
Computers b Security, 14 (1995) 233-249

0167-4048(95)00003-8

Improving
system security
via proactive
password
checking

A\ the Internet has grown, its user community has changed

from a small tight-knit group of researchers to a loose gather-

ing of people on a global network. The amazing and con-

stantly growing numbers of machines and users ensurcs that

untrustworthy individuals have full access to that network.

High speed mtcr-machrnc communication and even hrgher

speed computatronal processors have made the threats of

system “crackers”, data theft. and data corruption very real.

This paper outlines some of the problems of current password

security by demonstrating the ease by which indivrdual

alcounts may hc broken. Various techniques used by crackers

arc outlinrd. and finally one solution to this point of system

vrrlncrabiiity. a proactive password checker, is documented.

kryrox&s: Authentrcatron. Passwords, Proacnve password

checkmg, l’a\\word cracking.

*Supported rn part by grant NAG2498 from rhe National
Aeronauncs Ind Space Administration to Dartmouth College,

1 tanover. NH 03755, USA. l’ortrons of this work were done
\nhilc the author was at Dartmouth College.

1. Introduction

T he securiry of accounts and passwords has
always been a concern for the developers and

users of UNLXt systems. When LJNIX was
younger, the password encryption algorithm was a
simulation of the M-209 cipher machine used by

the US Army during World War II [I]. This was
a fair encryption mechanism in that it was difficult

to invert under the proper circumstances, but suf-

fered in that it was too fast an algorithm. On a
PDP-1 l/70, each encryption took approximately
1.25 ms, so that it was possible for a password

cracker to check roughly 800 passwords/second.
Armed with a dictionary of 250000 words, a
cracker could compare their encryptions with all

those stored in the password file in a little more
than 5 minutes. Clearly, this was a security hole
worth tilling.

tUNlX is a tradrmark of Hell Laboratories.

0167-4048/95/$9.50 0 1995, Elsevier Science Ltd 233

M. Bishop and D. V. Klein/Improving system security

In later (post-1976) versions of UNIX, the DES

algorithm [2] was used to encrypt passwords. The
user’s password is used as the DES key, and the

algorithm is used to encrypt a constant (usually a

string of nulls). The algorithm is iterated 25 times,
with the result being an I I-character string plus a
2-character “salt”. This method is very difficult to

reverse (further complicated through the intro-

duction of one of 4096 possible salt values) and

has the added advantage of being slow. On a

PVAX-II (a machine substantially faster than a
PDP-I I/70), a single encryption took on the order
of 280 ms, so that a determined cracker could

only check approximately 3.6 encryptions a sec-
ond. Checking this same dictionary of 250000

words now took over I9 hours of CPU time.

Although this is still not very much time to break

a single account, there was no guarantee that this
account would use one of these words as a pass-

word. Checking the passwords on a system with
50 accounts would take on average 40 CPU days
(since the random selection of salt values prac-
tically guarantees that each user’s password will be
encrypted with a different salt), with no guarantee

of success. If this new, slow algorithm was com-
bined with the user education needed to prevent

the selection of obvious passwords, the problem

seemed solved.

Two recent developments and the recurrence of
an old one have brought the problem of password

security back to the fore.

(I) CPU speeds today are substantially faster than
in 1976, so much so that readily obtainable and
easily affordable processors are 25-100 times
faster than the VAXen targeted by the “new” pass-

word encryptions. The DECstation 3100 and
Spare I used in the password cracking research
were considered very fast machines 5 years ago.
They have, like the tortoise of fable, been sped
past with newer machines that are more than IO
times their speed. With inter-networking, many
sites have hundreds of individual workstations
connected together, and enterprising crackers are
discovering that the “divide and conquer” algo-

rithm can be extended to multiple processors,
especially at night when those processors are not

otherwise being used. Literally thousands of times
the computational power of IO years ago can be

used to break passwords.

(2) New implications of the DES encryption

algorithm have been developed, so that the time it

takes to encrypt a password and compare the
encryption against the value stored in the pass-

word file has dropped below the I ms mark [3, 41.
On a single workstation, the dictionary of 250000
words can once again be cracked in well under 5

minutes. By dividing the work across multiple
workstations, the time required to encrypt these

words against all 4096 salt values could be no
more than an hour or so. With a recently descri-
bed hardware implementation of the DES algo-
rithm, the time for each encryption can be

reduced to approximately 6 ps [5]. This means
that this same dictionary could be cracked in only

I .5 seconds.

(3) Users are rarely educated as to what are wise
choices for passwords. If a password is in a dic-

tionary, it is extremely vulnerable to being
cracked, and users are simply not coached as to

“safe” choices for passwords. Of those users who
are so educated, many think that simply because
their password is not in lusuldictlwords, it is safe

from detection. Many users also say that because
they do not have any private files on-line, they are

not concerned with the security of their account,

little realizing that by providing an entry point to
the system they allow damage to be wrought on
their entire system by a malicious cracker.

Because the entirety of the password file is read-

able by all users, the encrypted passwords are vul-
nerable to cracking, both on-site and off-site.*

*The problem of lack of password security is not just endemic

to UNIX. A recent VAX/VMS worm had great success by

simply trying the username as the password. Even though the

VMS user authorization file is inaccessible to ordinary users,

the cracker simply tried a number of “obvious” password

choices-and easily gained access to numerous machines.

234

Computers & Security, Vol. 14, No. 3

Many sites have responded to this threat with a
reactive solution - they scan their own password

files and advise those users whose passwords they
arc able to crack. The problem with this solution
is that while the local site is testing its security,

the password file is still vulnerable from the out-
side. The other problems, of course, are that the

testing is very time consuming and only reports

011 those passwords it is able to crack. It does

nothing to address user passwords which fall out-
side of the specific test cases (e.g., it is possible for
a user to use as a password the letters “qwerty” -
if- this combination is not in the in-house test
dictionary, it will not be detected, but there is

nothing to stop an outside cracker from having a
more sophisticated dictionary!).

