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Abstract

Programming models that support code migration have gained prominence, mainly due to a widespread shift from
stand-alone to distributed applications. Although appealing in terms of system design and extensibility, mobile programs
are a security risk and require strong access control. Further, the mobile code environment is fluid, i.e. the programs and
resources located on a host may change rapidly, necessitating an extensible security model. In this paper, we present
the design and implementation of a security infrastructure. The model is built around an event=response mechanism, in
which a response is executed when a security-related event occurs. We support a fine-grained, conditional access control
language, and enforce policies by instrumenting the bytecode of protected classes. This method enhances efficiency and
promotes separation of concerns between security policy and program specification. This infrastructure also allows security
policies to change at runtime, adapting to varying system state, intrusion, and other events.  2000 Published by Elsevier
Science B.V. All rights reserved.
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1. Introduction

The exponential growth of the Internet has precip-
itated a shift in popular computing, from stand-alone
to distributed applications. In response, program-
ming models that support code migration, such as
remote evaluation [31] or mobile programs [5,33],
have gained prominence. These models provide run-
time systems that can load and execute externally de-
fined user programs. Although appealing in terms of
system design and extensibility [6], mobile programs
are a security risk. They can maliciously disrupt the
execution of programs on a host by unauthorized or
improper use of local resources. To maintain secu-
rity, a host must regulate a mobile program’s use of
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local resources by enforcing an access control policy
(ACP). The idea is not new; many operating systems
limit access to their resources [1]. For example, in
the UNIX operating system, users can control access
to files they own.

Mobile code environments, however, have two
important characteristics: (1) They are dynamic, i.e.,
mobile programs come and go rapidly, and the re-
sources present on a host may change. (2) They
are also unpredictable, i.e. administrators might not
know ahead of time the source, behavior, or require-
ments of the programs that migrate to their host.
There is no fixed set of resources that a host admin-
isters. Further, because the different components of
resources and mobile programs may require differ-
ent levels of protection [20], security models must
support fine-grained access control.

Several techniques [3,11,13,15,17,19,20,29,35,36]
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have been proposed for defining and enforcing ac-
cess control for mobile programs. The primary focus
in most of these approaches has been on supporting
flexibility, expressibility, and efficiency. While the
above approaches encompass a wide range of secu-
rity policy specification and enforcement techniques
[18], there is very little or no support for building
security environments in which security policies can
be changed and reconfigured dynamically in order to
adapt to changes in operating conditions.

Dynamic reconfiguration of security policies is
needed in several instances, especially in complex
and large distributed systems. Consider the following
cases.
ž Unanticipated changes in the security environ-

ment of a system may require that its security
policies change. For instance, software bugs may
appear that compromise the security of the en-
tire system; exploits exist for recently discovered
bugs in such critical components as imapd and
ftpd 2. Further, spies, covert channels and Tro-
jan horses may lurk in application code. Upon
discovering such unanticipated security holes, the
system administrator should be able to add poli-
cies that revoke a previously trusted program’s
access rights.
ž Security policies may evolve due to the changes

in operating conditions and organizational goals.
For instance, changes in environmental factors,
such as company policy or the law, may result
in a different set of access rights. Consider the
introduction of privacy laws, which can prohibit
the collection and distribution of user-specific
information. Also, coalitions are often formed by
several companies to pursue common projects. A
company may establish security policies that are
static while a coalition exists, but change after it
dissolves.
ž Security policies may vary depending on the state

of the system. A computer system under attack
may need stricter security polices than during
normal operations. For instance, a distributed in-
trusion detection system may respond to attacks
on several sites by establishing new policies based
on the attack patterns. Further, in many cases, se-
curity policy checks may become unnecessary if

2 For full details see http://www.cert.org/advisories.

trust levels can be established on the basis of
a program’s past behavior. For example, a sys-
tem may monitor a program’s accesses and, on
the basis of past behavior, decide to remove all
restrictions on access to specific resources.

It is possible to represent many of these security poli-
cies using static security policy mechanisms. How-
ever, to do so may require that the user anticipate
and specify all possible situations. In addition, the
representations may be awkward and incur undesir-
able overhead. What is needed is support for security
policies that can be reconfigured at runtime to adapt
to changes in the security needs of a site.

In this paper, we present the design and imple-
mentation of a security infrastructure that supports
dynamic policies. The infrastructure uses a declara-
tive policy language to specify access constraints. It
enforces these constraints by performing binary edit-
ing on programs and resources [26]. In addition, the
infrastructure provides a runtime meta-interface by
representing ACPs as first class objects. The user can
inspect, add, delete, and modify security policies at
runtime. This mechanism supports dynamic security
environments that adapt to unanticipated operating
condition changes and system evolution. For exam-
ple, the meta-interface is useful in large distributed
systems, where the local policies in individual clus-
ters must be discovered in order to construct and
enforce global policies, and to verify consistency
among the different local policies. When policies
change, the runtime system instruments the pro-
tected classes, using dynamic classes [23], to enforce
the new policy.

The remainder of this paper is organized as fol-
lows. In Section 2, we describe the declarative se-
curity policy language and the meta-policy model.
We describe the implementation of the security in-
frastructure in Section 3. We present a performance
analysis of the implementation in Section 4. We
compare related work in Section 5. Finally, in Sec-
tion 6, we discuss future work and conclude.

