources. In this paper, we present a graph model for single process migration which can

be used for load balancing as well as other non-traditional scenarios such as migration during

the graceful degradation of a host. The graph model provides the basis for a layered approach

to implementing the mechanisms for process migration in a Heterogeneous Migration Facility

(HMF). HMF provides the user with a library to automaticallymigrate processes and checkpoint

data.

1 Introduction

Distributed systems provide users with access to remote resources spread across a room, a commu-

nity, or even a country. A heterogeneous distributed system connects host machines with di�erent

architectures and con�gurations. A wide area network (WAN) could include an extensive range

of resources, e.g., a Cray T3D supercomputer, Silicon Graphics Indy workstations, and Macintosh

personal computers. All host machines in a distributed system possess raw computing power, at

the very least.

Load balancing1 attempts to better utilize this raw computing power [WM85]. A static load

balancing algorithm assigns a process to a host upon invocation and a dynamic load balancing

algorithm assigns a process to another host after executing on its current host for some time.

�Supported in part by NASA under grant NAG2-628.
ySupported in part by a Dartmouth Fellowship, by NASA under grant NAG2-628, and by the National Science

Foundation under Grant CCR-9308667. Author's e-mail address: wisnie@cs.dartmouth.edu.
1In this context, what we call load balancing shall include load sharing.

1

When load balancing dynamically, a distributed system must be able to migrate a process

from its current host to a destination host. The migration policy determines how to balance the

processing load across the hosts in the distributed system. That is, the migration policy decides

when a migration should occur. The migration mechanism extracts a process and its associated

context from its source host and establishes the process on its destination host for execution. The

system designer can specify a migration policy and mechanism by answering the questions HOW,

WHEN, and WHERE does a process migrate and WHO makes the decision to migrate.

Migration on a heterogeneous distributed system can be a di�cult task with rich rewards.

The existing distributed systems with the ability to migrate a process are homogenous, that is,

all the processors in the distributed system are identical. The uniform architectures and operating

systems of the hosts in the distributed systems simplify the design and implementation of migration

policies and mechanisms. Since heterogeneous distributed systems are typically spread out over

large geographic areas (e.g., wide area networks), they usually possess a large quantity of raw

computing power as well as a greater diversity of resources [NBL+88]. Migrating a process between

two di�erent host architectures and operating systems involves many complex tasks which include

the translation and transfer of state as well as the coordination of the source and destination hosts.

We endeavour to examine the feasibility of providing support for migration in a heterogeneous

distributed system. This paper provides the framework for the design and implementation of

migration policies and mechanisms in the following ways.

1. We de�ne a graph model of single process migration and model the various costs associated

with the migration policy and mechanism. Unlike previous models, the system designer can

use this model for scenarios other than load balancing to take advantage of the ability to

migrate, such as graceful degradation, process evacuation, and real-time response.

2. We present the levels of abstraction by which to implement facilities for the migration of

processes. The levels of abstraction di�er in the amount of support that they provide for

checkpointing and migrating the code and data of the executing program.

3. We provide the design and speci�cation of the Heterogeneous Migration Facility (HMF), a

library of routines to accommodate the migration of a process on a heterogeneous distributed

system. HMF includes a preprocessor to convert datatypes into an architecture-independent

representation.

The outline of this paper is as follows. Section 2 discusses the various mechanisms and some

of the policies used by existing systems that support migration. In Section 3, we present the

graph model for single process migration and model the costs of migration by answering the HOW,

WHEN, WHERE, and WHO questions. Section 4 abstracts the levels to which migration may occur

on the code and data of a program. This abstraction suggests a layered approach in the design

of a migration facility such as HMF described in Section 5. Section 6 contains some concluding

remarks.

2 Previous work

This section discusses signi�cant features of existing facilities for migration on homogeneous dis-

tributed systems and remote execution on heterogeneous distributed systems. We shall revisit many

of these key features throughout the rest of the paper.

2

Demos/MP is a distributed operating system with a migration mechanism for location-

transparent reliable interprocess messages [PM83]. A process sends a message to a link. A link is

a protected global process address accessed via a local name space. A destination host accepts a

process and subsequently allocates space for the process state. The transfer of the process state

and program (code, data and stack) occurs from source kernel to destination kernel. After the

migration, Demos/MP leaves a forwarding address on the source host.

LOCUS provides a Unix-compatible remote execution facility [WPE+83]. LOCUS uses global

names consisting of the original host of a process and a local identi�er generated by the remote

execution site. The original site maintains the names of all processes that are currently executing

remotely.

The V system includes process and memory management facilities in the kernel as well as a

program manager outside the kernel [TLC85]. The program manager makes the migration policy

decision whether to accept a migrating process. The V system uses pre-copying to transfer the state

of the migrating process to the destination host. That is, a process continues to execute during

the copy of its address space. A page may become invalid after it resides on the destination host.

Thus, a destination host may receive several new copies of the same page before the pre-copying is

complete. Once the number of dirty pages is small or constant, the source host freezes the process

to allow the copy of the remaining dirty pages.

Accent is a distributed computing environment with closely integrated IPC and virtual memory

facilities [RR81, Zay87]. In Accent, after a migration occurs, the destination host demand-pages

from the source host in a copy-on-reference manner, reducing the time to initially transfer the state.

The copy-on-reference mechanism assumes that a process will only access a small fraction of its

address space during remote execution.

The Heterogeneous Environment for Remote Execution (THERE) provides a \meta-service"

to simplify the adaptation of non-networked, non-heterogeneous applications to a distributed het-

erogeneous environment [BL88]. In this context, the source and destination hosts are clients and

servers, respectively. The THERE programming language supports the construction of execution

environments for services, the de�nition of interfaces for clients to remote services, and system-

independent communication between client and server.