Clearly, one solution to this is to either make /err/

~LWX! unreadable (a simple solution which none-
theless breaks many legitirnate tools), or to make

the encrypted password portion of the file unread-
able. Splitting the file into two pieces - a read-
able /C~C-/~XKWK~ with all but the encrypted
password present, and a “shadow password” file
that is only readable by root - is the solution
proposed by Sun Microsystems (and others) that

appears to be gaining popularity. It seems, how-
ever, that this solution will not reach the majority

of non-Sull systems for quite a while, nor even, in
Let, many Sun systems, due to many sites’ rcluc-
t.tnce to install new releases of software.

What this paper proposes, therefore, is a yroac~ivr

password checker, which will enable users to
change their passwords, and to check a yviovi

whether the new password is “safe” from cracking.
The criteria fx safety arc tunable on a per-site
basis, depending on the degree of security desired.

For cxamplc, it is possible to specify a minimum
Icngth password, a restriction that only lower case
letter\ arc not allowed, that a password that looks
Ilkr a license plate bc illegal, and so on. Because

this proactive checker deals with the passwords in
the CICX (that is, before they are encrypted), it is
able to pcrfitrm more sophisticated pattern match-
ing on tllc password. and is able to test the safety

of a password without having to go through the
effort of cracking the encrypted version. Hecal~

the checking is done automatically cvtry timu a

user attempts to change his or her password, the
process of education can be transferred to the
machine, which will instruct the user IV//~ a partic-

ular choice of password is bad.

2. Password vulnerability

It has long betn known that all a cracker need do
to acquire access to a UNIX machine is to follow
two simple steps:

(1) Acquire a copy of that site’s /c,tc/~xzsslr~~ file.

either through an unprotected nrrr/> link, wcll-

known holes In sc~fzdfrfail, via fill or f/ill. or other
overt and covert means.

(2) Apply the standard (or a sped-up) version of

the password encryption algorithm to a collection

of words, typically /uru/dirt/uwdx plas some pcr-
mutations on .~ccount and user names, and corn--Ï

pare the encrypted results to those t;)~md in the
purloined /ctr/p.wcd file.

If a match is found (and usually (1~ It’clst one will

be) (61, the cracker has access to tile tnrgctcd
machine.

This mode ot‘ attack has been known for ~mc
time [1, 71, and the defenses against this attack

have also long been known. How well sites pro-
tect themselves from the various nlodcs of .lttach

varies greatly from site to site. The publicly avail-
able proactive checker described in this paper will
enable sites to protect themselves from a variety of
attacks by providing a single “silver bullet“ to

address the m.my vulnerabilities.

2.1 The survey and initial results
In late 19X9, .I number of site administrator\ co-
operated in ;I study of password scclu-ity. The);
submitted their copies of /~~t~/~x~s~~xf for crackiIlg.
yielding a total of nearly 14000 account entries.
Each of the entries was tested bv .1 numbct- ot

235

M. Bishop and D. V. Klein/Improving system security

guessing strategies - the possible passwords that

were tested were based on the user’s name or
account number, taken from numerous diction-

aries (including some containing foreign words,
phrases, patterns of keys on the keyboard, and

enumerations), and from permutations and com-
binations of words in those dictionaries.

After over 3 CPU years of rather exhaustive test-

ing, approximately 40% of the passwords had been
guessed. This represents the combined computing

horsepower of 35 Spare-2 workstations operating

in parallel. In the first week, approximately 21%

(nearly 3000 passwords) were guessed using a sin-
gle DECStation 3100 workstation; in fact, in the

very first 15 minutes of testing, 458 passwords (or
3.2%) had been cracked using what experience has

shown would be the first fruitful line of attack

(i.e., using the user or account names as pass-

words). All told, 30 root accounts were comprised.
These statistics are frightening, and well they
should be, On an average system with 50 accounts

in the letclpasswd file, one could expect the first
account to be cracked in under 2 minutes, with

5-15 accounts being cracked by the end of the
first day. Even though the root account may not

be cracked, all it takes is one account being com-

promised for a cracker to establish a toehold in a
system. Once that is done, any of a number of

other well-known security loopholes (many of
which have been published on the network) can

be used to access or destroy any information on
the machine.

It should be noted that the results of this testing
do not give us any indication as to what the

untracked passwords are. Rather, it only tells us
what was essentially already known - that users
are likely to use words that are familiar to them as

their passwords [8]. What new information it did
provide, however, was the degree of vulnerability of
the systems in question, as well as providing a
basis for developing a proactive password changer
- a system which pre-checks a password before it
is entered into the system, to determine whether
that password will be vulnerable to this type of

attack. Passwords which can be derived from a

dictionary are clearly a bad idea [9], and users
should be prevented from using them. Of course,

as part of this censoring process, users should also

be told wily their proposed password is not good,

and what a good class of password would be.

2.2 Passwords to avoid

A number of techniques were used on the
accounts in order to determine if the passwords

used for them were able to be compromised.
Because any self-respecting cracker would also try

these tests, they should be checked in a proactive

password changer. The password cracking tests

were as follows:

(1) The user’s name, initials, account name, and
other relevant personal information. All in all, up

to 130 different passwords were tried based on
this information. For an account name klone
with a user named “Daniel V. Klein,” some of the
passwords that would be tried were: klone,

klone0, klonel, klone123, dvk, dvkdvk, dklein,
DKlein, leinad, nielk, dvklein, danielk, DvkkvD,

DANIEL-KLEIN, enolk, ENOLK, KleinD, etc.

