
File Protection in UNIX

Matt Bishop

Research Institute for Advanced Computer Science
NASA Ames Research Center

Moffett Field, CA 94035

Introduction

UNIX® file protection is very simple and straightforward. However, many people
are not aware of the richness of this powerful mechanism. In this article we shall discuss
file protection in detail, and describe some simple tricks to help users protect the informa-
tion in their files.

Background

The UNIX file system is organized as a hierarchy of files. Think of a tree turned
upside down, and replace branches with lines. Wherever lines join or end, put a node. If
a node is internal to the tree, it corresponds to a UNIX directory file, which contains a list
of files in that directory. Otherwise, it corresponds to some other type of file. When the
operating system needs to locate a file, it starts at the beginning of the given path and
walks down the tree searching each successive directory until the file is found. For exam-
ple, in figure 1, to locate the file ‘‘/usr/mab/mbox’’, UNIX begins at the root directory ‘‘/’’
and looks for the file or directory ‘‘usr’’. It then searches ‘‘usr’’ for the file ‘‘mab’’.
Finally, it searches that directory for the file ‘‘mbox’’. Note that the root directory ‘‘/’’,
‘‘usr’’, and ‘‘mab’’ all must be directories and must be searchable; otherwise the system
will fail to locate the file.

© Copyright 1986 by Matt Bishop.



2

/

bin lib usr

holly mab

mbox paper

Figure 1. UNIX File System Structure.

UNIX files are owned in the sense that a particular user creates them, and they are
counted towards that user’s disk space. The owner of a file is usually the person who cre-
ates it. Every user has a unique identification number, called the UID, and when a file is
created, the UID of the creator is associated with the file. For example, if my UID is 213,
and I create a file named xxx, the UID of xxx is 213. So, the person with UID 213 (in this
case, me) owns the file. Notice the way that last sentence was written. If my UID were
changed one day, say to 625, the UID of file xxx must also be changed to 625. This can
cause problems, because if the administrator changes someone’s UID and forgets to
change the UID of all his files, the wrong person will have access to them!

The group of a file is analogous to the owner of a file. UNIX users are divided into
groups, and each group has an identification number called a GID. How the GID is
assigned to the file varies from system to system − for example, 4.2 BSD UNIX assigns
the file the GID of its parent directory, System V UNIX assigns the GID of its owner − but
the important fact is that a file can have exactly one GID.

With these preliminaries fresh in our minds, we can now examine the way files are
protected.

Permission Bits for Non-Directory Files

There are twelve permission bits in the protection word of a file; they are customar-
ily divided into groups of three. Let us look at the lower three sets of three bits.

The first set of three bits encodes permissions for the file’s owner, the second set,
permissions for the members of the file’s group, and the third set, permissions for every-
body else. (See figure 2.) When someone tries to access the file, UNIX first checks to see



3

if that person is the file’s owner and, if not, if that person is a member of the file’s group.
For example, suppose a file has permissions set so the owner can only read it, and anyone
in the file’s group can only write it. Even if the owner is a member of the file’s group, he
will be unable to write on the file. Figure 3 illustrates this procedure.

permission bits

miscellaneous

su sg t

owner bits

r w x

group bits

r w x

group bits

r w x

Legend
su setuid bit t sticky bit w write bit
sg setgid bit r read bit x execute bit

Figure 2. Permission Bits.

start
user’s UID

=
file’s UID

false
group’s UID

=
file’s GID

false use other’s
permissions

true

use owner’s
permissions

true

use group’s
permissions

Figure 3. How User Permissions Are Determined for a File.

UNIX associates three rights with each file: read (the ability to display the contents
of the file), write (the ability to change the contents of the file), and execute (the ability to
run the program contained in the file.) The first bit in each triplet of permission bits is set
if read permission is granted, the second bit if write permission is granted, and the third
bit if execute permission is granted.

Here are some examples. Suppose the lower nine bits of the permission word are
110110100. Split this into sets of three: 110 110 100. So, the owner of the file can read
or write the file, the members of the group of the file can read or write the file, and any-
one else can only read the file. As another example, suppose the file’s permission bits
were 111101101; following the above procedure, the owner can read, write, and execute



4

the file, and anyone else can read and execute the file (but not write it.)

As you can gather from the above paragraph, writing permission bits in binary is
painful and hard to read. Since permission bits are grouped into sets of three, and octal
digits correspond to three binary digits each, permission bits are written as a string of
octal digits. So, ‘‘110110100’’ would normally be written as ‘‘664’’, and ‘‘111101101’’
as ‘‘755’’.

We hav e not discussed the highest three bits of the permission bits. The first two
are the setuid and setgid bits. Normally, when a program is executed, the UID and GID of
that process are those of the person executing the program. However, if the setuid bit is
set, the UID of the process will be that of the owner of the file. Similarly, if the setgid bit
is set, the GID of the process will be that of the owner of the file.