2. The extensible security infrastructure

We begin discussion of the security infrastructure
by motivating our approach. We then present our
abstract security model, which defines principals,



B. Hashii et al. / Computer Networks 33 (2000) 77–93 79

Fig. 1. Method invocation semantics. (a) Default method invocation semantics. (b) Security constraints on method invocations.

resources, and the relationships between them. Fi-
nally, we describe the domain-specific language and
runtime meta-interface used to specify policies.

A program accesses a resource by invoking re-
source methods. In Fig. 1a, we show a program P
that migrates to a host and accesses R by invoking f .
During P’s execution, control jumps to f , executes
f , and returns back to P once f terminates. The
Java compiler implements a simple access semantics
in which there are no constraints on access to R
through f .

In many cases, a host may wish to impose con-
straints on P’s accesses to R. Our approach is to
allow the host to make the access relationship be-
tween P and R conditional. For instance, in Fig. 1b,
the host binds an access constraint, O, over the ac-
cess relationship between P and R. Thus, P can
access R if it satisfies O.

There are two notable aspects of our security
mechanism. First, the access constraint, O, is defined
separately from both P and f . The infrastructure
enforces constraints by integrating interposition code
within P and R before they are loaded in the Java
virtual machine. Second, O can change at runtime,
allowing the security policies of a host to evolve
dynamically.

2.1. The event=response model

An access control policy is specified by a three-
tuple: (1) specific access relationships that the se-
curity infrastructure should monitor, (2) conditions
under which security-sensitive accesses warrant a
response, and (3) the associated responses.

A security policy defines an access relationship
between a principal and a resource. First, we define
the notions of resource and principal, and then we
show how they are used in our security model to
specify policies.

2.1.1. Resource
Both hosts and mobile programs may define ser-

vices or data structures that they wish to protect from
unauthorized access. In keeping with the fine-grained
access control model, a resource may represent any
software component. Thus, a resource is defined as
any method, class, or set of classes that is protected
by an ACP. Conceptual resources, such as databases,
and hardware resources, such as printers and the
disk, must be wrapped by a Java class or method to
be protected by an ACP.

2.1.2. Principal
The basis for authorization in a security model

is the principal. In traditional systems, a program
runs on behalf of a principal who is given certain
access rights. Once the program attains these rights,
it retains them during its execution. In a mobile code
environment, however, a mobile program is typically
composed of components that may be loaded from
different hosts. A host may, thus, assign different
components different rights and privileges, possibly
on the basis of their origin. The level of granularity
at which access rights must be checked and enforced
is much finer in such an environment. The principle
of least privilege [30] states that a principal should
not have access to resources that are not needed
to complete its job. This means that granularity of
access control should be at the method level.

A principal in our security infrastructure can,
thus, represent a method, an entire class, or a group
of classes. For instance, www.sun.com denotes a
principal comprising all classes loaded from this
host; these classes all acquire the privileges assigned
to the host. The infrastructure allows a principal to
be defined as a group of classes by either enumerat-
ing the different classes or providing a filter function
that determines if a class belongs to a principal. A
site can use the filter function to define principals
on the basis of specific characteristics such as signa-
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ture, code source, or possible behavioral pattern. For
example, the following class defines a filter function:

class GroupFunction {
boolean static RogueSite(Class ncl) {
URL u=ncl.getClassLoader().getURL();
String name = u.toString();
return

name.equals("http://
www.roguesite.com");

}
}

This function is executed whenever the system
loads a class. The class is given to the function,
and if it returns true then the class is added to an
associated group. We will see in Example 1 how this
function is used to define a policy.

It is important that sites define principals carefully
so that mobile programs are unable to spoof defini-
tions of principals, and thereby attain privileges that
they should not have. For instance, principals based
on simple class names can be easily spoofed. Note
that we consider the problem of authenticating mo-
bile programs orthogonal to the problem of access
control discussed in this paper.

2.1.3. Event
An event occurs when a principal P accesses

a resource R. We use the symbol -> to denote a
principal accessing a resource. Hence, the expression

-> File.Open()

denotes an event associated with the invocation of
Open on an instance of a File resource.

An event may contain a condition, defined in
terms of object, program, global, system or security
states as well as the value of method parameters. For
instance, the expression

-> File.Open() and
(File.GetName() == "secretfile")

denotes only those File.Open() events for which
the associated boolean condition is true.

2.1.4. Response
A response describes the action performed be-

fore and=or after a selected event has occurred.

The infrastructure supports several predefined re-
sponses, such as DenyResponse, AuditResponse,
and ChangePolicyResponse. DenyResponse de-
nies access to a principal by throwing a security ex-
ception. AuditResponse logs any access to a pro-
tected resource. ChangePolicyResponse responds
to an access attempt by changing the security policy.
In addition, users can define their own responses and
associate them with specific events.

Our security infrastructure provides two mecha-
nisms for specifying policies: a policy specification
language and a meta-interface. The high-level policy
language permits rapid and flexible policy specifica-
tion. Users may write policy files, containing series
of statements, and load these files into the system.
The statements are then translated into policy ob-
jects. The meta-interface provides language support
for creation, management, and enforcement of policy
objects at runtime.

2.2. The policy language

Fig. 2 lists the grammar for our policy lan-
guage, which evolved from previous work [26] to
include new constructs. Terminals in the EBNF, such
as ClassName or MethodName, correspond to ac-
tual Java classes and methods, as described below.
The language semantics allow for the use of either
built-in event and response classes or user-defined
classes. Policies are specified as a list of statements
in policy files. The default policy file is loaded when
an application starts, and new or modified files may
be loaded during runtime via the interface described
in Section 2.3.