Charlotte is a message-based distributed operating system. Each host runs a kernel that handles

short-term scheduling and IPC [AF89]. The designers of Charlotte placed the migration policy

outside the kernel in a utility. Thus, Charlotte provides the exibility to easily change the migration

policy while keeping it close enough to the kernel for e�cient data exchange.

Mermaid extends distributed shared memory to a heterogeneous environment [ZSM90]. Mer-

maid provides support for converting data to the appropriate type before use by a particular host.

The Mermaid project demonstrates the necessities, performance, and limitations involved in data

conversion.

The Distributed Library establishes sessions in remote execution environments across a network

with various types of machines [Yam90]. Distributed Library di�ers from standard remote execution

facilities by allowing a remote environment to remain established over multiple remote procedure

invocations.

The Sprite distributed operating system accommodates process migration in a network �le

system environment [DO91, DO87]. Sprite uses a low-latency kernel-to-kernel remote procedure

call facility. Each process originates on a home node which provides many location-dependent

services (e.g., the time of day). When a migration occurs, the source host sends dirty pages to the

3

network �le server. After resuming on the destination host, the migrated process demand-pages

from the network �le server.

Condor provides facilities outside the kernel for checkpointing and process migration [LS92].

Condor is exible enough to use on a variety of Unix platforms in exchange for the performance

penalty of residing outside the kernel.

3 Graph model of single process migration

Current theoretical research couples process migration with load balancing [Hac89]. Queuing theory

provides the basis for these models since it is well-suited for modeling load balancing [Kle75]. We

introduce a new model which encompasses load balancing as well as other useful purposes for process

migration such as remote processing, graceful degradation, and e�cient access to resources other

than CPU time. Queue-based systems do not allow the analysis of these latter uses of migration.

In our model, we represent a distributed computing environment by a single directed graph.

Each vertex in the graph corresponds to an available host and each (directed) edge models both

connectivity of hosts and feasibility of tranfer from source host to destination host. Edges and

vertices have associated weights. Vertex weights indicate the cost (per unit time) of some resource at

the particular host. Edge weights represent the cost of moving a process from source to destination

according to the measure described later in this section. The edge weights do not have to satisfy

the triangle inequality.2

Exactly one vertex in the graph is active at a given time. This vertex represents the host where

the process currently executes. We consider all other vertices inactive.3 Other models take an

approach that is more system-oriented, where all processes in the system are considered in each

decision, and all processes are assumed to be part of the load balancing/migration system.

We model changes in the process state by changing the vertex and edge weights appropriately.

For example, during execution, a process may enter certain states that are easier to translate to

speci�c hosts, or the process may demand a resource that is not available to the active host (e.g.,

the process needs to execute on a graphics workstation). In the former case, we lower the edge

weights between the vertex on which the process is active and the favorable hosts. In the latter

case, we raise the weights of the current host to in�nity (forcing migration) and lower the weights

of the hosts with the desired resource.

This graph model for single process migration takes into account various policies that are

not addressed by traditional models. Process migration policies executed locally at a host make

decisions based on the state of the graph for each process on that host. Alternatively, a centralized

process migration policy would need to consult a summary of the graphs of the processes on each

host before making a decision. In the following sections, we go into more detail about how to

determine the vertex and edge weights for the graph model.

The system designer sets the weights of the edges and vertices in the graph by considering

the resources in a particular distributed system and the answers to the HOW, WHEN, WHERE,

and WHO questions used to determine the appropriate migration policy and mechanism for that

system. The answer to the HOW question, or the cost of the migration mechanism, primarily

2Indeed, one could superimpose a new set of edges onto the graph that satis�es the triangle inequality, but we

wish to allow in�nite-weighted edges for the information they contain. Graph reduction is not our concern.
3When a process is inactive on a host, the host contains process-speci�c information (e.g., static memory mappings,

library usage, and state translation data), but does not contain the current process state or other dynamic information.

4

DEC
5000

Sun 3

Cray
T3D

Sun 3

Sun 3

Sun 3

DEC
5000

10

10 10

1001000

1000

2

4

2

10

10

+∞

Figure 1: Graph model for single process migration on a heterogeneous distributed system. In this example,

we have a network with 4 Sun-3 workstations, 2 DEC 5000 workstations and a Cray T3D supercomputer.

The dark-shaded Sun-3 vertex in the center is the host on which the process is currently active. The edge

weights are next to the edges and the vertex weights are outside their corresponding vertices. In this case, the

Sun-3's and the Cray T3D use the same �le system, resulting in lower edge weights, whereas the necessary

�les would need to be transferred directly to the DEC 5000's, resulting in high edge weights. Unfortunately,

to dedicate the supercomputer to applications which perform more e�ciently on it, this process cannot

migrate to it; thus, the vertex weight on the Cray T3D is positive in�nity.

determines the edge weights. The answers to the WHEN, WHERE and WHO questions essentially

relate to the migration policy used by a particular distributed system as a means to accomplish a

desired e�ect (e.g., load balancing or real-time response). The migration policy could also a�ect the

edge weights if the policy involves simplifying the mechanism in certain states. For example, if a

compiler has �nished its preprocessing stage, the only state necessary to continue is in its associated

�les. Thus, migrating after the preprocessing stage rather than at arbitrary times would decrease

the edge weight for migrating the process.

We consider the answers to the HOW, WHEN, WHERE, and WHO questions to derive equa-

tions for the edge and vertex weights of the graph. Some of the components of the equations

assume constant values for a particular system (e.g., the speed of a uni-processor). Other compo-

nents change with respect to the state of the system. For example, the size of the allocated virtual

memory may di�er during the execution of a process which may a�ect the time to transfer the

state.