For example, suppose a file owned by mab has the setuid bit set. User holly
executes that file. The resulting process will have mab’s UID rather than that of holly.
Had the setuid bit not been set, the resulting process would have had holly’s UID.

The third bit in this group is called the sticky bit, and on many systems can only be
set by the superuser. It simply prevents the program text from leaving main memory once
it has been placed there, and is used to keep heavily-used programs in main memory.
This speeds the program’s startup time noticeably on many systems.

Permissions for a Directory File

Although the permission bits are called the same for both directory and non-direc-
tory files, the interpretation of the three rights is somewhat different for directory files.
Reading a directory means being able to find out what files are in that directory. Writing
a directory means being able to create new files, or delete existing ones, in that directory.
Executing a directory means being able to search that directory to see if a named file is
contained in that directory.

Let’s look at an example. Suppose the directory ‘‘usr’’ contains three subdirecto-
ries called ‘‘bin’’, ‘‘mab’’, and ‘‘src’’. (See figure 4.) If you can read ‘‘usr’’, saying

ls usr

will print

bin
mab
src

If you do not have execute permission on ‘‘usr’’, and you say

ls usr/bin

you will get the error message ‘‘usr/bin not found’’. (In fact, if you don’t hav e search
permission on ‘‘usr’’, and you type

ls usr

you will get



5

usr/bin not found
usr/mab not found
usr/src not found

because ‘‘ls’’ cannot obtain any information about the three subdirectories other than their
names!)

usr

bin mab src

Figure 4. Sample File System.

The chmodchmod(1) Command

How do you change the permission mode of a file? The command chmod(1) exists
for this purpose. Its general format is

chmod permission_mode filenames ...

The permission_mode can be in one of two forms. The first one is the permission
mode you want to assign; it must be in octal. For example,

chmod 4755 rogue

makes the file ro gue readable and executable by everyone on the system, writable only by
the owner, and setuid to the owner of that file. As another example,

chmod 644 rogue.help

makes ro gue.help readable by everyone on the system and writable only by the owner.

The second form exists only on some systems; look in the manual to see if it will
work on yours. The form is

chmod who op permission filename ...

Who is one of u (for ‘‘user’s permission’’), g (for ‘‘group’s permission’’), o (for ‘‘others’
permission’’), or a (for ‘‘all users’ permission’’). Op indicates how rights are to be
assigned; + means the permissions are to be added to those already there, − means the
permissions are to be taken away from those already there, and ≡ means the permissions
are to replace those already there. Permission is the code letter for the desired permis-
sion; they are r (for ‘‘read’’), w (for ‘‘write’’), x (for ‘‘execute’’), s (for ‘‘set’’; if used
with g it means ‘‘setgid’’, and if used with u it meand ‘‘setuid), and t (for ‘‘sticky’’).

Let’s suppose, in the example with ro gue, the file originally was mode 664 (that is,
readable by all users but writable only by the owner and members of the group.) To



6

change it to mode 4755, you could use any of the previous commands,

chmod a+x,u+s,g-w rogue.help

(which changes the permission bits as indicated; it leaves all other bits alone), or

chmod u=srwx,g=rx,o=rx rogue.hints

(which sets all permission bits to the indicated state.) If the mode of ro gue.help were
700, to make it mode 644 you can use the command

chmod u-x,g+r,o+r rogue.help

The umaskumask

When you create a file from a C program, you have to specify the permission mode
of the file. For example, you might say

creat("xxx", 0666)

to make the file readable and writable by all users. However, before the file protection
mode is set, the given permission is changed, by bitwise and’ing it with the bitwise
negation of some variable called the umask. If, for example, your umask were 022, the
bitwise negation of that is 0755, so the file xxx would be created with permission mode
644 (that is, you can read or write the file, but everyone else can only read it.) Some con-
venient values of the umask are:

077 only the owner has any permissions
022 only the owner can write the file
002 only the owner and group members can write the file

The umask can be set by using the command

umask nnn

(which sets it to nnn) from the shell level, or by using the system call umask.

Be aware that on many systems the default value of the umask is 0, which means
that the mode you specify when creating a file is the mode of a file. Unfortunately, some
programs create files in modes 666 or 777, assuming the user’s umask will cancel any
unwanted permissions. So be sure you set your umask to a sane value!

Conclusion

In this article we have covered the most important aspects of the built-in controls
UNIX provides for file protection. These mechanisms are simple yet powerful. They pro-
vide a consistent framework for controlling who can access a file, as well as the ability to
prevent dangerous errors in protection when creating files. With these mechanisms, you
can improve the protection of files containing data that you wish to keep secret.