A host uses this language to specify ACPs. As
the grammar illustrates, our language is tailored to
this task. It defines event=response relationships and
allows entities to be grouped for ease of expression.

In addition to the access constraints, we support
an enable statement that is used to override access
constraints. This is needed when a host wants to
override the default principle of least privilege. For
example, assume that a security policy specifies that
an applet cannot access the file system. The security
infrastructure implements the default policy of least
privilege, which ensures that the applet cannot ac-
cess the file system directly or indirectly by calling
other methods that access the file system. However,
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Policy ::= { PolicyStatements j Definitions }
PolicyStatements ::= { Constraint j AddStatement j EnableStatement }
Definitions ::= { PolicyGroup j GroupStatement }
Constraint ::= before Event do Response j after Event do Response
AddStatement ::= add Type Name to ClassName
EnableStatement ::= enable Event
Response ::= ResponseName ’(’ ParameterList ’)’
Event ::= [Entity] Invocation Entity [and Condition]
Invocation ::= 7!
Entity ::= class ClassName j method MethodName ’(’ ParameterList ’)’ j group GroupName
Condition ::= BooleanExpression
PolicyGroup ::= policy PolicyName ’{’ PolicyStatements ’;’ { PolicyStatements } ’}’
GroupStatement ::= group GroupName ’{’ Entity ’;’ { Entity } ’}’

j define group GroupName ’{’ FunctionName ’(’ Parameters ’)’ ’}’

Fig. 2. Access control policy language.

in many cases, this may not be desirable [36]. For in-
stance, suppose the applet can write to the screen us-
ing the font files stored on the disk. In this instance,
we want to enable the display manager to access
the font files, regardless of the calling program. The
enable statement allows one to override the default
policy. This is similar to the enablePrivileged
command in the JDK 1.2 security model [17].

2.3. The meta-policy model

The infrastructure represents security policies and
their components as first class objects. Privileged
programs can use the meta-interface to examine, add,
delete and modify policy objects. Below, we describe
policy objects and the meta-interface in detail.

2.3.1. Access control policy objects
Policy objects represent all policy statements, in-

cluding constraints and groups. The class hierarchy
of policy classes corresponds to the non-terminals
in the policy language grammar. The security infra-
structure represents policies in terms of three kinds
of objects: event, response, and constraint.

Event objects. An event object consists of a sub-
ject, an invocation target, and, optionally, a boolean
condition. An event may be trapped, and any bound
responses executed, before or after the invocation.
Creating a new event object is similar to specifying it
in the policy language. For example, one can create
an Event object to protect the password file in the
following manner:

EventObject ev = new Event(
"FileInputStream.

FileInputStream(File f)",
"f.getName() == /etc/passwd");

This event is trapped by an invocation of the
FileInputStream constructor in which the file
name is ‘/etc/passwd’. The parameters to the con-
structor are parsed in the same way as the language
to create the same objects.

Response objects. A response object is an abstract
class that users extend in order to customize re-
sponses. ResponseObject contains a DoResponse
method that is invoked whenever the associated event
occurs. A host redefines the DoResponse method to
define any kind of response. An example of this is
the DenyResponse class.

class DenyResponse
extends ResponseObject {

public void DoResponse() {
throw new SecurityException();
}

}

Users may then create response objects by instan-
tiating these classes. For example:

ResponseObject response = new
DenyResponse();

Constraint objects. A constraint object represents
an access constraint, and includes an event object
and an associated response object.
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class PolicyLoader {
public PolicyObject get(String policyName);
public void add(PolicyObject policy, String policyName);
public void remove(PolicyObject policy);
public void remove(String policyName);
public void replace(PolicyObject oldP, PolicyObject newP);
public void loadFromFile(String fileName);
public void removeAllPolicies();
: : :

}

Fig. 3. PolicyLoader interface.

2.3.2. The policy loader
The core of the meta-interface is a module called

the policy loader, which manages and enforces pol-
icy objects. The interface to the class Policy-
Loader is shown in Fig. 3. It includes methods for
adding, removing and examining policy objects, and
loading policy files. Policy files, written in the speci-
fication language, may be loaded from disk or other
sources, such as the network. PolicyLoader parses
the policy file, translates the statements into corre-
sponding policy objects, and adds the new objects to
the overall system policy.

Users can extend PolicyLoader to add func-
tionality. For example, one might redefine Policy-
Loader.loadFromFile() to load policy files from
a URL as part of a distributed security management
scheme.

A PolicyLoader object is associated with a
class loader, and, thus, enforces policies over a given
namespace. We discuss this further in Section 3.4.1,
and provide more implementation details on policy
maintenance and enforcement in Section 3.2.

2.4. Examples

We now present four examples that illustrate how
a system administrator can define and modify poli-
cies dynamically using the policy language and the
meta-interface.

Example 1 (File auditing). In the first example, we
illustrate how we can define principals, events and
responses, and bind them together to define an access
policy.

Assume that we want to audit all file accesses

by programs that arrive from www.roguesite.com.
We use the basic default audit response class, Au-
ditResponse, to perform auditing. To enforce the
policy, we create a ReadFile group that encapsu-
lates the resources that we want to protect, and a
RogueSite group that defines the principal using
the group filter described in Section 2.1.

group ReadFile {
class FileInputStream;
class FileOutputStream;
...