After initializing the components of the equations for the edge and vertex weights to represent

a particular distributed system, a system designer uses the graph model to simulate activity on

the target system. Simulations could be used to compare the success of various implementations

of migration under certain distributed system environments, goals, and load characteristics. In

particular, we would like to determine how e�ectively the heterogeneous migration facility proposed

in this paper performs under certain conditions.

5

3.1 Edge weights

We �rst examine the primary components of the migration mechanism. The migration mechanism

includes three main components: the negotiation of the migration, the transfer of the process state,

and the acquisition of residual information from the source host after migration. The e�ciency of

the interprocessor communication (IPC) facility is a factor in determining the cost for each of these

components. After �rst examining the cost of the IPC facility, we examine the costs associated

with each component of the migration mechanism.

The IPC facility

The speed and reliability of the IPC facility and medium directly a�ects the cost of many of the

components of the migration mechanism. In a multiprocessor, IPC tends to be fast and reliable

because of the proximity of the communicating processors. In a local area network (LAN), the

distances that a message must travel are longer and the communication medium is slower. A wide

area network (WAN) includes hosts which are even further apart than a LAN with an even slower

communication medium. The interchange of messages between di�erent subnetworks of the WAN

further increases the transit time of a message. In our graph model, we de�ne the transmission

rate tij as the speed at which data travels from source vertex i to destination vertex j in bits/sec.

We also consider the complexity of the IPC implementation when evaluating the IPC cost. This

consideration assigns costs to the overhead of sending a message which may be quite high in systems

with complex IPC facilities such as Accent [RR81]. We de�ne the message-send overhead Si as the

cost (in microseconds) of sending a message from vertex i. Similarly, we de�ne the message-receive

overhead Ri as the cost (in microseconds) of receiving a message at vertex i.

We can now calculate the total cost to send a message Mij from a vertex i to a vertex j. If the

size of a message is k bits, the transit time T for message Mij is

T(Mij ; k) = Si + tij k +Rj :

Negotiation

Before a process migrates, a negotiation must occur between the source host and the destination

host. For our model, we consider the e�ciency of this negotiation. The complexity of the negotiation

protocol determines the cost of the negotiation. In our model, each vertex i involved in the migration

sends ni negotiation messages of small constant size k. The negotiation cost Nij of migrating a

process between vertex i and vertex j is

Nij =

niX

l=1

T (Mij ; k) +

njX

l=1

T (Mji; k) :

Transfer of state

The transfer cost of the process state typically represents a sizable majority of the cost of migrating

a process. The transfer cost includes the removal of the context of a process from the source host,

the creation of that context on the destination host, and the transfer of the virtual address space

from the source host to the destination host.

6

The transfer cost should only account for the data (e.g., pages of virtual memory) actually

transferred to the destination host. For the copy-on-reference mechanism used in Accent [Zay87],

the transfer cost only includes the cost of the pages accessed after the migration. Each transferred

page, however, includes a separate overhead cost. For a system such as V [TLC85], a cost may be

associated with a page multiple times if that page becomes dirty during pre-copying. The vertex

weights, however, would be lower since pre-copying reduces the amount of remaining execution for

the process. We also associate additional cost when the logical naming convention of the context

on the source host must be mapped to the logical naming convention of the destination host.

We model the transfer cost as a component of the edge weights of our model. We assign a

context-removal cost CRi and a context-creation cost CCj for the costs of removing the context

from vertex i and creating the context on vertex j, respectively. Since the entire virtual address

space may not be transferred, we assign a cost to individual transfers of virtual memory. Thus, the

total transfer cost of the migration includes the cost of transferring data accessed at each time t.

Since reads and writes may have di�erent costs, when vertex j reads k bits from vertex i at time t,

the transfer cost accrues the read cost rtij . Similarly, when vertex i writes k bits to vertex j at

time t, the transfer cost accrues the write cost wt
ij .

We determine the total cost for virtual address transfer by summing all the read costs and

write costs. The virtual address read cost V ARij for migrating a process from vertex i to vertex j

involves all reads performed after the start of the migration. Thus, the virtual address read cost

is V ARij =
P

t r
t
ij for all times t at which a read occurs. We de�ne the virtual address write

cost VAWij similarly. Since the virtual address read costs and the virtual address write costs are

di�cult to predict exactly, a simulator must estimate the total amount of virtual address space

that is transferred. With these de�nitions, the transfer cost from vertex i to vertex j is

TRANSFERij = CRi + CCj + V AWiq0 + V ARq1j

where vertices q0 and q1 may represent an intermediate host such as a network �le server. Note that

all transfer costs among the intermediate nodes are included in the edge weight since no virtual

address translation is required at those steps. If the virtual address space transfer occurs directly,

then q0 = j and q1 = i.

The destination host may also need to obtain and compile a copy of the source code in the

absence of a local compilation of identical source code on the destination host. For a heterogeneous

environment, the edge weights must account for this additional transfer and compilation of code.

Demand translation

In a heterogeneous distributed network, such as a LAN or WAN, the hosts may have di�erent

machine architectures. Thus, before communicating data to the destination host, the source host

must either translate the data into the format used by the machine architecture of the destination

host or translate the data into an external data format. In the latter case, the destination host must

translate the data from the external data format into the format used by its machine architecture.

We model the translation rate xab as the rate of converting data from the data format of source

vertex a to the data format of destination vertex b. When using an external data format c, the

translation rate xab = xac + xcb.

Demand translation could alleviate some of the translation cost of migration by not translating

a page until it is needed by the process on the destination machine. The bene�ts of demand

7

translation are very similar to those of demand paging. For example, when using a network �le

server, demand translation occurs at each page fault. In a copy-on-reference scheme such as Accent

[Zay87], a translation occurs only when the destination host needs a page from the source machine or

the network �le server. If the migration mechanism transfers the entire virtual address space, pages

can remain untranslated on the destination host until referenced. If translation is expensive, demand

translation could provide performance improvements comparable to the performance improvements

of the copy-on-reference approach to virtual memory access. The total cost of translating the virtual

address space from the data format of vertex i to the data format of vertex j in a heterogeneous

distributed system is

TRANSLATEij = VAWiq0 � xiq0 + VARq1j � xq1j

where again vertices q0 and q1 may represent a network �le server.

Residual dependencies

Leaving residual state of a process on its source machine reduces the immediate cost of migration.

If a process must perform certain functions on the source machine [DO87, DO91] or if the source

machine is responsible for forwarding messages after the migration completes [PM83], the cost of

the migration includes these additional costs. The edge weights should account for the future costs

accrued in accessing and maintaining this residual state. The graph model represents this situation

by leaving an inactive copy of the process at the source host.

For example, we model the additional forwarding cost to forward fij additional messages from

source host i to destination host j for a process as

Fij =

fijX

l=1

T(Mij ; length(l))

where length(l) is the length of forwarded message number l.

A number of other residual dependencies may be modeled in a manner similar to modeling the

forwarding cost. Some systems use links and must maintain these links between processes after the

migration occurs. If the migrated process had been communicating with a large number of other

processes, the time to �x the links between these processes could be considerable. Additional time

must be spent to collect degenerate links. Some systems require the migrated process to perform

certain functions on its source host (e.g., time of day). The edge weights should also count the

future costs of communication to perform these functions.

3.2 Vertex weights

Here we examine the costs that determine the vertex weights for our graph model. The vertex

weights establish the cost (per unit time) of a resource at a particular host. The answers to the

WHEN, WHERE, and WHO questions for process migration factor into the vertex weights.

WHEN

The system designer can use many di�erent criteria for determining when to migrate a process. The

system designer sets the migration policy for the system to determine the best candidate processes

8

for migration. The vertex weights change at the moment when the system evaluates the load and

selects the candidate processes and the destination hosts for the migrations. If a process knows

its resource usage pattern in advance, it can provide the system with hints about when to migrate

processes. Our model can take advantage of this knowledge which is not used by queuing theory

models. In the compiler example, if the system knows that the preprocessing phase is over, it also

knows that a migration can be more easily accommodated at that time.

Migration provides a means of dynamically balancing the load across the hosts of the distributed

system. For a given process, the system may determine, at a particular instant in time, that a host

cannot provide adequate processing time to a process. The system may detect an under-utilized

processor.

A system should use the migration policy to evaluate the system load often enough to balance

the load across the hosts of the distributed system. A system may perform this evaluation at �xed

time intervals. Critical events occur that may provide better evaluation points for the system load.

When these critical events occur, the system should reevaluate the weights of the graph model.

Process creation is a good time to evaluate because, at that time, the system load has changed.

If the process provides information about its resource requirements, the system can determine

whether that process could produce an imbalance in the expected usage of resources. By migrating

the process before execution, it avoids the creation of any new state and the subsequent transfer of

the new state.

Another good time to evaluate the vertex weights is when a process moves to a di�erent phase of

its execution with new resource requirements. Processes sometimes require real-time response. This

phase of process execution requires immediate access to the necessary resources. The evaluation of

vertex weights should occur at the instant that a process requires real-time response. The system

assigns low values to the hosts that can execute the real-time process and high values to the hosts

that cannot accommodate the process.

After a user leaves a host, many processes become idle, freeing up resources for migrating

processes [Nic87]. Upon returning to the host, the user may want migrated processes to be evicted.

Thus, the vertex weight for that host becomes in�nity for each of the migrated processes.

A heterogeneous distributed system provides a large number of di�erent resources each of which

may be connected to a speci�c host [Yam90]. When a process requests a speci�c resource which is

not available on its current host, it must migrate to another host with that resource. At the time

that the process needs a speci�c resource, the vertex weights of all hosts with that resource receive

a low value, while weights corresponding to the hosts without that resource become in�nite.

The system designer could desire that the system adjust vertex weights at other occurrences of

events in the system. If a host has su�cient advance notice of a failure or shutdown, the host can

proceed to migrate its resident processes. Processes often require real-time response or exclusive

use of its host. The vertex weights change at a rate approximating the urgency of the migration.

For example, graceful degradation changes the vertex weights at a constant rate until right before

the host fails. At that time, the vertex weights for any other host become very low and the weight

of the current host becomes in�nite.

WHERE

The system designer establishes a migration policy which determines where to migrate a process.

The system designer sets the vertex weights of the graph model by considering the ability of a

9

process to execute on each host and the overall demand on the resources at the host.

A vertex weight signi�es the cost (per unit time) of processing at the corresponding host. For

load balancing, the system designer uses several considerations in determining the vertex weights:

the processing speed of the host, current and anticipated load on the host, and the priority of

the process on the host. For distributed systems which contain a homogeneous pool of processors

to achieve a high degree of concurrency in the computation, any lightly-loaded host becomes a

candidate for receiving a migrateable process [vRvST89, MvRT+90]. Since the processing speed

and priority of the process are likely to be the same on each host, the load at a particular host is

the primary factor in determining the vertex weight corresponding to that host.

For immediate process evacuation, the system needs to quickly determine the best candidate

host to receive the migrating process. Thus, in the absence of time, a detailed analysis cannot be

made possibly resulting in a heavily-loaded host receiving migrated processes. The destination host,

however, could immediately migrate the process again to another host to balance the load. In these

situations, we consider the �rst processor to accept a migration as the approximate least-loaded

machine [TLC85]. Thus, the distance of a host from the current host may be the determining factor

in adjusting the vertex weights appropriately.

Distance becomes a more signi�cant factor in a LAN or WAN. The processing cost (per unit

time) may increase at a host further away in systems for which the active host must continue to

communicate with the original host. We have already accounted for the associated costs of distance

between source and destination host in the edge weights.

