Portability in C -- A Case Study

Matt Bishop

Research Institute for Advanced Computer Science
NASA Ames Research Center
Moffett Field, CA 94035

Introduction

There are a large number of computers and operating systems in use today, and
more and more programs are being moved from one computer or operating system to
another. In fact, when you complete a program, your job is often only half done; since
you almost certainly have access to other computers, you will want to make the program
portable enough to run on all of those machines. Taking some care while writing the pro-
gram can greatly reduce, or even eliminate, the difficulty of such ports.

In this article we will examine several C programming constructs that produce
more portable programs. We will do this in three stages, looking first at dependencies
upon the compiler, then at dependencies upon the operating system, and finally at depen-
dencies upon the computer architecture. Each of these considerations affects different
parts of the program.

The vehicle we shall use is a program called trnum. This program is used to num-
ber equations, tables, and any other text you like; the numbers are given to trnum as sym-
bols and are converted to numbers by that program. It was written before UNIX System
V was available, and was ported to that operating system with literally no changes. So,
the goal of programs which can be ported without changing anything is not an impossible
dream.

Compiler Dependencies

Compilers which implement C as defined in “The C Programming Language --
Reference Manual” (see The C Programming Language by Brian W. Kernighan and
Dennis M. Ritchie, Prentice-Hall, Inc., 1978; the UNIX Programmer’s Manual Volume
2 contains a short addendum) are pretty much the same; only a few features may cause
problems. Four are as a result of an extension to the language in 1978 (and covered in the
addendum to the reference manual); the remaining one arises from efficiency considera-
tions, and is explicitly left undefined in the reference manual. We will deal first with the

extensions.

Trnum allows the user to specify the format of the counter, so it will be printed as
capital or small Arabic letters, Roman numerals, or numbers. These are represented
internally by the symbols F1 (for numbers), FA (for capital letters), Fa (for small letters),
FlI (for capital Roman numerals), and Fi (for small Roman numerals). From a program-
mer’s point of view, these may be used to represent formats in two ways.

Using the extension, one way is to create an enumerated type by saying
enum counter_format { F1, FA, Fa, FI, Fi };

and declaring the format field associated with each counter to be of type enum
counter_format. But some compilers will not accept this as a legal C statement, so trnum
does not use this C language feature. Instead, it defines F1, FA, Fa, Fl, and Fi as macros
and declares the format field to be an integer. This works with all C compilers, and in
this case the application is simple enough so that the loss of the added type checking is
far outweighed by portability considerations.

The three other areas in which the language has been extended are closely related.
Structure assignment, passing structures as function parameters, and functions returning
structures are now allowed. Depending on the computer, these may or may not increase
the speed of the program (some computers can do ‘“‘block moves” which are faster than
the corresponding non-block moves). It is best to avoid passing structures as arguments
or writing functions that return structures; instead, pass pointers to structures to and from
functions. As for assignment, it is best to code that as a macro which may be replaced
with a function call should the program be moved to a compiler which does not allow
structure assignment. For example, the macro

/%
* note a and b are pointers,
% 50 if we have to convert this
% to a function call, we can
* just pass the pointers
*/
#define STRUCTURE_COPY (a,b) (*(a) = *(b))

works quite nicely.

The other area in which compilers are very different is the order in which expres-
sions are evaluated; the best known result of this is that functions producing side effects
should never be used in expressions involving any variables or functions affected by the
side effects. The order in which expressions are evaluated is left undefined by the C ref-
erence manual very deliberately, to allow the compiler writer to choose the most efficient
method for the target machine. We shall look at two cases where this affects expressions,
and how to work around this ambiguity.

The first example is the order in which function arguments are evaluated. In trnum,
there is a function called getnext() which is most often called with the first character of a
string as its first argument, and a pointer to the remainder of the string as its second argu-
ment. Hence, if p is the pointer to the beginning of the string, it is most tempting to write
this call as:

getnext(xp++, p);

Now, suppose p points to the string ‘““.y>"". If the compiler evaluates function arguments
beginning at the left, getnext() will be called as

[(13

getnext(‘.’, “y>"");

as we want. But, if the compiler evaluates function arguments beginning at the right (as
do VAX and PDP-11 compilers), the call becomes

¢ X3

getnext(‘.’, “.y>"");

which is not what we expected. The only way to guarantee the order of evaluation is to
use a temporary variable:

base = &p[1];
getnext(:p++, base);

This will work on all compilers.

As a second example of the dangers of assuming an order of evaluation, consider
the expression

a[i] =b[i--];
which might be used as part of a while loop for copying strings (there are many such
loops in trnum). If i is 1, b[0] is ‘x’, and b[1] is ‘y’, then this statement will assign ‘y’ to
a[1] if the expression is evaluated from left to tight, but it will assign ‘y’ to a[0] if the
expression is evaluated from right to left. Again, to get around this problem, move the
decrement of i outside the assignment statement, and say

a[i] = b[il;

i--
if the first interpretation is what you want, or

i__.

ali] = b[il:

if the second interpretation is what you want.

Operating System Dependencies

Unlike changing C compilers, it is not possible to write C code that will not change
at some level when moved to another operating system. The trick is to keep those
changes confined to library functions, header files, or both. With properly-written pro-
grams, it should only be necessary to change the library functions or header files appro-
priately, and recompile and relink the program. In most cases, only recompilation and
relinking will be necessary, since the majority of applications programs access the kernel
using libraries provided with the operating system (such as the standard input-output
library, also called stdio.)

The program trnum falls into this class of programs because its interaction with the
operating system is done through the standard input-output library package. So long as
this (relatively) standard interface exists, it can be compiled and linked without change,
and the package will handle the details of interfacing the program’s input and output with
the operating system. Let us look at how this package hides operating system dependent
details from trnum.

The stdio package associates with each file a collection of information such as how
the file was opened (for reading, writing, or appending), the current offset of the file
pointer into the file, and the file index number. This structure is hidden by defining a
structure and macro similar to the following in the header file <stdio.h>:

struct _finfo {
int _fileindex; /% index into file table =/
unsigned int _mode; /* open for read, write */
¥
#define FILE struct _finfo

and now for each different operating system, the header file can be changed as required.

As another example, each operating system has its own system call for opening
files. These may, or may not, be compatible with the system calls of other operating sys-
tems; for example, on V7 UNIX, the second argument to the open system call is 2 for
appending to the file, but on 4.2 BSD UNIX, the second argument must be 8 to append to
the file. Fortunately, the stdio package provides a uniform interface for opening a file;
saying

fp = fopen(filename, "a");

will open the named file for appending, regardless of what the operating system call
requires. Again, the details of interacting with the operating system are segregated from
the rest of the program.

A far less common, but more dramatic, example of this occurs when a program that
reads the contents of directory files is ported from V7 UNIX to 4.2 BSD UNIX. The
directory formats are vastly different; for instance, V7 UNIX uses a fixed-length record
for each file name in the directory, whereas 4.2 BSD UNIX uses variable-length records.
Hence, the directory should be accessed only through a set of functions separate from the
rest of the program. So, for example, use routines called open_directory, read_directory,
and close_directory to open, look through, and close the directory file rather than putting
the directory scanning code with the rest of the program code. Then, when the program
is moved from a V7 UNIX system to a 4.2 BSD UNIX system, only the three directory
accessing routines need be rewritten.

Another problem arises when you use library functions that the system provides.
Sometimes these differ from system to system. The least dangerous of this is when the
function returns one datatype for an operating system and another datatype for another
operating system. In trnum, the function sprintf did this (returning an integer in SYS-
TEM V UNIX and a character pointer in 4.2 BSD UNIX.) There is no obvious way to
determine what these functions are other than going to a manual, but you should avoid
relying on return values of functions for which return values are not central to the purpose
of the function. In trnum, for example, sprintf was used to format a string in core, and so

the return value was completely ignored; hence, when it was moved to SYSTEM V
UNIX, there was never a problem.

Some library functions have no counterparts on other systems. Examples are the
search functions provided by SYSTEM V UNIX. In this case, all that can be done is to
write equivalent functions. A similar but more subtle form of this occurs when two dif-
ferent functions have the same name on different systems. Fortunately, neither of these
occurred in trnum; the only thing that can be done about them is to check the manual of
the operating system the program is being ported to.

Aside from localizing operating system dependencies in functions, there are two
other considerations programmers must keep in mind -- defining and naming external
variables. We will look at naming them first.

As stated in the previous section, most compilers impose a maximum on the num-
ber of significant characters in identifiers. However, the linker also uses these names to
link the program modules together. On some systems, the maximum number of signifi-
cant characters of identifiers the linker recognizes is different than the number the com-
piler recognizes. Furthermore, some linkers ignore the case of characters in identifiers.
Hence, all external symbols should be unique within the first six characters, exclusive of
case. (This seems to be the least common denominator of the restrictions.) As an exam-
ple, the trnum program uses the function issalnum() to determine if a string is composed
of alphanumeric characters; the name isalnum_str() (for “‘is alphanumeric string’”) would
be more readable, but has the same first six characters as the function isalnum(); hence,
this could produce a conflict.

The other problem with external variables arises when the keyword extern is omit-
ted in a declaration. With many versions of the UNIX operating system, if an external
variable is defined in several files, the linker just uses one definition and ignores the oth-
ers. Many other UNIX systems will object that the variable is multiply defined, and fail
to link the modules. Thus, in trnum, all variables that are referenced by routines in more
than one file were defined in the file containing the main routine and simply declared as
extern in all the others. For example, the variable topt, which is 1 when a table of num-
bers is to be generated and 0 when it is not, is declared as

int topt; /* generate table of numbers? */
in the main file and as
extern int topt;/* generate table of numbers? /

in the other files. This prevents the linker from finding multiply defined variables.