}
group RogueSite {

GroupFunction.RogueSite(Class
newclass);

}
after group RogueSite ->

group ReadFile do AuditResponse()

Example 2 (Protecting a resource). In this example,
we show how the meta-interface can be used to
define and enforce security policies in unanticipated
security situations.

Assume that a host allows an external pro-
gram from www.roguesite.com to access a public
database server, DBS. However, the host discovers
that the program is a Trojan horse that is able to
exploit a bug in the database server to gain access
to a protected section of the database, PDBS. As a
result, the host wants to change the policy to prevent
access to the restricted part of the database without
shutting down the site. The host can enforce this new
policy by constructing it and loading it using the
policy loader:
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PolicyLoader pl = getClass().getClassLoader().getPolicyLoader();
// find the policy loader

Group gp = new FilterGroup ("GroupFunction.RogueSite"); // create principal
Event ev = new Event(gp, "PDBS.query"); // specify access
Response newResp = new DenyResponse(); // create a deny response
ConstraintClass newPol = new ConstraintClass(ev, newResp); // create a constraint
pl.add(newPol, "DBSquery"); // prevent access

Example 3 (File or network access). In this example,
we demonstrate how access control policies can be
changed in response to a security-related event. We
implement a commonly employed security policy
that allows access to either the file system or the
network, but not both. This policy could be part of a

larger security policy that prevents the flow of infor-
mation from disk to the rest of the world. Suppose
the network is accessed as in Example 4, and the file
system is accessed as in Example 1. We provide a
basic default change policy response class as shown
below:

class ChangePolicyResponse extends ResponseObject {
public void DoResponse(String oldPolicy, String newPolicy) {

PolicyLoader pl D getClass().getClassLoader().getPolicyLoader();
if (oldPolicy!D null) pl.remove(oldPolicy);
if (newPolicy!D null) pl.loadFromFile(String newPolicy);

}
}

This response takes as parameters the name of
a policy to remove, and the name of a policy file
from which to load a new policy. We then specify
four policies with the names "FileChange", "Net-
workChange", "DenyFile" and "DenyNetwork".
The deny policies prevent access to files and the
network, respectively. For example:

define policy DenyNetwork {
before -> Socket.Open()

do DenyResponse();
}

Likewise, the change policies replace them-
selves with the appropriate deny policy. The
"FileChange" policy is:

define policy FileChange {
before ReadFile do
ChangePolicy("NetworkChange",

"DenyNetwork")
before ReadFile do
ChangePolicy("FileChange",null)

}

We can similarly implement "DenyFile" and
"NetworkChange". Thus, when a file is read, the

file’s change policy is invoked, which in turn re-
moves both the file’s and network’s change policy
and adds a policy that prevents access to the network.
The new access control policy no longer checks if
reads are allowed. This provides a more efficient im-
plementation of the above policy that a similar static
policy would.

Example 4 (Control over the number of accesses).
Suppose we want to implement the constraint
that an object p can open a socket connection
using Socket.Open(Host hostId, int Sock-
etid) at most ten times.

We create a new field of p, SecurityState,
of type SecState. This class keeps track of the
number of times p calls Socket.Open. Let method
SecState.CheckCount(int x) be defined in the
following manner:

public boolean CheckCount(int x) {
if (count < x) {
UpdateCount();

// increment the counter
return(false);
} else return(true);

}
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The following policy statements add the new ob-
ject to p and specify that p can invoke Open at most
ten times.

define policy CountSockets {
add SecState SecurityState to p
before p -> Socket.Open()
and p.SecurityState.CheckCount(10) do
ChangePolicyResponse("CountSockets",

"DenySockets")
}

define policy DenySockets {
before p -> Socket.Open()
do DenyResponse()
}

After a socket has been opened ten times, the con-
dition is always true. When this occurs, the policy is
changed to always deny access.

The previous two examples highlight the fact that
the reconfigurable policy mechanism can be used
to eliminate access checks in several cases. For in-
stance, consider a security policy: an applet can
access a resource only if the condition B is true.
Assume that B has the property that once it becomes
true, it remains true. Clearly, checks for B can be
eliminated once B becomes true. Using the dynamic
security mechanism, a site can specify a policy that
dynamically removes checks for B once B becomes
true.

3. Implementation

In this section, we describe the implementation of
our security model. We focus on two primary ele-
ments: the separation of security policy specification
from resource definitions, and the ability to modify
security policies during execution. We implement the
first by generating binary code for each security pol-
icy on the fly, and integrating this code directly into
the protected resource. We support the latter using
dynamic classes, which allow the system to gener-
ate new interposition code and add it to previously
instrumented classes.

First, we provide some background on dynamic
Java classes. We then describe how our implemen-
tation enforces security policies, and how they can

be modified. Finally, we present an analysis of our
model and implementation. We describe potential
weaknesses and their solutions, and include a gen-
eral discussion of our approach’s effectiveness.

3.1. Background: dynamic classes

Our implementation relies on dynamic classes
to change policies. Using dynamic classes, we can
instrument classes at runtime, and update their in-
stances if needed. This is necessary to enforce policy
changes. A previous paper [23] contains a full ac-
count of dynamic classes. In this section, we briefly
outline the design and implementation, focusing on
semantic and technical issues.

We wished to extend, not replace or weaken,
Java’s type and dynamic linking systems. We de-
signed the semantics and interface for dynamic
classes with this goal in mind. Thus, we define the
semantics of a class change as follows: (1) a class
change cannot cause any type violations, (2) all sub-
classes of the target class must change to reflect their
new superclass, and (3) all existing instances of the
target class must be updated to reflect the new def-
inition. Under these conditions, the runtime state of
the system remains consistent across class changes,
and Java’s type safety characteristics remain intact.