In some situations, a process may execute more e�ciently on a speci�c host despite a great

distance between the source and destination hosts. If a process performs an operation that easily

vectorizes, a host with a vector processor becomes a more suitable candidate than other hosts. In

a network �le system environment, if a process uses very large �les, it may execute much more

e�ciently on the host on which those �les reside. The hosts which perform the process more

e�ciently receive lower vertex weights, which could overshadow large edge weights.

In a heterogenous distributed system, the system migrates a process to a host with the necessary

resource. All hosts with the desired resource are the only eligible candidates to receive non-in�nite

vertex weights. The non-in�nite vertex weights are set to approximate the ability of each host to

execute the process relative to other hosts.

If all hosts in a distributed system are heavily loaded, the most practical option may be to

migrate a process to disk. Thus, we model the disk as a vertex, and move the state of the process

to a checkpoint �le on disk. In this case, we assign in�nity to all vertex weights corresponding to

computing processors.

WHO

The decision of WHO initiates the migration a�ects the costs associated with vertices of the graph

model. If a process initiates its own migration, there is no burden on its host to make the decision.

If a host, however, enforces the migration policy (e.g., load balancing), that host is responsible for

accumulating and analyzing a potentially large amount of information. The processes that execute

on that host may execute more slowly due to this extra burden. This overhead would be considered

a part of the total overhead (of other processes) running on the host.

The complexity of the policy determines whether it may be a burden on a host. A simple

policy such as the �rst-response policy of the V system [TLC85] requires little additional overhead.

10

However, a complicated load balancing policy could require a substantial portion of processing

time. In this case, a centralized dedicated server relieves the hosts from this overhead. If execution

of the migration policy impedes the processes signi�cantly, the vertex weights should be increased

for the hosts that perform the analysis for the migration policy decisions.

4 Implementation strategy

In this section, we de�ne the possible levels of implementation in a heterogeneous process migration

facility and discuss the primary issues to address when implementing each level. We give four levels

of abstraction for implementation. We examine each level of abstraction from the perspectives of

checkpointing data and checkpointing code. The goals of this design include no kernel support,

minimal daemon, system and root processes, modularity, compatability, and completeness.

The four levels of implementation are the following:

1. Library calls on speci�c structures. Essentially, the user uses a translation package for speci�c

structures, such as XDR [XDR].

2. Library calls on arbitrary structures. This level of support abstracts the lower-level XDR.

All structures are automatically available to be saved. The user must still explicitly invoke

the calls to save the structures.

3. Structure tracking. This level of support abstracts the lower-level library. The user registers

structures and the migration facility translates them automatically upon migration.

4. Full translation. This level of support translates the stack and automatically registers all

structures.

We further divide the four levels of implementation into abstractions of data and code check-

pointing for each level. Figure 2 shows the hierarchy among the data levels, D1{D4, and the code

levels, C1{C4. Each level uses the services provided by previous levels in the hierarchy.

Each level of data abstraction in checkpointing provides the user with a set of capabilities

which determine the data structures that can be checkpointed. We describe how to checkpoint and

translate the data structures at the lower levels. The four levels of data abstraction provide the

following functions.

D1 No real implementation of system. Primarily, the user must use the interfaces provided by

an external data representation interface, such as XDR.

D2 A preprocessor to C strips out specially-labeled structure de�nitions and creates a library of

translation routines. The XDR routines are the default routines for basic structures.

D3 This level of support marks structures and their instances as \migrateable", saving their

names and locations in a table. Upon migration, the values in the speci�ed locations are

translated automatically.

D4 Everything is migrateable, including the stack. (Optionally, the user can turn o� this facility

for portions of code.) Stack variables are translated as a group when the current routine

calls a subroutine or when a migrate signal occurs. Stack variables can be viewed as named

locations that are maintained using the routines provided by level D3.

11

D1

C1

D2

D3

C3

C4

C2

D4

Protocol

Linker

Stack

API

Figure 2: Implementation path for levels of migration of data (D1{D4) and code (C1{C4). The horizontal

dashed lines partition the levels into sections. We label each section with the support necessary to implement

its corresponding levels.

The code levels of implementation provide the user with the ability to restart a process after

migration has occurred. The code levels provide the following functions.

C1 No code translation. The program always starts with a previous state (which could be NULL,

i.e., no previous state). This level is useful for testing data level D1. Programs in code level

C1 are analogous to single procedures in higher levels.

C2 Left to the user. The user must skip to the appropriate place in a program, reloading struc-

tures (stack included), explicitly, as necessary. This level is useful for testing data levels D1

and D2.

C3 Library support. The user can call \auto-skipping" library routines, which optionally restore

structures. The user could use support for data level D4 to preserve stack.

C4 Full translation. Automatically skips to the appropriate place. Requires full data translation

at speci�ed times (i.e., on Migrate()), at well-de�ned times (i.e., at procedure calls), and at

arbitrary times. This level uses the compiler, linker and the support for data level D4 to

bring a program up to where it left o�. Code level C4 would require well-de�ned migration

points and routine locations to allow the stack to be fully recreated.

12

5 The Heterogeneous Migration Facility (HMF)

Heterogeneous distributed computing environments provide a vast amount of computational power

which is di�cult to utilize by its very nature. The Heterogeneous Migration Facility (HMF) hides

the details of communication and translation between two disparate host architectures and separates

the migration and checkpointing functionality from the main function of an application program.

The design of HMF is based on the graph model for single process migration and the imple-

mentation strategy described in Sections 3 and 4. The model separates process migration into four

distinct components: how a process migrates, where a process migrates, when a process migrates,

and who controls the decisions of the �rst three components. The lowest layer of HMF implements

the how component by providing a format and protocol for a program's state. Higher layers of HMF

contain the where and when components, and the user currently determines the who component.

