
Proceedings of the 19th National Information Page 1 of 8
Systems Security Conference pp. 371–377 (Oct. 1996)

Attack Class: Address Spoofing

L. Todd Heberlein , Matt Bishop
Department of Computer Science

University of California
Davis, CA 95616

Abstract
We present an analysis of a class of attacks we call address spoofing.
With the recent publicity surrounding an instance of such an attack, we
have written up a presentation we gave nine months before the attack;
we include an analysis of the recent attack. First, we present some
fundamentals behind network communication and routing. Next we
discuss the class of attacks we call address spoofing. We then give a
real-world example of an attack in this class. Finally, we address some
of the questions related to these attacks.

1 Introduction
Last year we began analyzing known

vulnerabilities and attacks for the purpose of
modelling them. We believe a sufficiently
complete model will allow us to both predict
new instances of general attack classes and
build generic schemes for detecting
exploitations of general vulnerability classes.
This paper discusses one vulnerability/attack
class we call address spoofing.

Many of today's network services use
host names or addresses for both identification
and authentication. A system using such a
service composes a message and sends the
message to the service on a remote system.
The service on the remote system allows or
disallows the request solely on the sender's
address included in the request. For example,
a remote login may be allowed without formal
authentication (e.g., no password is required)
if that remote login is coming from a "trusted"
host. Table 1 describes some of the services
using the senders address for authentication.
Many higher level network services (e.g.,
network back-ups) are built on these
vulnerable services thereby inheriting or
extending their risks.

Unfortunately, addresses were not
designed to provide authentication, and an
adversary can take advantage of this fact by
forging an artificial request. This paper
explores how, why, and under what conditions
an adversary can exploit services using
address-based authentication. Following a
discussion of the problem in the most general
sense, we present a specific example of such
an attack. Finally, we will conclude by
answering some of the questions surrounding
this problem.

2 Background Fundamentals
In order to more fully understand why

and how address spoofing can be performed,
we first cover some of the basics of
communication and routing. These basic
properties will be used to characterize an
adversary's capabilities and strategies.

2.1 Connectionless vs. Connection-
oriented Communication

As mentioned in the previous section,
an adversary exploits the services of interest
by forging a message; however, before we can
define what a "message" is, we must examine

Proceedings of the 19th National Information Page 2 of 8
Systems Security Conference pp. 371–377 (Oct. 1996)

some of the fundamentals of network
communication.

Communication across a network falls
into two broad categories: connectionless and
connection-oriented communication. In
connectionless communication, typically
supplied by a protocol layer such as UDP, no
state information about previously exchanged
information is kept. If a process wants to send
a message to another process which is already
waiting, the first process simply constructs the
message and gives it to the connectionless
protocol layer (e.g., UDP) to deliver. Because
no state information is kept, the underlying
protocol being used does NOT guarantee that
messages will arrive at their destination or
even if they will arrive in the order that they
were sent. However, this lack of state also
makes connectionless protocols such as UDP
very efficient and therefore desirable for many
network services.

Processes requiring more robust
communication, at the cost of some efficiency,
use connection-oriented communication; the
TCP layer provides such services.
Connection-oriented communication
"guarantees" that information will both arrive
and arrive in order at the destination process,
or if delivery could not be made, at least the
sending process will be notified. Connection-
oriented communication goes through three

phases: connection set-up, data exchange, and
connection tear-down. Under TCP, the set-up
and tear-down process are performed by three
way handshakes; the set-up handshake is
described below.

The connection set-up is a three way
handshake during which each host tells the
other its beginning sequence number and
acknowledges the beginning sequence number
of the other host (see Fig. 1). The connection
is NOT considered established until both hosts
have acknowledged the other host's sequence
number. Once the connection is established,
the sequence numbers will be used to
guarantee in-order delivery of data. In the
first packet exchange in figure 1, Host A
(Alice) notifies Host B (Bob) that she wants to
establish a connection and provides her
starting sequence number X. In the second
packet exchange, Bob sends his starting
sequence number, Y, and acknowledges that
he has received Alice's starting number (it is
incremented by one). In the final exchange,
Alice acknowledges that she has received
Bob's starting sequence number (once again,
incrementing Y by one). At this point, the
connection is established and data can be
exchanged.

Figure 1

Proceedings of the 19th National Information Page 3 of 8
Systems Security Conference pp. 371–377 (Oct. 1996)

An important feature to note is that
Bob's sequence number, Y, must be used in
the third part of the handshake - Alice's
second packet. If Alice is not able to
demonstrate to Bob that she knows his
sequence number, Bob will terminate the
connection before it is fully established.

2.2 Routing
Routing, under the internet protocol

suite, is almost magical. A host wanting to
send a packet to a remote host somewhere else
on the internetwork need only place the packet
on the network, and the packet will be
automatically routed through the network until
it reaches its destination. Neither the sending
nor receiving host need to know about the

underlying architecture of the internetwork
(hence, we often refer to an internetwork as a
cloud). What is even more interesting for our
needs is that, for the most part, during a
packet's travels across the internetwork, only
the destination address of the packet is
examined. Therefore, the source address can
be anything, including a non-existent host, and
the internetwork will still deliver the message.