The JVM uses the class loader mechanism [22]
for dynamic linking. We extended the class loader
to provide a convenient interface for class changes.
We use runtime system support for dynamic classes,
modifying the JVM in Sun’s JDK 1.2 to create a
dynamic classes-capable virtual machine. We chose
this approach over library-based support for reasons
of efficiency and effectiveness.

3.2. Policy enforcement

The security system enforces an ACP by plac-
ing interposition code between the code requesting
a resource and the resource itself. This interposition
code checks if the specific access is allowed. A set of
tools generates this interposition code and integrates
it into mobile programs and resources before they
are loaded.

Fig. 4 provides an overview of the components
of the security infrastructure and their interaction.
P denotes a mobile Java program, which migrates
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Fig. 4. Security policy enforcement.

to a host denoted H . A PolicyLoader is associ-
ated with a dynamic class loader, which defines the
namespace that H provides to mobile programs. This
PolicyLoader is then responsible for specifying and
enforcing ACPs over all classes defined in its name-
space. Upon application startup, a dynamic class
loader initializes its policy loader. The policy loader
parses a policy file and creates the specified policy
objects. Then, the dynamic class loader loads ap-
plication classes. During class name resolution and
dynamic linking the class loader retrieves the re-
sources R and passes them to the policy loader. The
policy loader then generates the interposition code
for enforcing the security policies and integrates it
into the resource code.

The nature of the interposition code depends on
the type of policy that the policy loader is try-
ing to enforce. For instance, suppose the policy
loader is implementing a constraint containing an
event=response pair, named event and response,
respectively. In addition, event is a triple defined
by <subject, target, condition>. This pol-
icy is enforced by inserting the following code into
event.target:

if (caller == event.subject
&& event.condition)
response.doResponse();

The caller is identified by stack inspection, as
described in Section 3.4.1. Details of the generated
code and how it is integrated into the class definitions
are beyond the scope of this paper; see [26].

After receiving the modified mobile programs
and resources (P 0 and R0), the class loader loads
the classes into the JVM, replacing any existing
versions. In addition, the class loader caches copies,
as raw bytecode, of the current and original versions
of all loaded classes. The policy loader uses this
cached data to re-integrate the interposition code
when security policies affecting a class are modified.

3.3. Dynamic policy changes

PolicyLoader maintains a list of all policy ob-
jects active within its namespace. The union of the
ACPs specified by these objects may be considered
the system ACP for that namespace. The host can
dynamically change a system ACP by adding or re-
moving policy objects, or by loading a new policy
file.

3.3.1. Adding policy objects
A system ACP may by extended via Poli-

cyLoader.add() or PolicyLoader.loadFrom-
File(). The policy loader adds the new policy
objects to its internal list and enforces them. It first
identifies all entities affected by the change. This
information is stored within the policy objects. If
a group is among these, it expands the policy ob-
ject to a list of objects, each replicating the policy,
but applied to one class within the group. Next, the
policy loader retrieves the raw bytecode version of
each affected class from the dynamic class loader,
and edits the bytecode according to the new policy
object. Finally, it invokes the dynamic class loader
to replace the existing class definition with the new,
modified version. In the event that one of the classes
referred to by a new policy object has not yet been
loaded into the system, PolicyLoader stores the
object and edits the class when it is loaded.

3.3.2. Removing policy objects
This requires the removal of any bytecode in-

serted when enforcing the target policy. First, the
policy loader removes the policy object from its
policy list. Then, as with addition, all affected
classes are identified. For each loaded class, the
policy loader retrieves the original, unedited, byte-
code from the dynamic class loader and re-enforces
all remaining policy objects.
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3.3.3. Modifying the system policy
The system policy as a whole can be modified

by adding and removing policy objects as described
above. Alternatively, a host can modify the policy
file and use the methods removeAllPolicies()
and loadFromFile(). Both methods empty the
policy list and retrieve the original definitions of
all affected classes. loadFromFile() reloads the
policy from the specified location, enforces each pol-
icy object, and replaces each class definition with
the new version. removeAllPolicies() empties
the policy list, retrieves the original definitions of
all affected classes, and replaces the current defini-
tions with the original versions. Therefore, calling
removeAllPolicies() and loadFromFile() in
sequence effectively refreshes the system policy to
reflect a new or updated policy file.

3.4. Analysis

In this section, we analyze our security infras-
tructure and implementation. We identify techniques
an attacker might use to circumvent security, and
discuss the solutions.

3.4.1. Protecting against unauthorized dynamic
modifications

First, we consider the security problems that arise
due to the ability to dynamically change the behavior
of a system, either directly, through the dynamic
class loader, or indirectly, through the policy loader.

As we described in the previous section, the dy-
namic class loader provides a user or an applet with
the ability to modify a class dynamically. A ma-
licious applet, thus, can use this ability to modify
a protected resource, and thereby bypass the ac-
cess control policies associated with the resource.
Consider the following security policy: applet A is
granted read, but not write, access to a file class, F .
So, A can invoke F.read, but not F.write. This con-
straint is enforced by inserting checks into F.write
whenever F is loaded or modified. A could com-
promise security by adding a new method F.Awrite,
which is identical to F.write, but is not protected by
an ACP. A may then invoke F.Awrite and compro-
mise file system integrity.

The problem arises because both protected re-
sources and external mobile programs reside within

the same namespace. Thus, we resolve the prob-
lem with strict namespace partitioning, as supported
by Java 1.2 [21]. We associate different trust lev-
els with the components of a program. Components
with different trust levels are located within dif-
ferent namespaces. That is, they are loaded and
managed by a different dynamic class loader and
policy loader. Thus, untrusted mobile programs, lo-
cal resources, and system classes are partitioned into
separate namespaces. Now, applets cannot directly
modify protected resources, since the dynamic class
loader does not allow programs to change classes in
different namespaces.

While the above separation does restrict an ap-
plet’s ability to modify resources directly, the applet
can still change policies through policy loaders. Since
a policy loader controls all security policies within
its namespace, it is vital that the policy loader itself
be well protected from untrusted code, which might
otherwise circumvent the entire security mechanism.
Continuing with the prior example, we have ensured
that A cannot modify F . However, A can get a handle
to the policy loader in the resource namespace, and
simply remove the ACP protecting F.write. Therefore,
we impose the dynamic class loader’s namespace con-
straint on the policy loader; policy loaders cannot be
directly accessed across namespaces. To enforce these
constraints, PolicyLoader includes native methods
for stack inspection [37]. All methods that change
policies include code that checks the previous frame
on the current thread’s call stack. If the corresponding
method is not defined within the current namespace,
then a security exception is thrown.

However, an applet may invoke the resource pol-
icy loader indirectly, via a resource. This should not
be completely forbidden, since a user may specify a
security policy in which resources initiate changes in
the policy when accessed. The solution is to protect
all resources and critical components with an ACP.
Assuming that these ACPs are correctly specified, all
resources are safe from unauthorized access.

3.4.2. Resolving policy conflicts
In Section 2 we described the enable policy

statement. A policy such as enable Fonts ->
File allows the Fonts class to access the File
class regardless of what other methods are on the
stack. This option introduces the possibility of policy
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conflicts and security holes. For example, a mali-
cious applet can create a policy enable BadApp
-> File, which could potentially grant file permis-
sions. We define the semantics of enable to resolve
conflicts and prevent security violations.

Consider a system using namespace partitioning,
as described above. Such a system might have a
hierarchy of namespaces, with a System namespace
being the lowest and an Applet namespace being
the highest. Note also that there is an implicit trust
relationship between these levels; high levels need
to trust lower levels. Security violations occur when
objects in a higher level try to override the security
policy of a lower level. Thus, whenever there is a
possible conflict between an enable and a constraint,
the lower level policy takes precedence.

For instance, a policy conflict would occur if
the following two policies were encountered: (1)
before -> File do DenyResponse and (2) en-
able R1 -> File. If the two policies are defined
in the same namespace, then enable takes prece-
dence. On the other hand, if (1) were defined in the
system namespace, and (2) in the resource name-
space, then (1) would take precedence.

Namespace partitioning relies on the assumption
that a principal is trusted within its own namespace.
Given this assumption, enable cannot be used by
a malicious applet to circumvent an ACP protecting
a resource. An enable policy enacted in the applet
namespace is overridden by any conflicting policy in
the resource namespace.

3.4.3. Reflection attacks
Reflection can be used to defeat some security

mechanisms that rely on namespace partitioning
[36]. This type of attack assumes that interposi-
tion code takes the form of proxy or wrapper classes
that hide the protected class. A malicious applet can
use reflection to discover the actual name of the pro-
tected class and invoke its methods manually, thus
bypassing the proxy. Our system is immune to this
sort of attack, since there are no proxy classes. In-
terposition code is placed directly in the protected
method, and cannot be circumvented.

3.4.4. Synchronization attacks
Multithreaded systems present the attacker with

the opportunity to exploit race conditions. Consider

Example 4: if the CheckCount method was not
atomic, an attacker could potentially violate the ac-
cess constraint by exploiting a race condition be-
tween when the access count is checked, and when
it is incremented. To prevent this sort of attack, and
any synchronization-related bugs, all interposition
code is synchronized. Whenever the bytecode editor
encounters an object reference, it places a moni-
torenter instruction that locks the object. It then
places all monitorexit instructions at the end of
the instrumented method.

4. Performance analysis

In this section, we examine the performance be-
havior of our security infrastructure. The primary
goal of the analysis is to evaluate the cost of provid-
ing an extensible security infrastructure. In our previ-
ous research, we evaluated the performance behavior
of the binary-editing-based security infrastructure
for static policies [26] and the JVM that supports
dynamic classes [23]. To summarize these results:
ž In many cases binary-editing-based approaches

perform better than reference monitor-based ap-
proaches, such as the JDK security model, be-
cause interposition code is inlined, as opposed to
involving several procedure calls.
ž The overhead of implementing dynamic class is

moderate, approximately six percent.
Therefore, in this section we focus primarily on
the overhead required to implement reconfigurable
policies. We performed all experiments on a 266
MHz Pentium II running SunOS 5.6.

One advantage of reconfigurable security is that
frequently the number of security checks can be re-
duced. Recall Example 3. We want to prevent access
to either the file system or the network. If a file is
accessed, we set a policy to prevent network access.
Further file accesses are not monitored. If a static
security mechanism is used, a program would have
to perform n security checks, where n is the number
of times a file is accessed. Each check would con-
sult a database to determine if the network has been
accessed, say this takes time c. Our approach only
needs to change policies once. Thus, our approach is
valid whenever the time to change the policy, p, is
less than n ð c.