The main purpose of HMF is to provide a simple and exible mechanism for users to introduce

process migration into computationally intensive programs. Such programs, which may run for

days at a time, are particularly vulnerable to load imbalance and system failure. While standard

de�nitions of process migration do not include checkpointing, we have included it in HMF for two

reasons: checkpointing �ts into the model (and thus should �t into any implementation based on

the model), and checkpointing combats system failure (although to a smaller extent than traditional

migration). When we refer to migration, we include checkpointing; in the model, a checkpointed

process has been \migrated to disk" (the where component has made this decision).

5.1 Overview of HMF

The current implementation of HMF includes data migration only. The user must provide mech-

anisms for code migration. Our example program later demonstrates one possible way to handle

code migration.

The layered design on HMF provides for easier introductions of new features, bug �xes, and op-

timizations, and gives the user more exibility in choosing the proper level of control over migration.

HMF provides the following layers in its design.

auto

check migrate

translate

objects

xdr

�les, streams, & memory

The objects library forms the core of HMF. Routines in this library manipulate objects, which

fully describe data structures, control variables, and I/O streams (in a future revision). Each object

has a set of attributes, including name, type, data, and format. These basic attributes are used

by the higher layers of HMF for data location and translation. Other attributes may be added by

the user. (Note: HMF can translate any object that contains these four attributes, in the proper

format.) The objects library also provides the low-level input and output of objects to �les,

streams, and memory, and gives the user an easy way to migrate to a remote host.

Translation of HMF objects from one host architecture to another is handled by the translate

library. This collection of routines converts data from the object representation to the internal

13

representation of the host, preserving type and proper alignment of all �elds in structures, arrays,

and unions. Future implementations will allow greater exibility in adding custom translation

modules for specialized data structures, but the basic library can translate any C structure.

The check and migrate libraries form the �rst layer of user routines. They serve to simplify

the interface to HMF, by hiding the details of objects and translation.

Currently, the highest layer of HMF is the auto library. This set of routines provides a common,

signal-driven mechanism to automatically migrate a process state (as described by the user). The

interface to this library is described below.

5.2 HMF type descriptions

HMF preserves complex data structures across migrations, with minimal interaction from the user.

For each structure that is saved in the state, HMF maintains a type description, which is actually

an array of type int. Type descriptions fully de�ne the structure of a block of data, and are used

to pack and unpack the data during migration. HMF includes a preprocessor that automatically

generates type descriptions of type de�nitions designated by the keyword checktype as below.

checktype typedef type-de�nition

HMF builds type descriptions up from a set of prede�ned type numbers, just as structure de�nitions

(in C) are built from a set of prede�ned types. All basic types (e.g., int, char, and float) have

corresponding type numbers as speci�ed in Figure 3. We translate the simple type int into the

following type description.

f typeINT g

Type descriptions may also contain structure numbers which help HMF parse the description.

We de�ne structure numbers for structures such as arrays, pointers, structs, and unions. The

following example shows a type de�nition for an array of ints of constant length MAX IN ARRAY

de�ned by the user.

f typeARRAY, MAX IN ARRAY, typeINT g

Similarly, a pointer to an int is the following type description.

f typePOINTER, typeINT g

Of course, instead of building type descriptions from basic type numbers, any type description

can include other previously-de�ned type descriptions. The following example is a type description

for a pointer to an array of MAX IN ARRAY ints.

f typePOINTER, typeARRAY, MAX IN ARRAY, typeINT g

The type descriptions for structs are a bit more complicated, because the type description

must also specify the number of �elds in the structure. For example, the C structure

struct example1 s f

int code;

char key;

int key id;

14

– maxint maxint0 1000 10000

basic
types

reserved
types

user
types

basic types: structured types:
char 100 typeCHAR
double 101 typeDOUBLE
float 102 typeFLOAT
int 103 typeINT
long 104 typeLONG
short 105 typeSHORT
unsigned int 106 typeUINT
unsigned long 107 typeULONG
unsigned short 108 typeUSHORT

typedef struct {
char name;
int number;

} example_t;

{ -2, 100, 103}⇒

(a)

(c)(b)

Figure 3: External type numbers. The user designates a type for which to create a type description by

preceding the type de�nition by the keyword checktype. Each checktype receives a type number. We show

the ranges of type numbers used for each type in (a). The basic types (e.g., int) have a type number in

the range 0{999. We list the type numbers for the most basic types in (b). Type numbers 1000{9999 are

reserved for types such as typeARRAY and typePOINTER. The HMF preprocessor or the user assigns a number

between 10000 and maxint to a user-de�ned type such as example t in (c).

g;

translates to the type description

f -3, typeINT, typeCHAR, typeINT g .

Figure 4 shows the translation of an even more complex struct. Unions are also represented by

the reserved type typeUNION.

5.3 HMF auto library

The auto library is currently the highest interface available to users of HMF. Through the auto

interface, the user registers typed data structures for inclusion in future state descriptions. The

user then calls an idle routine every so often, which handles any requests for migration. Other

routines initialize the library and read in any previously existing state.

The main goal of the auto library is to provide an automatic migration mechanism. Once a

data structure has been \registered" with the library, it becomes part of the process state, and will

be migrated when necessary. This mechanism relieves the user from the task of handling migration

requests.