Machine Dependencies

Several factors combine to create problems when moving a program from one
machine to another. All of these spring from differences in the computer architectures
and the C compiler’s customizing object code to be as efficient as possible for that
machine.

As an example, consider the representation of various datatypes. Assuming a spe-
cific number of bits for characters, short integers, integers, and long integers is a recipe
for disaster, because this number may not be the same for all machines. Unfortunately,
this type of assumption is very common, particularly when using bits as flags. For exam-
ple, in trnum, the structure of the hash table used to store counters contains a word for
miscellaneous flags; if the low bit is set, that entry is unused. It is very tempting to write
the statement clearing the low bit as

flag &= 0177776;

on a PDP-11 (which has 16 bit words), but this will fail miserably on a VAX, which has
32 bit words (and hence will clear the high-order 16 bits as well.) However, writing

flag &= "01;

will clear the bit on any machine, because the compiler will automatically change “701”
into a word with the low bit clear and all other bits set. The moral is to let the compiler
worry about datatype lengths.

Another obnoxious problem arises when you assume two datatypes can be used
interchangeably. Recall the function issalnumy); it takes a pointer to a string as its argu-
ment. Call this parameter S. Many programmers would tend to declare this function as

int issalnum(s)

{

and on many machines there would be no problem, since a pointer to a character is the
same length as an integer. But on some machines, this would fail (with a core dump, if
you are lucky) because the two are not interchangeable. The declaration should be (and
in trnum is) written:

int issalnum(s)
char #s;

{

Related to this is the problem of type coercion. Consider that on some machines
(such as a PDP-11), a character pointer may refer to any memory location but an integer
pointer must point to an even address. Hence on a PDP-11, it is not safe to coerce a char-
acter pointer to an integer pointer and access the data as an integer. (On a PDP-11, in
fact, this causes an error.) If such coercion must be done, make it into a subroutine so
that it can be changed easily for different computers. This problem is particularly acute
with storage allocators; the approach used in trnumis to define a new type with

typedef char *ALIGN;

so, when it is moved from a VAX to a PDP-11, the header file need only be changed to
say

typedef int *ALIGN;

(in fact, this is done by a conditional compilation rather than changing the file.)

This brings up another point -- byte ordering. Some computers, such as the VAXen
and PDP-11’s, number bytes from right to left; others, such as the MC68000, number
bytes from left to right. As a result, when bytes are read from integers, the order in which
the bytes are read is machine-dependent. The same is true of bits being accessed. If the
order is important, do the reading (or accessing) in a separate routine that can be modified
should the program be moved to a machine that reads bytes in the opposite order.

Characters are also a source of frustration. A program cannot assume ASCII order-
ing, or even a contiguous alphabet (in EBCDIC, there are nonalphabetic characters inter-
spersed within the alphabet.) Hence, constructs such as the following, to capitalize the
character in C:

capital_c=c-’"a’ + A’

should be avoided since they are non-portable. Instead, use the functions (or macros)
defined in <ctype.h>; the above would be written

capital_c = toupper(c);

which will work on all computers, since toupper is defined appropriately on each com-
puter.

Even when using ASCII characters, there are certain common assumptions which
are quite dangerous. For instance, it is widely accepted that characters are all nonneg-
ative, and the end of file marker is negative. Hence, the test

if ((c = getchar()) < 0){

is true only at the end of file. On a VAX, this is correct. But on a PDP-11, characters are
really integers in the range —128 to 127 inclusive. In this case, the character will be sign-
extended before the test is made; so, the above test will be true when the character has the
high bit set, regardless of whether or not the end of file is reached. To be safe, always
assume characters are sign-extended when converted to integers, and when using the stan-
dard input-output package, use the end of file marker explicitly, as in

if ((c = getchar()) == EOF){

which will work on all machines.

Related to this is the multicharacter constant. As characters are really short inte-
gers, many compilers allow several characters to be stored in one integer. However,
because the order in which the characters are actually put into the integer is machine
dependent (upon the way the computer numbers its bytes), this is an extremely non-
portable construct. Use character strings instead to ensure portability.

Conclusion

There is one tool that is quite useful in checking for non-portable constructs: the
program lint. This program will check for, and report, constructs which might cause
problems when the program is ported to another machine or operating system. It also

reports expressions the values of which depend on the order of evaluation. (It may, or
may not, report use of the extensions to C; that depends on whether or not the compiler
recognizes them.) When run with the option —p, the standard input-output library func-
tion calls are also checked for calling errors; when —c is given type casts are very care-
fully checked; and when the flag —a is given, assignments that would cause values to be
truncated (such as moving a long into an integer) are also reported. (Be aware the use of
these flags varies from system to system; the above applies to 4.2 BSD UNIX only.) Lint
will be examined more closely in a future issue of The C Journal magazine.

This paper has examined some of the ways programmers can make their programs
more portable. As programs are moved from one machine to another, these considera-

tions become vital to writing useful programs.
[e¢]