88 B. Hashii et al. / Computer Networks 33 (2000) 77–93

Table 1
Policy modification results, recorded in seconds

Add policy 0.060
Remove policy 0.015
Loading a class (w=o policy) 0.018
Loading a class (w policy) 0.051
Invoking a method (w=o policy) 0.000070
Invoking a method (w policy) 0.00092

4.1. Microbenchmarks

In order to determine p, we measured the time to
add or remove a simple policy using the meta-inter-
face. The policy we used for these microbenchmarks
is:

before -> method NoApp. run()V do
NoResponseObject

The NoApp class is a subclass of Thread and re-
defines the run method. Both the protected method
and the response are empty and do nothing. The
result of each of these experiments is the average
of 100 runs. It takes about 0.060 seconds to add
a policy when the protected class has already been
loaded. This includes the time to modify and replace
the class. It takes about 0.015 seconds to remove a
policy, including the time to unmodify and replace
the class. Table 1 summarizes the results. For com-
parison, we have also included the time to load a
class, with and without a relevant policy already in-
stalled, as well as the time to run the modified and
unmodified methods.

4.2. Application benchmarks

We ran a second set of experiments to examine
the overhead of enforcing security policies on ap-
plications. In particular, we used the SPECjvm ’98
benchmark suite [32]. 3 We specified a simple se-
curity policy that prints a warning message when
writing more than a given number of bytes. The
policy is defined as follows:

before -> class spec.io.FileOutputStream
and spec.io.FileOutputStream.byteCount

3 We used a SPECjvm problem size of 100. These results are not
SPEC compliant, and are suitable for internal comparison only.

>1000000
do AlertResponseObject

We also did a control run with no policy specified.
Table 2 summarizes our results; the performance
penalty in most cases was around 7%. The variation
in overhead is partly due to the amount of times the
restricted resource is used. The jack benchmark,
for example, is very IO-intensive, resulting in a
25.7% overhead. We expect that in most cases the
overhead will be minimal. In the case of jack, the
higher overhead is due to policy enforcement. We
are currently looking at optimization techniques in
order to reduce this cost.

5. Related work

We have divided this section into two parts. The
first compares approaches for providing access con-
trol for mobile code. The second compares security
policy languages.

5.1. Access control mechanisms

We evaluate and compare several proposed access
control mechanisms with our mechanism. We focus
on the power, flexibility, and dynamism of each
approach, as compared to our work.

A mechanism for controlling access is a wrap-
per [34]. A wrapper is a code that encapsulates a
resource. It may change the resource’s behavior by
running interposition code. Thus, a wrapper could be
used to add access control checks to a resource by in-
lining the interposition code, as in [35], or by calling
a wrapper which then calls the original code, as in
[13]. A technique operating at the system call level
[15] uses a loadable kernel module to intercept and
wrap system calls. On the other hand, type hiding
[36] modifies the dynamic linking process in Java to
hide or replace classes seen by an applet. It allows a
class to be replaced by a proxy class that checks the
arguments of the invoked method and conditionally
throws an exception or call their original methods.
The problem with using wrappers to implement ex-
tensible security can be seen in Naccio [13]. Naccio
provides a framework for specifying resource hooks,
state maintenance code, and safety policies. Pro-
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Table 2
SpecJVM results, recorded in seconds

Benchmark Standard JVM (To) Active policy (Tp) (Tp �To)=Tp

check 1.06 1.497 0.292
mtrt 1709.399 1845.753 0.0739
jess 1420.888 1532.356 0.0727
compress 7966.578 8219.17 0.0307
db 2675.772 2963.061 0.0970
mpegaudio 6383.705 6746.463 0.0538
jack 2083.441 2804.971 0.257
javac 1682.285 1820.105 0.0757

grams are transformed to use wrappers instead of the
original library code. However, in order for Naccio
to support extensible security policies, it must re-
compile policy definitions, recreate library wrappers
and re-modify programs to use the new wrappers.

As an alternative mechanism, a resource monitor
[2] intercepts and validates resource accesses. Our
approach uses an extensible resource manager which
is essentially created and modified at runtime. Most
approaches, however, use a static resource monitor.
While a user can change what a static resource mon-
itor does — denying access or not — fairly easily,
it is more difficult to change the set of monitored
resources. In order to support policies over any re-
source, all resources must be monitored, and this can
be very inefficient. As a result, most existing systems
do not do this. Systems such as Java and Safe-Tcl
define a subset of operations which are security-rele-
vant and check only those references. Likewise, the
monitors in [20] intercept and authorize all IPC calls.

Another approach that inlines resource monitor
code is used in Security Automata SFI Implemen-
tation (SASI) developed at Cornell University [12].
The main differences between SASI and our work
is the way in which policies are specified, and that
SASI has an implementation for x86 assembly code.
The advantage of x86 assembly code is limited in
that it is difficult to extract application level re-
sources from low-level code. There is also a SASI
implementation for Java which is similar to this
work. However, it does not support dynamic policy
changes.

In Java’s security model [17], each resource
has a permission class associated with it, for in-
stance java.io.FilePermission. A policy file speci-
fies which principals have which permissions. The

java.security.Policy object contains the policies that
are currently in effect. A policy can be changed by
either setting a new policy object or by calling its
refresh method and reloading its policy. However,
this form of extensible security is limited. For ex-
ample, it is possible to write resources that do not
call the access controller. Protecting such resources
would require rewriting the resource class. Our ap-
proach can handle this by automatically modifying
the resource. Furthermore, access control decisions
are based on the protection domain of the code. It is
not clear how to base decisions on environmental or
historical conditions.