Before using any routine in the auto library, the user must �rst call

auto init(argv[0]);

15

struct example2 s f

int uid;

char *name;

char passwd[8];

int gids[MAX GROUPS];

g;

f typePOINTER,

-4,

typeINT,

typePOINTER, typeCSTRING,

typeFSTRING, 8,

typeARRAY, MAX GROUPS, typeINT g

!

typedef struct example2 s * example2 p;

Figure 4: Translation of a pointer to a complex data structure to an HMF type description. The type

description begins with typePOINTER to signify that the type is a pointer. Since the following number is

negative (-4), the data structure is a struct with 4 �elds. The type typeCSTRING has no following parameters

and type typeFSTRING assumes that the next parameter indicates the length of the string.

to initialize the internal structures, where argv[0] is the name of the program. HMF uses the

name of the program to create a unique state �le (if the process is migrated to disk), or to start

the proper program on a remote machine (if the process is migrated to a remote machine). When

�nished with the auto library, the user calls the auto done routine to free any private memory

used by auto and unregister all previously registered data structures.

The user registers data structures by calling the auto track or auto register functions. For

example, to register a variable that contains a loop counter i of type int, the user declares the

type description

int type list int[] = f typeINT g;

as described above. The following call to auto track registers the variable i.

auto track(``i'', &i, sizeof(int), type list int, 1);

The auto track function merely allocates a tracking structure of type var elem t, places the appro-

pritate values in its �elds, and calls the auto register routine. The user can call auto register

directly as follows.

var elem t ve;

ve.v name = ``i'';

ve.v data = &i;

ve.v data len = sizeof(int);

ve.v type list = type list int;

ve.v list len = 1;

auto register(&ve);

Data can be removed from the state, or unregistered, by calling either the auto untrack or

auto remove routine. To be consistent, after calling the auto track routine to register a data

structure, the user should call the auto untrack routine to unregister it. For example, the user

would call

auto untrack(&i);

to unregister the variable i. This routine calls the auto remove routine to unregister the variable

and then frees the memory used for the tracking structure of type var elem t. The user calls the

16

auto remove routine to unregister the data directly by passing the address of its var elem t by

calling

auto remove(&ve, NULL);

or by passing the address of the data structure to unregister it as in the following call.

auto remove(NULL, &i);

Future revisions will allow you to unregister by name.

In order for the auto library to automatically migrate your process, the user must periodically

call auto poll to check internal ags and migrate the process if necessary. The user can disable

checkpointing or migration by passing a mask to auto poll. (Note: all migrations occurs within

this routine.) The user checks the return value to learn whether the program has been checkpointed

or migrated. For example, if only checkpointing the program, the user performs the following poll

on a periodic basis:

if (auto poll(AUTO CHKP) == AUTO CHKP) f

/* process has been checkpointed */

g

Normally, the user continues execution after checkpointing the process.

If the user wants to allow the process to be migrated, the following poll determines if the

migration has been successful.

if (auto poll(AUTO MIGR) == AUTO MIGR) f

/* process has been migrated */

g

If the migration was successful, the process should stop execution on its current host and exit from

the program, because the process now executes on the remote host.

To enable both checkpointing and migration, the user polls in the following way.

if (auto poll(AUTO ALL) & AUTO MIGR) f

/* process has been migrated, stop execution */

g

In this example, if the process has been migrated, execution should be stopped, otherwise the

process should continue. In all cases, auto poll returns 0 (zero) if the process has not been

checkpointed or migrated.

The auto library also includes a routine to initialize state to previous values if the process has

been checkpointed or migrated. The user calls the auto read routine after registering any variables.

This routine initializes the registered variables to the values found in any existing state which either

resides in a checkpoint �le or arrives in a message from a process on the source host.) The return

value for the auto read routine indicates whether or not there was a previous state. Below is an

example of an invocation of auto read.

17

if (auto read(AUTO ALL)) f

/* there was a previous state, state is initialized */

g else f

/* no previous state, set state to initial values */

g

Appendix A shows a sample program which uses all the features described in this section.

We have also rewritten the password cracker of [Bis88] using HMF. The password cracker is a

good test program for HMF because it includes one big loop which provides a natural checkpoint

location after each iteration, and the program runs a long time without any user interaction.

6 Conclusions

We have examined the feasibility of process migration in a heterogeneous distributed system. A

system designer can use our graph model to study the possible bene�ts of migration for a wide

range of system goals which include performance, reliability, and availability. The Heterogeneous

Migration Facility (HMF) demonstrates the support that is necessary for data migration in an

application programmer interface (API).

Bene�ts and drawbacks of the graph model and HMF

The graph model provides us with an abstraction of the resources in a heterogeneous distributed

system. In order to �t a given system into the model, there needs to be some way to represent the

various resources. The system designer can use the graph model to analyze the system by classifying

the available resources and assigning weights to the graph model appropriately. In this way, the

graph model serves as the foundation for the implementation of a migration/load balancing system

like HMF.

The graph model accounts for all factors contributing to migration/load balancing costs. It also

views the system from a single process view. Other queuing theory models assume all processes in

a system are part of the load balancing mechanism, which is usually not the case. Our model still

accommodates the system-wide approach used in queueing-based models.

The major drawback of the graph model is the complex analysis resulting from the many factors

in measuring the costs of process migration. Simulation will determine the di�culties involved in

using the model for accurate analysis.

HMF has several advantages. HMF provides information to the load balancing mechanism.

HMF is operating system independent (which is important in a heterogeneous environment). HMF

allows multiple \entry levels" for the user.

Unfortunately, levels D1{D3 require application programmer support. Thus, each program

must maintain details about its own state. Additionally, in its current implementation, HMF does

not handle register-based variables e�ciently. Such optimizations would be handled as part of the

D4 implementation.

A simulator based on the graph model would allow a system designer to study the success of

various migration policies and mechanisms as well as system parameters (such as network speed)

in meeting the needs of the target user community. How accurately can a simulator based on the

18

graph model predict real systems behaviour? Are there other factors that should be considered in

determining the edge and vertex weights for the graph model?

HMF can be further extended to address the issues of full translation and automatic migration

of code including the stack. Is HMF the best approach for providing process migration in hetero-

geneous process migration? Is the recent work on transportable intelligent agents (TIA) exible

enough to address all the scenarios in which migration provides bene�t?

References

[AF89] Yeshayahu Artsy and Raphael Finkel. Designing a process migration facility: The

Charlotte experience. Computer, 22(9):47{56, September 1989.

[Bis88] Matt Bishop. An application of a fast Data Encryption Standard implementation.

Computing Systems, 3(1):221{254, Summer 1988.

[BL88] Brian N. Bershad and Henry M. Levy. A remote computation facility for a heteroge-

neous environment. Computer, 21(5):50{60, May 1988.

[DO87] Fred Douglis and John Ousterhout. Process migration in the Sprite operating system.

In Proceedings of the 7th International Conference on Distributed Computing Systems,

pages 18{25, September 1987.

[DO91] Fred Douglis and John Ousterhout. Transparent process migration: Design alterna-

tives and the Sprite implementation. Software-Practice and Experience, 21(8):757{785,

August 1991.

[Hac89] Anna Hac. A distributed algorithm for performance improvement through �le replica-

tion, �le migration, and process migration. IEEE Transactions on Software Engineer-

ing, 15(11):1459{1470, November 1989.

[Kle75] Leonard Kleinrock. Queuing Systems Volume I: Theory. John Wiley & Sons, New

York, 1975.

[LS92] Michael Litzkow and Marvin Solomon. Supporting checkpointing and process migra-

tion outside the Unix kernel. In Proceedings of the USENIX Winter 1992 Technical

Conference, pages 283{290, January 1992.

[MvRT+90] Sape J. Mullender, Guido van Rossum, Andrew S. Tanenbaum, Robbert van Renesse,

and Hans van Staveren. Amoeba: A distributed operating system for the 1990s. IEEE

Computer, 23(5):44{53, May 1990.

[NBL+88] David Notkin, Andrew P. Black, Edward D. Lazowska, Henry M. Levy, Jan Sanislo,

and John Zahorjan. Interconnecting heterogeneous computer systems. Communica-

tions of the ACM, 31(3):258{273, March 1988.

[Nic87] David A. Nichols. Using idle workstations in a shared computing environment. In

Proceedings of the Eleventh ACM Symposium of Operating System Principles, pages

5{12, November 1987.

19

[PM83] Michael L. Powell and Barton P. Miller. Process migration in DEMOS/MP. In Pro-

ceedings of the Ninth ACM Symposium of Operating System Principles, pages 110{119,

1983.

[RR81] Richard F. Rashid and George G. Robertson. Accent: A communication oriented

network operating system kernel. In Proceedings of the Eighth ACM Symposium on

Operating System Principles, pages 64{75, 1981.

[TLC85] Marvin M. Theimer, Keith A. Lantz, and David R. Cheriton. Preemptable remote

execution facilities for the V-system. In Proceedings of the Tenth ACM Symposium of

Operating System Principles, pages 2{12, December 1985.

[vRvST89] Robbert van Renesse, Hans van Staveren, and Andrew S. Tanenbaum. Performance

of the Amoeba distributed operating system. Software { Practice and Experience,

19(3):223{234, March 1989.

[WM85] Yung-Terng Wang and Robert J.T. Morris. Load sharing in distributed systems. IEEE

Transactions on Computers, 34(3):204{217, March 1985.

[WPE+83] Bruce Walker, Gerald Popek, Robert English, Charles Kline, and Greg Thiel. The

LOCUS distributed operating system. In Proceedings of the Ninth ACM Symposium

on Operating System Principles, pages 49{70, October 1983.

[XDR] External Data Representation Standard: Protocol Speci�cation. RFC1050, ARPA Net-

work Information Center.

[Yam90] Michael J. Yamasaki. Distributed Library. Technical Report RNR-90-008, NAS Sys-

tems Division, NASA Ames Research Center, April 1990.

[Zay87] Edward R. Zayas. Attacking the process migration bottleneck. In Proceedings of the

Eleventh ACM Symposium of Operating System Principles, pages 13{22, November

1987.

[ZSM90] Songnian Zhou, Michael Stumm, and Tim McInerney. Extending distributed shared

memory to heterogeneous environments. In Proceedings of the 10th IEEE International

Conference on Distributed Computing Systems, pages 30{37, 1990.

20

A HMF sample code

The code in Figure 5 is a sample program using the application programmer interface (API) of the

Heterogeneous Migration Facility (HMF). The �le typemap.h contains the declarations of the type

numbers for the basic and reserved types (e.g., typeINT). The �le auto.h includes the prototypes

for the HMF routines.

After initially declaring some variables, the program initializes the auto library with the

auto init call. We use the auto register routine to register the variable anint which we name

\my var" to be checkpointed. The auto read call checks for previous state and initializes the

variable anint if none exists. Inside the for-loop, we check to see if the host has migrated this

process to another processor by calling the auto poll routine. We continue to increment the vari-

able anint until the process has migrated. Once the process migrates, the program breaks out of

the for-loop, unregisters the variable anint by calling auto remove, and exits the auto library by

calling auto done.

#include ``typemap.h''

#include ``auto.h''

main (argc, argv)

int argc;

char *argv[];

f

var elem t ve;

char vn[10];

int anint;

int itype = typeINT;

strcpy(vn, ``my var'');

auto init(argv[0]);

ve.v name = vn;

ve.v data = (char *)&anint;

ve.v data len = sizeof(int);

ve.v type list = &itype;

ve.v list len = 1;

auto register(&ve);

if (!auto read(AUTO ALL))

anint = 0;

for (;;) f

if (auto poll(AUTO ALL) & AUTO MIGR)

break;

anint++;

g

auto remove(&ve, NULL);

auto done();

g

Figure 5: A sample HMF program.

21