(2) Words from various dictionaries. For our

research, these included lists of first and last

names (some 35000 in all); places (including per-

mutations so that “Spain,” “Spanish,” and “span-
iard” would all be considered); names of famous
people; cartoons and cartoon characters; titles,
characters, and locations from films, science fic-

tion stories and Shakespeare; mythical creatures
(garnered from Bulfinch’s Mythology and diction-

aries of mythical beasts); sports (including team
names, nicknames, and specialized terms); num-
bers (both as numerals - “2001”, and written out
- “twelve”); strings of letters and numbers (“a,”

“aa,” “aaa,” “abab” etc.); the King James Bible;
biological terms; common and vulgar phrases
(such as “fuckyou,” “ibmsux,” and “deadhead”);
keyboard patterns (such as “qwerty,” “asdf,” and
“zxcvbn”); abbreviations (such as “roygbiv” - the
colors in the rainbow, and “ooottafagvah” - a
mnemonic for remembering the 12 cranial

236

Computers & Security, Vol. 14, No. 3

nerves); machine names (acquired from letclhosts);
common Yiddish words; the names of asteroids; a

collection of words from various technical papers,

recipes, and scripts; foreign language dictionaries
(including Chinese, Dutch, French, German,

Greek, Italian, Norwegian, and Swedish). All told,
more than 650000 separate words were consid-

ered per user (with any inter- and intra-dictionary

duplicates being discarded). All these dictionaries
are publicly available from various sites across the

Internet.

(3) Various permutations on the words from step
2. These included making the first letter upper
case or a control character, making the entire

word upper case, reversing the word (with and
without the aforementioned capitalization), capi-

talizing random letters, changing the letter ‘0’ to
the digit ‘0’ (so the word “scholar” would also be
checked as “schOlar”), changing the letter ‘1’ to the

digit ‘1’ (so that “scholar” would also be checked
as “scho 1 ar,” and also as “schOlar”), and perform-

ing similar manipulations to change the letter ‘z’
into the digit ‘2’, and the letter ‘s’ into the digit

‘5’. Another test was to make the word into a
plural and add the suffixes “-cd,” “-er,” and “-ing”
to transform words like “phase” into “phases,”

“phased.” “phaser,” and “phasing.”

(4) Word pairs. The magnitude of an exhaustive
test of this nature is staggering. To simplify this

test, only words of 3 or 4 characters in length
horn /rrsr/dirt/wods were examined. Even so, the

Ilumber of word pairs is O(10’) (multiplied by
4096 possible salt values), but despite this magni-

tude, this line of attack was surprisingly fruitful.

The problem with using passwords that are
derived directly from obvious words is that when

.I user thinks “Hah, no one will guess this permu-
tation,” they are ahnost invariably wrong. Who

would cvrr suspect that we would find their pass-
xvords when they chose “fylgjas” (guardian crea-
tures from Norse mythology), or “pataitai” (the
(Ihinesc word for “hen-pecked husband”)? No
lnattcr what words or permutations thereon are

chosen for a password, if they exist in any on-line

dictionary, they are susceptible to directed crack-

ing. Tables 1 and 2 give an overview of the types

of passwords which were found (out of a sample
set of 13892 accounts) through this rese.lrch.

As to those passwords which remain unbroken,

we can only conclude that these are much more
secure and “safe” than those to be found in our

dictionaries and permutations. One such class of

passwords is punctuated word pairs, where a pass-

word consists of two short words, separated by a
punctuation character. Even if only words of 3 to
5 lower case characters are considered. lrrsr/dictl

words provides 3000 words for pairing. When a

single intermediary punctuation character is intro-
duced, the sample size of 90000000 possible pass-

TABLE 1. IIistribunon of cracked passwords by type

TABLE 2. Length of cracked passwtrrds

Length

(charactcn)

~:oLlnt

Total 100 (I’!$,

237

M. Bishop and D. V. Klein/Improving system security

words is rather daunting. On a Spare 2, testing

each of these passwords against that of a single
user would require over 25 CPU hours - and
even then, no guarantee exists that this is the type

of password the user chose. Introducing one or

two upper case characters into the password raises

the search set size to such magnitude as to make

cracking untenable.

Another “safe” password is one constructed from
the initial letters of an easily remembered, but not

too common phrase. For example, the phrase

“UNIX is a trademark of Bell Laboratories” could

give rise to the password “UiatoBL.” This essen-

tially creates a password which is a random string
of upper and lower case letters. Exhaustively

searching this list at 1000 tests per second with
only 6-character passwords would take nearly 230

CPU days. Increasing the phrase size to 7-charac-

ter passwords makes the testing time over 32

CPU years - a Herculean task that even the most
dedicated cracker with huge computational

resources would shy away from.

Thus, although we don’t know what passwords
were chosen by those users we were unable to

crack, we can say with some surety that it is
doubtful that anyone else using this dictionary-
based technique could crack them in a reasonable
amount of time, either.

3. Action, reaction, proaction

What then, are we to do with these results?

Clearly, something needs to be done to safeguard
the security of our systems from attack. It was
with the intention of enhancing security that this

study was undertaken. By knowing what kind of
passwords users use, we are able to prevent them
from using those that are easily guessable (and
thus thwart the cracker).

One approach to eliminating easy-to-guess pass-
words is to periodically run a password checker -
a program which scans /etc/passwd and tries to

break the passwords in it [10, 111. This approach
has two major drawbacks. The first is that the
checking is very time consuming. Even a system

with only 100 accounts can take over a month to
diligently check. A halfhearted check is almost as

bad as no check at all, since users will find it easy

to circumvent the easy checks and still have vul-

nerable passwords. The second drawback is that it
is very resource consuming. The machine which
is being used for password checking is not likely

to be very useful for much else, since a fast pass-
word checker is also extremely CPU intensive.

Another popular approach to eradicating easy-to-
guess passwords is to force users to change their

passwords with some frequency. In theory, while
this does not actually eliminate any easy-to-guess

passwords, it prevents the cracker from dissecting
/etc/passwd “at leisure”, since once an account is

broken, it is likely that that account will have had
its password changed. This is, of course, only the-
ory. The biggest disadvantage is that there is

usually nothing to prevent a user from changing
their password from “Daniel” to “Victor” to

“Klein” and back again each time the system
demands a new password. Experience has shown

that even when this type of password cycling is
precluded, users are easily able to circumvent sim-
ple tests by using easily remembered (and easily

guessed) passwords such as “dvkJanuary”,

“dvkFebruary”, etc. [121. A good password is one

that is easily remembered, yet difficult to guess.

When confronted with the choice between
remembering an easily guessed password and cre-
ating one that is hard to guess, users will almost

always opt for the easy way out, and throw
security to the wind.

Which brings up a third popular option, namely

that of assigned passwords. These are often words
from a dictionary, pronounceable nonsense words,
or random strings of characters. The problems
here are numerous and manifest. Words from a
dictionary are easily guessed, as we have seen.
Pronounceable nonsense words (such as “troba-
car” or “myclepate”) are often difficult to remem-

238

Computers & Security, Vol. 14, No. 3

ber, and random strings of characters (such as
“h3rT+aQz”) are even harder to commit to

memory. Because these passwords have no perso-
nal mnemonic association to the users, they will

often write them down to aid in their recollection.
This immediately discards any security that might

exist, because now the password is visibly asso-
ciated with the system in question. It is akin to
leaving the key under the door mat, or writing the
combination to a safe behind the picture that

hides it.

A fourth method is the use of “smart cards”.

These credit card sized devices contain some form
of encryption firmware which will “respond” to

an electronic “challenge” issued by the system
onto which the user is attempting to gain access.

Without the smart card, the user (or cracker) is
unable to respond to the challenge, and is denied
access to the system. The problems with smart
cards have nothing to do with security, for in fact

they arc excellent warders for your system. The
drawbacks are that they can be expensive (about

$25.00 per user plus an initial setup fee) and must
be carried at all times that access to the system is
desired. They are also a bit of overkill for research
or educational systems, or systems with a high
degree of user turnover.

(Xarly, then, since all of these systems have

drawbacks in some environments, an additional
way must be found to aid in password security.

4. Overview of a proactive password
checker

The best solution to the problem of having easily

Suessed passwords on a system is to prevent them
from getting on the system in the first place. If a
program such as a password checker reacl~ by

detecting guessable passwords already in place,
then although the security hole is found, the hole

L,xisted for as long as it took the program to detect
It (and LX the user to again change the password).
If, llowcver, the program which changes user’s
passwords (i.e. /hin/passd) checks for the safety

and guessability before that password is associated
with the user’s account, then the security hole is

never put in place.

Such a proactive password checker must meet

seven criteria:

(1) The tests for the password must always be

invoked. Otherwise, the tests may be bypassed
and a weak password installed on the system.

(Most UNIX system password changing programs

fail this test, as after three tries weak passwords

are allowed [131.)

(2) The checker must be able to reject any pass-
word in a set of common passwords, or which is

a transformation of common passwords. Among
the permutations detected in this experiment that

such a requirement would eliminate art: passwords
which:

l Exactly match a word in a dictionary (not just
in the system dictionary)

l Match a reversed word in a dictionary (with or

without capitalization)

l Match a dictionary word with the letters ‘o‘, ‘1’.

‘z’, and ‘s’ replaced by the numbers ‘O’, ‘1’. ‘2’, and
‘5’

l Do not contain mixed upper and lower cast’, or
mixed letters and numbers. or mixed letters and
punctuation

l Match a word in a dictionary with some or all

of the letters capitalized

l Match a word in a dictionary with an arbitrary

letter turned into a control character

l Are shorter than a certain length (e.g. all pass-
words shorter than six characters arc disallowed)

This allows words in a dictionary to be climi-
natcd. This requirement alone would eliminate

239

M. Bishop and D. V. Klein/Improving system security

password cracking if one checked proposed pass-
words against the dictionary used by attackers. Of

course, the problem is acquiring a comprehensive
enough dictionary; many large dictionaries are

available, but there is no guarantee these have
every character sequence that an attacker may try.

(3) The checker must allow per-user discrimina-

tion in its tests. Among the permutations detected
in this experiment that such a requirement would

eliminate are passwords based on the user’s:

l Account name

l Given name or initials

However, some people have certain associations

which may lead to passwords which are easy to
guess; for example, the string “HeidiTu’” is a

fairly obvious guess for the first author’s password
(as his daughter is named “Heidi Tinuviel”) but

the apostrophe makes it an unlikely guess for
someone else. This suggests allowing dictionaries
to be selected on a per-user basis as well.

(4) The checker must allow per-site discrimina-

tion in its tests. In some sense, any checker allows
this as it can be modified and recompiled. How-
ever, the principle of physiological acceptability
[141 implies that modifying a set of tests be less

cumbersome; so, a configuration file best imple-
ments this requirement. This allows the system

administrator to turn on certain tests, and modify

or disable others (such as the minimum acceptable
length for a password).

(5) The checker should have a pattern matching
facility that can be stored in tests. As indicated

above, not all bad password choices will be in

dictionaries; for example, repetitions of login
names typically are not. One could construct a
dictionary containing such repetitions, but it is far
simpler to describe these by patterns. Such a
facility would eliminate passwords which:

l Are based on repetitions of the user’s account
name

l Consist solely of numeric characters (e.g. Social

Security numbers, telephone numbers, house
addresses or office numbers)

l Look like a state-issued license plate

l Are based on repetitions of the user’s initials or
given name

l Are patterns from the keyboard (e.g. “aaaaaa” or
“qwerty”)

Note this last example brings in a site depend-

ency (specifically, where the site is located

geographically).