Deeds [11] is a history-based access control
mechanism built on top of Java 1.1’s security mech-
anism. In this system, a security event is a call to the
security manager. The security manager will, in turn,
call the handlers for the particular event. Policies can
be modified by changing these handlers. However,
like other static resource monitor approaches, it is
unclear how to modify policies over resources that
do not use Java’s security manager.

Riechmann and Hauck [29] use meta-objects to
implement security policies. A number of meta-
objects can be attached to an object reference. They
are invoked whenever the object is accessed. This is
an alternate method of applying extensible security
to objects, with the limitation that anyone can attach
meta-objects, but only the meta-object can remove
itself.

The Distributed Trusted Operating System
(DTOS) [4] provides adaptable security by using
security servers. When a request for a resource is
made to the kernel or other program, a resource
monitor checks with a policy server that determines
if the access is allowed. Policies can be changed by
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either reinitializing the server or changing the active
server. However, switching between different kinds
of policies is difficult. For example, if a Unix style
security policy is in place, the context information
that the server needs consists of subjects, objects,
and actions. Switching to an MLS policy requires
changing the context information to labels.

Another alternate mechanism is a capability [9],
an unforgeable reference to an object and a set of
access rights. Possession of the capability authorizes
the holder to perform the associated accesses on the
object. Capabilities also have a notion of revocation
and delegation. For example, the J-Kernel project
[19] extends Java’s security model by implement-
ing a capability system within the language. On the
other hand, Cherubim’s [27,28] active capabilities
provide extensible security policies by containing
user-defined scripts that are run when received by a
host. The limitation with generic capability systems
is that they cannot usually prevent a program from
leaking a reference to an untrusted object. Our ap-
proach solves this problem by protecting the resource
itself, and not just its references.

Domain Type Enforcement (DTE) [3] is Trusted
Information System’s (TIS’s) access control project,
in which subjects are grouped into domains and
objects are grouped into domains. There is also a
language (DTEL) that specifies which domains can
perform certain operations on which types and how
threads can change domains by executing certain
specified programs. DTEL operates on the level of
files and programs, whereas our language operates at
a finer granularity. Fraser and Badge [14] provide a
way of maintaining general security properties across
policy changes. The idea is that the addition of new
policies should not invalidate the access relationships
of the previous policies. They can prove that adher-
ence to policy representing predicates during DTE’s
policy loading process maintains these properties.
While we do not provide any such guarantees, we
are currently researching the area of policy reasoning
and composition.

5.2. Policy languages

Mechanisms for specifying and enforcing security
are also a focus in security policy language research.
Security policy languages have been considered as

the basis for verification of secure systems design.
Various considerations have been given to policy
languages for doing general enforcement.

In access control matrices (ACM) [1], a two-
dimensional matrix captures the access rights of
subjects and objects. Entries in a cell determine the
list of access rights that a subject has over an object.
The ACM is primarily a theoretical tool, and is not
used in practice. Its implementations, capability lists
and access control lists, are cumbersome to work
with when the subjects and objects involved are not
known in advance.

Miller and Baldwin [24] describe a method of ac-
cess control based on boolean expression evaluation.
The idea is that each subject and object is given a set
of attributes. In addition, there is also a set of rules
that link a subject, an object, and an action. These
rules can be based on any number of attributes. Since
these attributes can be anything, including security
level, group membership or time of day, they can
be used to implement most security policies. Our
approach is similar in that we capture the various
attributes in terms of boolean expressions.

Goguen and Meseguer [16] use an algebraic spec-
ification approach to specify security policies. Their
particular approach expresses security policies as a
set of non-interference assertions about a system.
Cholvy and Cuppens [7] and Cuppens and Saurel [8]
use a form of deontic logic to express policies. In
addition to specifying what actions an agent is per-
mitted or forbidden to perform, it allows statements
that say what actions an agent is obliged to perform.
They use deontic logic to find consistency problems
among policies. These policy languages are much
more expressive than the one proposed in this paper.
We plan to close this gap in the future. Our initial
focus has been to develop a simple language for
access control that can be implemented easily and
efficiently.

The DIAMOND [25] security model provides an
alternative model for inheriting security policies in
object-oriented systems. It extends the MLS security
model described by Denning [10] to object oriented
databases. The innovation is that security levels, and
hence policies, are not inherited from a class’s su-
perclass. Instead, they are derived from its instances.
This allows a particular instance of a subclass to
have a higher security level than its superclass. DI-
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AMOND works strictly with MLS policies, whereas
our scheme works for arbitrary models.

6. Conclusion

The mobile code environment is inherently dy-
namic, unpredictable, and dangerous. We have pre-
sented an extensible security infrastructure that sup-
ports fine-grained security policies that can be mod-
ified dynamically to suit the underlying operating
conditions. The security infrastructure enables sites
to respond to unanticipated changes in the security
environment of a system, and changes in operating
conditions and organizational goals. Further, sites
can use the dynamic capability to eliminate unnec-
essary security checks. We have implemented the
infrastructure in Java using a dynamic class mecha-
nism.

Our future work involves enhancements and op-
timizations of our implementation. We are currently
using the infrastructure to develop distributed pol-
icy discovery and management systems. Further, we
plan to integrate the infrastructure into a distributed
intrusion detection system.
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