In Figure 2, our adversary E (Eve)
wants to send a message to B (Bob)
pretending to be A (Alice). Fortunately for
Eve, she only needs to construct the packet
and place it on the internet. The cloud will
properly route the packet to Bob, and he will
be unable to tell that it was not Alice who sent
it. Once again, this feature will be important
when we describe the potential attacks.

Service Explanation

r* commands remote login, remote shell, remote copy, etc.; host
address can provide authentication by .rhosts and
hosts.equiv files.

mountd file system mounting; host address is used to allow
access and access rights. Host access is usually
specified in a file called something like /etc/exports.

TCP/UDP wrappers wrappers around network services; wrappers are often
used to deny access except to a few hosts to network
services. IP access/restriction can be set in specific
configuration files.

firewalls IP firewalls are used to restrict access into a network to
certain services and certain IP addresses. IP
access/restrictions can be set in configuration files.

Table 1

Proceedings of the 19th National Information Page 4 of 8
Systems Security Conference pp. 371–377 (Oct. 1996)

3 The Attack
We are now prepared to present the

address spoofing attack class. In this section
we will explain exactly what we consider is an
attack, explain the restriction in the attack, and
provide the strategy for an adversary.

3.1 Definition
Our model includes three players,

Host A (Alice), Host B (Bob), and the
adversary, Host E (Eve). Bob explicitly grants
Alice special privileges. This granting of
privileges is performed by listing Alice's name
(or address) in special configuration files (e.g.,
.rhosts). Thus, Alice is able to get Bob to
perform certain actions, actions he will not
perform for just anybody, simply because she
is who she says she is. Eve's goal is the
following: To get Bob to perform a specific
action that he would perform for Alice but
not Eve.

3.2 Restrictions
We must concern ourselves with two

major issues: (1) the placements of Alice,
Bob, and Eve and (2) the nature of the
communication used to get Bob to perform the
desired actions.

3.2.1 Architecture
The placement of the three players can

be described as the model's architecture. The
most basic architecture has Alice and Bob on

the same network as in figure 2. In this
scenario, either Eve is also on the same
network or she is outside the network.
However, for the purpose of this presentation
we will examine the more general architecture
where Alice and Bob are on separate
networks. In this scenario, Eve's location
relative to Alice and Bob can be described by
one of the following four categories: (1) on the
same network as Bob, (2) somewhere on the
path between Alice and Bob, (3) on the same
network as Alice, or (4) not on either of Alice
or Bob's network and not in the path of the
data (see figure 3) Each of Eve's four
positions will dictate different strategies used
by Eve and different defensive/detection
strategies used by Alice or Bob.

Please note that the simpler
architecture, where Alice and Bob are on the
same network, is really a special case of our
more general architecture depicted in figure 3.
Namely, E1 and E3 collapse into one case, E4
remains as is, and E2 is eliminated.

3.2.2 Communication Nature
Here we are concerned with how

Alice and Bob normally communicate. For if
Eve is to get Bob to perform some action by
making him believe Alice is requesting it,
Eve's communication with Bob must be
indistinguishable from Alice's communication
with Bob (at least from Bob's perspective).
We divide communication into two broad
categories we call orders and dialogues. In
order communication, Alice sends a single

Figure 2

Proceedings of the 19th National Information Page 5 of 8
Systems Security Conference pp. 371–377 (Oct. 1996)

message to Bob.
Bob may reply,
but he we assume
he has already
carried out the
order before
replying. A
popular form of
order
communication is
the remote
procedure call
(RPC) over UDP.

In
dialogue communication, Alice and Bob
exchange several messages prior to Bob
carrying out any request. If the dialogue does
not make sense from Bob's perspective, Bob
will not carry out the requested action (indeed,
Bob may stop the dialogue before he even
receives the request). Any communication
over TCP must be considered a dialogue
because as we showed earlier, several
messages (packets) must be exchanged to set
up a TCP/IP connection. Furthermore, Bob
will be replying to Alice (not to Eve, who is
pretending to be Alice). If Alice receives
Bob's replies, she may tell Bob that she isn't
talking to him, at which point Bob will
terminate the dialogue. Eve may need to keep
the dialogue going for some time, so she will
need to prevent Alice from alerting Bob.

The nature of the communication,
order or dialogue, used to get Bob to perform
the desired action will dictate Eve's strategy.

3.3 Strategy
For Eve to complete her goal, she

must achieve two main subgoals: establish a
forged communication with Bob and prevent
Alice from alerting Bob until it is too late. we
examine each of these goals and their
challenges in the following section.

For Eve to transmit a forged packet to
Bob, she must simply construct the packet and
place it on the network. The routing software
in the network will deliver the packet for Eve.
If the communication is order-based in which
only a single packet is needed (e.g., a remote

procedure call
over UDP), then
Eve has
completed her
communication
subgoal.
However, if
communication is
dialogue-based,
Eve will need to
send multiple
packets to Bob,
the contents of
which will

depend on replies that Bob makes (e.g., