
How To Write a Setuid Program

Matt Bishop

Research Institute for Advanced Computer Science
:\ASA Ames Research Center

Moffett Field. ~A 94035

EXTENDED ABSFRACI'

A typical problem in systems programming is often posed as a problem of keeping
records [ALEP71). Suppose someone has written a program and wishes to keep a record of
its use. Thi file. which we shall call the histary file. must be writable by the program (so it
can be kept up to date). but not by anyone else (so that the entries in it are accurate.) UNlXt

solves this problem by providing two sets of identifications for processes. The first set.
called the real user identification and group identification (or UJD and GIO. respectively).
indicate the real user of the process. The second set. called the effective ID and GIO. indi
cate what rights the process has. which may be. and often are. different from the real UIO
and GIO. The protection mask of the file which. when executed. produces the process con
tains a bit which is called the setuid bit. (There is another such bit for the effective GID.) If
that bit is not set. the effective laD of the pro ess will be that of the person executing the
file: but if the setuid bit i set (so the program runs in setuid nwde). the effective UID will
be that of the owner of the file. not that of the person executing the file. In either case. the
real CIO and GIO are those of the person executing the file. So if only the owner of the his
tory file (who is the user with the same UIO as the file) can write on it. the setuid bit of the
file containing the program is turned on. and the UIDs of this file and the history file are
the same. then when someone runs the program. that process can write into the history file.

These programs are called setuid programs. and exist to allow ordinary users to per
form functions which they could not perform otherwise. Without them. many UNIX sys
tems would be quite unusable. An example of a setuid program performing an essential
function is a program which lists the active processes on a system with protected memory.
Since memory is protected. normally only the privileged user root could scan memory to list
these processes. However. this would prevent other users from keeping track of their jobs.
As with the history file. the solution is to use a setuid program. with rOOl privileges. to read
memory and list the active processes.

Setuid programs introduce many security problems [TRU 0]: many of these can be
dealt with by programming very carefully. The reader should bear in mind that on some
systems. the mere existence of a setuid program introduces security holes: however. it is pos
sible to eliminate the obvious ones.

By following some simple rules. programmers can decrea e the danger of a setuid pro
gram being able to compromise system safety. These rules are:

tUNIX is a Trademark of Bell LaboratoTles.

110



-2-

1. Be as restrictive as possible in choosing the UID and GID of the setuid program.

2. Do not write interpreted setuid or setgid scripts.

3. Do not use creat(2) for locking.

4. Catch all signals.

5. Check data for consistency.

6. Take extreme care when recovering from errors.

7. Close all but necessary file descriptors before calling exec(2).

8. Reset effective UlDs and GIDs before calling. exec(2).

9. Check the environment of the process.

10. Be careful with VO operations.

Setuid programs explicitly violate the protection scheme designed into UNIX. On sys
tems where security is not a problem, this is a blessing, since it enables many things to be
done easily that would otherwise be very difficult: but on systems where security is a prob
lem. these programs also pose very real threats. Unfortunately. they are very necessary: so.
the designers and implementors of setuid programs should take great care when writing
them.

Ackrtowledgements: Thanks to Bob Brown. Peter Denning. George Gobel. Chris Kent, Rich
Kulawiec. Dawn Maneval. and Kirk Smith. who made many constructive suggestions.

References

[ALEP71] Aleph-:'Jull. "Computer Recreations," Software - Practise and ExperUmce 1(2)
pp. 201 - 204 (April - June 1971)

[TRUS80] Truscott. Tom and Ellis. James. "On the Correctness of Set-User-ID Programs,"
Department of Computer Science. Duke University (unpublished)

111