(6) The checker should be able to run subpro-
grams and use the results in tests. This is partic-
ularly useful for eliminating passwords which are:

l Simple conjugations of a dictionary word (i.e.,

plurals, adding “ing” or “ed” to the end of words,

etc.)

l Common misspellings of dictionary words (i.e.,
“stoping” as well as “stopping”, “bananna” as well

as “banana”, etc.)

l Made up of two words put together (i.e.,
“hithere”, “goodbye”, etc.)

The subprogram facility has other uses. For

example, it can also be used to check for pass-

words based on local host names.

(7) The tests should be easy to set up. If writing

a test is a very complex and error-prone proce-
dure, administrators will pick only simple tests

which may not help much. As a general principle,

security mechanisms should not require much
effort to use because if it is not physiologically
acceptable the mechanism will either be unused
or misused.

As distributed, the behavior of the proactive
checker should be that of attaining maximum
password security - with the system admini-

240

Computers & Security, Vol. 14, No. 3

strator being able to turn off certain checks. It

would be desirable to be able to test for and reject

all password permutations that were detected in
the research described in Section 2 (and others).

The configuration file which specifies the level of

checking need not be readable by users. In fact,

making this file unreadable by users (and by
potential crackers) enhances system security by

hiding a valuable guide to what passwords are
acceptable (and conversely, which kind of pass-
words simply cannot be found). Of course, to

make this proactive checker more effective, it
would bc necessary to provide the dictionaries that

were used in this research (perhaps augmented on

a per-site basis). Even more importantly, in addi-
tion to rejecting passwords which could be easily
guessed, the proactive password changer would

also have to tell the user I&Y a particular password
was unacceptable, and give the user suggestions as
to what an acceptable password looks like.

5. Example of proactive checker

The proactive password checker pa_&&, a part of
the JJLISSW~ + password changing program, pro-

vides facilities to meet these requirements. It uses
a “little language” to encode tests to determine if a
pxsword is too easy to guess. Whenever a pass-

word is supplied it runs these tests, and if any test

evaluates to true the password is rejected and the
user is told why the password is unacceptable.

5.1 Configuration file

The heart of p~rxhe& is the configuration file,
which contains commands to set and evaluate
v,lriables and tests to determine if the proposed

p,lssword is too easy to guess. The tests are com-
posed of expressions, which are in turn made up

of constants, variables, and functions. When a user

enters a password, it can be stored in a variable.
All variables contain strings, and several forms of
assignment csist. When ~~wrlrrv-k starts, it automati-
cally set> several variables to values obtained from
tllc user information stored in /etr/passrd, and

ftrom the host, see Table 3.

TABLE 3. Prrdefined ust’r- and host-rzlatcd variable
___-

Vdrlablc Value

user

uid

gid

gecos

homedir

shell

host

domain

fqdn

nisdomain

TABLE 4. I’rcdcfined password-rclatcd vxlablc\

Pwchck also sets several other variables from
information gleaned about the password (Table 4).

Values may be assigned to variables using control
lines like

setvar system “Windsor. dartmouth. edu”

which assigns to system the string “windsor.dart-
mouth.edu”. As a string is a sequence of alpha-

numeric characters (including underscore), an
escape character, or a quoted string, iu this assign-
merit, the quotes are needed because setvar

assigns the first string following the name of the
variable to the variable. Without the quotes,
system would be assigned the value “Windsor”.
The variable var is referenced using the notation
$ (var) ; if the variable name is 1 character long.
the parentheses can be omitted.

Setvar statements do not evaluate tllc quantity
being assigned. To do so, the evalvar nssign-

ment statement is needed. For example. the flmc-
tion first (s, t) takes two strings s and t as
arguments, and returns the numerical position of
the first charxter in s that is also in t. The

241

M. Bishop and D. V. Klein/Improving system security

function substr (s , b, e) returns the substring
of s beginning at character position b and ending
at character position e (inclusive). So, if system
contains “Windsor”. the function

substr($(system), 1, first($(system),
“.,) -1)

evaluates to “windsor”; but saying

setvar hostname substr($(system), 1,
first($(system, “.H)-1)

simply assigns the string “substr ($(system), 1,
first($(system), “.“) - 1)” to hostname. The
assignment

evalvar hostname substr($(system), 1,
first($(system), ".")-1)

will evaluate the functions and assign the result
“windsor” to the variable.

Finally, one can extract substrings based on pat-
tern matching. Suppose the user information for
the user Bishop is stored in the variable G as
“Matt Bishop, 107 Raven House, 3267”. The con-
trol line

setpat "$G" "^\\([^,]*\\),

\\ ([^I I*\\), \\(.*\\)$“userofficeext

assigns “Matt Bishop” to the variable user, “107
Raven House” to the variable office, and “3267”
to the variable ext. Note that the second quoted
string uses the pattern matching operator “\(” and
“\)” to return that part of the string matched by
the pattern between those operators. However,
when that string is read, the backslashes would be
interpreted as escapes for the parentheses and dis-
carded. So, the back-slashes must have an escape
character, \, put in front of them to prevent them
from being discarded. Put another way, the first
backslashes are escapes; the second are part of the
operators.

A number of functions are available for writing
the tests. Rather than describe each one individ-
ually, we present and discuss the tests that would
detect types of passwords identified as too easy to
guess in this study and in [15-171. In what fol-
lows, the password would be considered easy to
guess if the expression evaluates to true (non-

zero) and not easy to guess if the expression eval-
uates to false (zero). Also,. we shall assume the
variable user contains the user’s login (account)
name; p the proposed password; f, m, 1 the

user’s first, middle, and last names respectively; i
his or her initials, via:

evalvarilcase(substr($f, 1, 1)) \

lcase(substr($m, 1, 1))

lease (substr(S1, 1, 1))

and that any dictionaries in use are named
dictionary.

5.1.7 Passwords based on the user’s account name

Here we check for three of the variations descri-
bed in Section 2.2(l); extensions to other varia-
tions are straightforward.

“$P” == ”
^,I ‘t$usertr U$,,

,I sp,, =- I, ^ ,, prot(“$user”) "[O-91+$"
II Sp" =- I, ^ . I, prot("$user") ,,.$,

Those characters which are not operators are
quoted so that the checker will interpret them as
part of a string; the variables are quoted because
substitution is done before the line is parsed. The
operator “ = = ” is the comparison operator, and
the operator ” =-” matches the string on the left
with the pattern on the right. The function
prot (s) scans the string s looking for metachar-
acters meaningful to the pattern matcher; it
returns the string s with the appropriate escapes
inserted so that s is interpreted as a string. (So, for
example, if s contained “he. l*o”, prot (s) would
return “he\.l*o”, as “.” and “*“, which represent
“any character” and “0 or more repetitions of the
previous character”, respectively.) The function

242

Computers & Security, Vol. 14, No. 3

lease (s) returns the string s with all upper case

letters made lower case. Placing strings next to
one another concatenates them; so if the user’s

name were “Bishop”, these three expressions
would be

"SP" == " ̂Bishop$"

“$P" =- I)^ Bishop[O-9]+$"

The first matches the login name; the second mat-
ches any occurrence of the login name followed

by one or more digits; and the third matches the
login name surrounded by single characters on
either end.

51.2 Passwords based on the user’s initials or given
name

Again, we show the tests for 10 of the variations
described in Section 2.2 (1):

"$p"==substr($f, 1, 1) $1

"$p"==fcase(substr($f, 1, 1)) fcase ($1)

"$p"==rev(fcase($f))

"$p"==rev(fcase($l))

"$p"==fcase(substr($f, 1, 1))

fcase(substr($m, 1, 1)) fcase($l)

"$p"==fcase($f) fcase(substr(S1, 1, 1))

"$p"==fcase($i) rev(fcase($i))

j~$~"==ucase($f) u-rr ucase(S1)

"$p"=="$l" ucase (substr($f, 1, 1))

Suppose the user’s given name is “Matthew A.
Bishop”; then f contains “Matthew”, m contains

“A.“, 1 contains “Bishop”, and i contains “mab”.

The first line returns 1 if the password is 0 or

more repetitions of the initials, using the pattern-

match operator “ =-“. The second line returns 1 if
the password is “MBishop”; notice the operator is
now “ = = “, which tests for equality. The third

line returns 1 if the password is “mbishop”; the
fourth, if the password is “wehttam” (the function

rev(s) reverses the string s); the fifth, if the

password is “pohsib”; the sixth, if the password is
“mabishop”; the seventh, if the password is “mat-

thewb”; the eighth, if the password is “MabbaM”;

the ninth, if the password is “MATTHEW-

BISHOP”; and the tenth, if the password is
“BishopM”. Obviously many more permutations
are possible.

5.1.3 Passwords which exactly match a word in a
dictionary (not just system ones)

If the dictionary is an unsorted file with one word

per line, the e\Tression

infile("$p", dictionary)

returns 1 if the value of the variable p i:, one of

the lines of the file. If the dictionary’s lines are
sorted in ascending ASC:II order, the binary search

function

inbinfile("$p", sort-dictionary)

is considerably faster. Finally, the database may be
stored in a format enabling very rapid searches; a

function is provided to take advantage of this.

Note that each of these functions searches the file
directly rather than by using a subcommand, both
for speed and to avoid making the proposed pass-
word visible to other processes.

5.1.4 Passwords which match a reversed word in
the dictionary

This is the same as asking if the rcverscd password

is in the dictionary:

infile(rev("$p"), dictionary)

243

M. Bishop and D. V. Klein/Improving system security

5.1.5 Passwords which match a word in the
dictionary with some or all letters capitalized

Here, we just treat all characters as lower-case. If

the password, with all letters lower case, appears

in a version of the dictionary with all letters lower

case, we want the expression to evaluate to 1. The
simplest way to do this is to use the subcommand

execution facility:

inprog (lease (“$p”), “tr A-Z a-z

<dictionary”)

The tr (1) command is executed and each line of

output is compared to the lower case password. If
any are equal, the expression evaluates to 1. (As an

efficiency measure, storing the dictionary words

lower case eliminates the need for using tr.)

in

5.1.6 Passwords which match a reversed word in
the dictionary with some or all letters capitalized

This is just like the previous expression, but the

password is reversed:

inprog(rev(lcase(“$p”)),
“tr A-Z a-z <dictionary”)

5.1.7 Passwords which match a word in a dictionary
with an arbitrary letter turned into a control
character

Here, we simply change all control characters in
the password to their letter equivalent. (We could

implement this expression exactly by looking for
the first control character and using that, then the

second, and so on, but that is much more compli-
cated as the little language has no iteration func-
tion.) We then compare the results to the
dictionary, as before:

infile (trans (O$p” , controls,

“A-Z [\\I-_“), dictionary)

In the little language, the distinguished constant
controls is a string of all control characters
except ASCII NUL (which is used as a string

terminator).

5.1.8 Passwords which match a dictionary word
with the following translations, either alone or in
various combinations: ‘/‘-t’l: ‘o’+‘O; ‘~‘-3; ‘~‘4’2’

Here we simply give some examples, as there are
15 transformations possible:

infile(trans(“$p”, “0125”, “olzs”),
dictionary)

infXe(trans(“$p”, “02”, “02”)~

dictionary)

infile (trans (“$pm, “012”, “olz”),
dictionary)

infile(trans(“$p”, “15”, “ls”),
dictionary)

5.1.9 Passwords which are simple conjugations of a
dictionary word (i.e., plurals, adding ‘ing” or “ed” to
the end of the word, etc.)

This type of password is really just a part of

speech; the simplest way to look for it is to use
the spelling checker. If the word is incorrectly

spelled, it will be printed to the output of
spell(l); otherwise, nothing is printed and no

check is performed:

! inprog (J‘$p”, “spell -h /dev/null”,

“SP” 1

This says to run the program spell(l), giving it

as input the password (the second $p). If the pass-
word (the first $p) is in the output, the expression
evaluates to 0 (the “!” negates the value of the

function). At no time is the input placed on a
command line, so the above test would not reveal
the password even to a process status list.

244

Computers & Security, Vol. 14, No. 3

51.10 Passwords which are patterns from the
keyboard (e.g. “aaaaaa” or “qwerty’y

This can best be done by building a dictionary of
such sequences. Note that a dictionary can contain

patterns; for example, to eliminate all sequences of

repeated characters, place a line containing the
pattern “l(.\)\(\l\)*” in the dictionary, and use the
function filepat:

The operator “ (1 ” is the logical “or” operator. This

expression has a value of 1 for all passwords with-

out mixed case (! ismixed), or which do not have

some non-alphabetic character (nntotalphas). A

better form of this expression would evaluate to 1
for any password which does not contain at Icast

one alphanumcnc:

nnotalnums (“$p”) > 0

filepat (“$p” , patternfile)

This returns 1 if the password matches any pat-
tern in the file patternfile (which has one pat-

tern per line). Note only one backslash is needed

in the pattern because when the file containing
the pattern is read, each line is treated as a com-

plete pattern; it is not broken into strings.

5.1.11 Passwords which are shorter than a specific
length (e.g., nothing shorter than six characters)

The function length returns the length of a
string:

length (“$p”) < 6

evaluates to 1 when the password is shorter than 6
characters.

5.1.12 Passwords which consist solely of numeric
characters (e.g., Social Security numbers, telephone
numbers, house addresses or office numbers)

A pattern can best describe this type of password:

ld$,n =- I*^ [o-g] +$‘I

5.1.13 Passwords which do not contain mixed upper
and lower case, or mixed letters and numbers, or
mixed letters and punctuation

Expressions to look for these use the arithmetic

and logical operators in tests:

! ismixed (“$p”) 11 nnotalphas ("Sp") > 0

51.14 Passwords which look like a state-issued
license plate

The formats of license plate numbers vary from

state to state (a good example of why per-site
discrimination is needed). In New Hampshlrc,

license plates for cars are either 4, 5, or 6 digits, or

3 letters followed by 3 digits:

“SP” =- II ̂ lO-91~4,6}$“(~“Sp” - ^
1, [A-Za-z]{3}[0-9](3}$-

In Pennsylvania, automobile license plates are 3

letters followed by 3-4 digits:

d.$,,, =- I, - [A-za-z]{3}[0-9]{3,4)$"

5.1.15 Passwords made up of two words
The function mwords returns 1 if its first argu-
ment can be split into two strings both of which
are in the dictionary named in its second argu-

ment. For example, the expression mwords

("hithere", "/usr/dict/words") returns 1 as

“hi” and “there” are both in the file /usr/dict/
words. The expression to use is simply:

mwords ("Sp", "/usr/dict/words")

5.1.16 Passwords which differ from previous
passwords
If passwords were stored in cleartext, the risk of
compromise would be tremendous. So, a pro-

245

M. Bishop and D. V. Klein/Improving system security

posed password can be compared to a set of pre-

vious passwords stored in hashed form:

filecrypt (“newpassword”,
“file_of_hashes”)

returns 1 if “newpassword” is a password in the
file “file_of_hashes”. Passwords can be stored in

hashed form using the function crypt, as in

inprog (” N , “/bin/cat >> file_of_hashes" ,

crypt (“passwword”, “random”))

which executes a command to append to file-of-

-hashes” (argument 2) the result of hashing the
password “password”, and returns 1 if there is no

output from the appending (which there should

not be).

5.1.17 Passwords which have too many characters
in common with their immediate predecessor

This criterion can involve the characters, or the

characters and position. For example, if the cur-

rent password is “hello” and the proposed one is

“ho110-r”, the function will return 4 (because the

two arguments have 4 characters in common,
ignoring position), and the function returns 3

(because the “h” and the two “1”s match in posi-

tion, but the “0” does not have the same position

in both arguments).

5.2 Tests and associated controls

Expressions are used in tests to determine if a
password is too easy to guess. Associated with the
tests are statements to be printed if the test suc-
ceeds (to inform the user why the password is

being rejected), if it fails (to inform the user of
the criteria passed), if the user asks for help (for
educational purposes), and for error handling (as
the test may use an unavailable resource, such as a
dictionary not present on the system).

As an example, consider the requirement that all
passwords be at least 7 characters long and not be

in the system dictionary:

#test length

test

eval length (u $p") < 7

iftrue "Yourpasswordistoo short"

iffalse "Yourpasswordislongenough"

help"Yourpasswordmustbe at least
7 characters long"

endtest

#testforinthedictionary

test

eval infile ("Sp", "/usr/words/dict")

onerrortrue

iferror "Couldnotaccess

/usr/dict/words --tryagainlater"

iftrue "Yourpasswordisinthe

dictionary"

iffalse "Yourpasswordis notinthe

dictionary"

help "Yourpasswordmustnotbeinthe

dictionary (usenon-alphanumerics)"

endtest

The first line in the first test block says that the
expression is to be evaluated and if it evaluates to
true (nonzero), the password is to be rejected. If
the password stored in the variable p is “aardvark”,
the expression will evaluate to true. If the test is
true, the message on the next line beginning with

246

Computers & Security, Vol. 14, No. 3

iftrue is printed; if false, the message on the
next line beginning with iffalse is printed. In

this case, the message ‘Your password is long

enough” will be printed. Had the password been
“hello”, the test expression would evaluate as false,

and the alternate message ‘Your password is too

short” would be printed. The next line, help,

contains a string to be printed when the program

is run in help mode.

The next block shows how to check for words in
a dictionary. The expression in the eval line is

evaluated; the password “aardvark” would be
found in the dictionary, rejected, and the message
“Your password is in the dictionary” would be
printed. If an error occurs (because “/usr/dict/

words” is not available, for instance), the message

“Could not access /usr/dict/words-try again later”
will be printed. The line containing “onerror

true” says to treat an error condition as though
the test evaluated true (and so the proposed pass-

word would be rejected). In an error condition,
llowever, the iftrue message would not be
printed.

Consider instead the password “I_lxp:r”. It (most
likely) is not in the dictionary because it contains

characters other than letters or digits. Doing the
lookup can take quite a bit of time, though.

Because the expression language uses lazy evalu-
<ition of “&&” and “ 1) “, the test could be rewritten

.LS

eval nalnum(“$p”) == length (“$p”)
&&infile(fl$pm, "lusr/dict/words")

If the first part is false (i.e. the password contains
non-alphanumeric characters), then the second
part (the dictionary lookup) will not be evaluated.

The iftrue, iffalse. iferror, and onerror

controls apply to the test block in which they
appear only (system defaults are provided if they
are absent). The default block overrides these, and

remains in force until changed by another such

block:

#default tests andactions

default

onerrortrue

iftrue "Thepasswordistooeasyto guess"

iferror "Anerroroccurred; contact the

systemadministrator"

help “Use memo #234toguideyouin

selectionofyourpassword"

enddefault

Finally, if the test block contains only the test (an

eval line), the block can be collapsed into a sin-

gle line by putting the test on the same line as
test. So,

test

evallength("$p")<2

endtest

and

test length("$p")<2

do exactly the same thing.

5.3 Miscellaneous controls
Several miscellaneous controls tailor the expres-
sion evaluation and configuration files as desired.

The pattern matcher used above is the GNU pat-
tern matcher; if one were more familiar with the

Berkeley pattern matcher (which is the same as
the Version 7 pattern matcher), one could use that

247

M. Bishop and D. V. Klein/Improving system security

by having a line of the form

patternbsd4

at the top of the configuration file.

Secondly, UNIX passwords are truncated at 8

characters; so if the password is “ambiguously”,
this could be guessed (since “ambiguous” is in the

system dictionary, and the two words have the
same first 8 letters). So, the control line

complen 8

forces all string comparisons to stop after the first
8 characters. Note this does not affect pattern

matching, because the length of the pattern may
depend upon the string being matched (for

example, if the partial string match operators are

used).

5.4 Summary

The proactive password checker pwcheck offers
facilities of enough power to detect those pass-

words which are likely to be guessed easily. As

with any measure that seeks to counter a threat,
the changing nature of the dictionaries used to

guess passwords means that no proactive checker
can prevent all passwords from being guessed;

however, experience with the predecessor of

pwcheck has shown the use of such a checker,
combined with sufficiently powerful rules, does

lessen the success of attackers compromising

passwords.

6. Conclusion (and sermon)

It has often been said that “good fences make

good neighbors”. On a UNIX system, many users

also say that “I don’t care who reads my files, so I
don’t need a good password”. Regrettably, leaving
an account vulnerable to attack is not the same
thing as leaving files unprotected. In the latter
case, all that is at risk is the data contained in the
unprotected files, while in the former, the whole
system is at risk. Leaving the front door to your

248

house open, or even putting a flimsy lock on it, is
an invitation to the unfortunately ubiquitous peo-

ple with poor morals. The same holds true for an

account that is vulnerable to attack by password
cracking techniques.

While it may not be actually true that good fences
make good neighbors, a good fence at least helps

keep out the bad neighbors. Good passwords are
equivalent to those good fences, and a proactive
checker is one way to ensure that those fences are

in place before a break-in problem occurs.

References

111

121

[31

[41

I51

161

[7J

PI

191

[lOI

1111

1121

(131

R.T. Morris and K. Thompson, Password security: A

case history, Commrr~. ACM, 22(11) (Nov. 1979)

594-597.

Proposed Federal Information Processing Data Encryp-

tion Standard, Federal Register (4OFR12134), 17 Mar.

1975.

M. Bishop, An application of a fast data encryption

standard implementation, Computing Systems, l(3) (1988)
221-254.
D.C. Feldmeicr and P.R. Karn, UNIX password

security-ten years later, CRYPT0 Proceedings, 1989.
P. Leong and C. Tham, UNIX password encryption

considered insecure, USENIX Winter Confrence Proceed-
ings, Jan. 1991.

D.V. Klein, “Foiling the cracker”-A survey of and

improvements to UNIX password security, Proceediqx of
the USENIX Security Workshop, 1990.
E.H. Spafford, The Internet worm program: An analysis,

Purdue Technical Report CSD-TR-823, Purdue Uni-

vcrsity, 29 Nov. 1988.

B.L. Riddle, M.S. Miron and J.A. Semo, Passwords in

use in a university timesharing environment, Computers
G Sew+y, 8(7) (1989) 569-579.
A.M. dc Alvare and E.E. Schultz, Jr., A framework for

password selection, USENIX UNIX Security Workshop
Proceeding, Aug. 1988.

T. Kaleigh and R. Underwood, CRACK: A distributed

password advisor, USENIX UNIX Security Workshop Pro-
ceedings, Aug. 19X8.
A. Muffett, Crack, 1992, available via anonymous _fip
from ceti. org.

B.K. Reid, DEC Western Research Laboratory, 1989,

personal communication.

UNIX User’s Rgerence Manual, 4.3 Berkeley Softzuare Dir-
tribrrtion -11 Version, Computer Science Research Group,

Computers & Security, Vol. 14, No. 3

I>epxtmcnt of Electmal Engineering and Computer

Science. University of Cahfornia. Berkeley, CA, April

1080.
41 J. Saltzcr dnd M. Schroeder. The protection of inform,l-

tiott in computer systems, Pror. IEEE. 63(9) (1975)

127X-1308.

51 I I.J. Highland, Kmdom bits and bytes: Testing a pasc-

249

