Storageln C

Matt Bishop

Research Institute for Advanced Computer Science
NASA Ames Research Center
Moffett Field, CA 94035

I ntroduction

In a previous article we discussed the scope of C variables. Intimately bound with
the idea of scope is that of storage. When a program defines a variable, the compiler will
decide how to store the value of that variable, and create a space in memory for the value.
The compiler uses the declaration to determine how much space to allocate and how to
allocate it — as temporary storage (such as on a stack) or as more permanent storage (in
data space.)

Recall that the format of a C variable declaration is:
storage-class type identifier

The part of this declaration relevant to the storage is, not surprisingly, storage-class. The
storage classes are static, auto, register, and extern. (There is a fifth keyword, typedef,
that for syntactic reasons is considered a storage class; but it plays no part in anything
that follows.)

In each of the following sections we shall discuss one type of storage declaration,
its effects, and when it is legal. In the last section, we shall look at a simple program
written in a variety of ways and show how the results of changing storage classes affects
the way the compiler handles storage.

Auto

The simplest class of storage is automatic storage, indicated by the storage class
keyword auto. Any variables defined at the beginning of a block with no explicit storage
class specifier are assumed to be automatic. The storage for these variables is created
when the block is entered, and exists until the block is left. For example, in the routine

show()

{
auto int i;
1=7;

printf("In show, i = %d\n", 1);
¥

the storage space for i is allocated when the routine is entered, and deallocated when the
program leaves the routine.

Most compilers do this by way of a stack. A stack is just a list onto which things
are pushed (or put), and from which things are popped (or removed.) The useful property
of a stack is that the last thing pushed onto the stack is the first thing removed (hence, a
stack is sometimes called a “LIFO™ list, for “Last In, First Out” list.) If you think of a
stack of trays in a cafeteria, you will see why this data structure is called a stack; the last
tray put on top of the pile is the first one removed.

The space for storing automatic variables is created by using a stack. The easiest
way to see how is by an example. Here is a routine to call show, above:

main()
{
auto int j;
j=10;
show();
printf("In main, j = %d\n", j);
¥
When main is called, the stack of storage is empty:
(bottom)

Then space for the variable | is allocated, and | is set to 10. The stack now looks like
(reading left to right):

10 (bottom)

At this point, show is called, and space need to be created for the variable i, which is set
to 7. Once this occurs, the stack looks like

7 10 (bottom)

Now, the program leaves the routine show; the storage for i was automatic, so it is deallo-
cated. Once the program has returned to main, the stack reverts to

10 (bottom)

When the routine main exits, again the space for the automatic variable | is released; the
stack is now empty:

(bottom)

3.

Note that the storage class specifier is almost always omitted when a variable is
automatic; since automatic variables only occur in blocks, and never outside them, this
does not pose any problems. However, another version of automatic storage requires a
storage class specifier, and we shall discuss this class, called register, in the next section.

Register

The storage class specifier register is different from other storage class specifiers,
in that compilers are at liberty to obey or ignore them. This storage class is the same as
automatic so far as the programmer is concerned; however, rather than allocating storage
on a stack (as with variables declared auto) the compiler arranges for the variables to be
stored in registers. This makes accessing their values very quick, usually much quicker
than if the variables were on a stack.

Because of the nature of machine registers, declaring a variable as a register vari-
able entails some restrictions. Many machines cannot use the address of a register in the
same way they use a memory address, so the address operator & cannot be applied to a
register variable. Some compilers will not allow certain types of variables to be assigned
to registers. Also, compilers accept only a limited number of register declarations (the
number varies from machine to machine and even from compiler to compiler) and do not
give messages indicating when the register keyword is being ignored.

It is time for an example! Let us return to the routines main and show, above, but
change show:

show()
{
auto int ir;
register int *address_of_ir;

ir=717;

address_of _ir = &ir;

printf("In show, 1 = %d\n", *address_of_ir);
¥

In this case, the stack used for storage looks just like it did in the previous section. How-
ever, the contents of a new variable, address _of_ir, will be put into a register. This regis-
ter variable will be assigned as its value the address of ir. Note that references using
pointers is legal with registers, so the printf will print the value stored in ir correctly.
However, if ir were declared as a register variable rather than an auto, the compiler would
have printed an error message for the line

address_of _ir = &ir;

since that line involves taking the address of the register variable.

Both the storage classes we have discussed are transient; they go away when the
block finishes executing. But often a program needs values to remain throughout the life
of the program; the next two sections will deal with storage classes for this case.

Extern

-

When applied to a variable, the storage class extern indicates the type of the vari-
able and that the definition of the variable is located in another file. Hence, any state-
ments of this class are declarations rather than definitions; the extern class does not cause
any memory to be allocated.

An extern declaration may appear anywhere before the declared variable is refer-
enced. In fact, the variable declared in one of these statements need not be referenced at
all, in which case the compiler will treat the program as though the extern declaration
were not present. An extern declaration can appear in the same file as the corresponding
definition; a very common practise is to put the extern declarations in a header file and
include that file in all source files using the #include mechanism.

An extern declaration can also be used with a function; in this case it indicates the
function is defined elsewhere. (The keyword extern is often omitted here.) The compiler
uses this declaration for type information and nothing else. As an example, look at the
program

main()
{
double x;
x = sqrt(2.0);

printf("The square root of 2 is %f\n", x);
¥

When the compiler encounters a function in source code, it assumes that function returns
an integer value unless that function has been declared previously. So, in the above pro-
gram, the compiler assumes Sgrt returns an integer. It therefore generates code to coerce
the returned integer into floating point format at the assignment statement. This leads to a
result that is quite wrong:

The square root of 2 is 1070596096.000000
(The precise answer is machine dependent; but it will be wrong.) However, if the line
extern double sqrt();

is placed before the assignment statement, the compiler will understand that the function
sgrt returns a double and will not do any type coercion at the assignment statement; the
result in this case is

The square root of 2 is 1.414214

Every extern declaration must have a corresponding definition (unless the variable
or function in it is never referenced.) Precisely what constitutes an acceptable definition
varies among compilers. Usually, a compiler will take one of two flavors of definitions.

With some compilers, the single definition at the top level (that is, not contained
inside any function’s body) is taken to be the definition associated with extern declara-
tions. If more than one such definition occurs, the compiler (actually, the linker) will
report an error. These errors are of the form ““variable or function multiply defined”’.

Other compilers follow the ANSI C standard and use a more complex scheme.
They consider a top-level declaration of a variable to be a tentative definition if the

5.

storage class is static or omitted. If a tentative definition is found in which the variable is
initialized, that is taken to be the definition and the other tentative definitions become
declarations. Otherwise, the first tentative definition becomes the definition and the rest
become declarations.

Let us use an example to explain the differences. Suppose there are two source
files to a program; one, Main.c, contains the routine

int testcalled = 0;

main()

{
test();
printf("test() called, testcalled = %d\n", testcalled);
test();
printf("test() called, testcalled = %d\n", testcalled);
exit(0);

¥

and the second, test.c, contains the routine

int testcalled;

test()
{

¥

If the first rule of defining variables is followed, each source file will compile cor-
rectly, but when they are linked, the linker will find two definitions of testcalled, and
report that testcalled is multiply defined. If the second rule of defining variables is
defined, the statement

testcalled++;

int testcalled;
in test.c is considered a tentative definition, and the statement
int testcalled = 0;

in main.c is considered the real definition, because it is a tentative definition in which
testcalled is initialized. Hence, the tentative definition in test.c becomes a declaration, so
the linking procedure succeeds. Note that if the statement in test.c had been

int testcalled = O;

there would have been two definitions, not one, and the linker would have complained
that testcalled had been multiply defined.

The rules of global definition also apply to another storage class, which on first
glance seems to be the most complicated.

Static

-6-

The static storage class means simply that the variable will retain its value through-
out the life of the program. When used outside a function definition, it has the side effect
of not allowing the variable or function to be referenced anywhere except within that
source file.

Let us deal with static variables first. Look at the program defined in the previous
section in main.c and test.c. Recall testcalled was defined globally. Let us rewrite these
two routines slightly; the first, in main.c, becomes

main()

{

register int result;

result = test();
printf("test() called, testcalled = %d\n", result);
result = test();
printf("test() called, testcalled = %d\n", result);
exit(0);

¥

and the second, in test.c, will be

test()

{
static int testcalled = 0;
testcalled++;
return(testcalled);

}

When we compile, link, and execute this program, we get

test() called, testcalled = 1
test() called, testcalled = 2

Now, let us redo this program, omitting the storage class keyword static from the declara-
tion of testcalled in test(). This means testcalled will be an automatic variable, so it will
be created each time test() is called, and discarded each time test() returns. Hence, we get
the following result:

test() called, testcalled = 1
test() called, testcalled = 1

This graphically points out that regardless of their scope, static variables retain whatever
value they are assigned throughout the life of the program, whereas automatic variables
do not.

If declared outside functions, the storage class static has one additional side effect:
it limits the scope of the variable or function so declared to the file in which it is declared.
For example, going back to the files main.c and test.c, suppose main.c were written as it
was originally (see the section extern) and test.c contained

static int testcalled;

test()
{

testcalled++;

}

When run, this program produces

test() called, testcalled =0
test() called, testcalled = 0

because the variable testcalled in test.c is not visible to any other file. So, it and the vari-
able testcalled in main.c are completely different.

As an example of what happens when a function is declared static, let us combine
main.c and test.c into one file, maintest.c, and make test() static:

int testcalled = 0;

main()

{
test();
printf("test() called, testcalled = %d\n", testcalled);
test();
printf("test() called, testcalled = %d\n", testcalled);
exit(0);

b

static test()

{
testcalled++;

b

The result is what we expect:

test() called, testcalled = 1
test() called, testcalled = 2

Now let us put test() into a separate file:

int testcalled;

static test()
{

testcalled++;

}

Both files, main.c and test.c, will compile, but the linker will complain that “test is unde-
fined”. Since test is declared as static, it is only visible in the file test.c; it cannot be
accessed by anything in the file main.c, and so the linker can find nothing to link the calls
to the routine test() in main.c to. Hence, the error message.

Now that we have discussed these classes, let us take a look at a program and see
how different storage classes affect the way the program works.

_8-

An Example

Here is a very simple program that sets a variable to 20, and loops, adding 20 each
time through, until the variable’s value is more than 1000 or 1000 loops have been made:

1A.main()
2A {
3A. int counter = 0;
4A. while (counter < 1000){
5A. if (dowork() > 1000)
6A. break;
TA. printf("Number of loops: %d\n", counter++);
8A. }
9A. printf("Done!\n");

10A.}

11A.dowork()

12A.{

13A. static int total = 20;

14A. total += 20;

15A. printf("total is %d ... ", total);
16A. return (total);

17A.}

First, note that the variable counter is declared automatic. It could just have easily
been declared static; the effect would be the same, since it is local to main and exists until
that routine exits (at which time the program exits.) So, counter could be any storage
class except extern.

However, notice that total is defined as static on line 13A. Hence, as dowork is
called, total will increase in value and eventually the program would exit with total being
1020. However, if the word static were replaced by auto (or register, or just omitted) then
each time dowork were called, total would be recreated and reinitialized to 20. Hence
dowork would always return 40, and the program would loop 1000 times before exiting.

We could also move total outside the function dowork and put it either above or
below main. We could even put it after dowork, but then we would need the statement

extern int total;

somewhere before line 14A (otherwise total would be undefined and undeclared at that
point, causing a compile-time error.)

Let us split this example into two files now. The first, main.c, looks like:

1B.main()
2B.{
3B. int counter = 0;
4B. while (counter < 1000){
5B. if (dowork() > 1000)
6B. break;
7B. printf("Number of loops: %d\n", counter++);
8B. }
9B. printf("Done!\n");
10B.}

and the second is dowork.c:

11B.dowork()

12B.{

13B. static int total = 20;

14B. total += 20;

15B. printf("total is %d ... ", total);
16B. return (total);

17B.}

Now, if the function dowork were declared static, the program would not compile
correctly because the function dowork would not be defined anywhere so far as the func-
tion main is concerned.

Note line 13B could be moved before line 11B without changing anything in this
program. In fact, line 3B could be put before line 1B, and every occurrence of the vari-
able counter could be renamed total without any problem, because the variable total in
the file dowork.c is declared static and hence is defined for that file only.

Conclusion

Choosing storage classes with care enables a programmer to balance speed with
memory used. Because of this balance, it is very important that users of C know the
effects of each storage class. In addition, scope and allocation of storage are very closely
related. In a previous article we discussed the scope of C variables. This article com-

pletes the discussion begun there, by describing how variables are stored.
[e¢]

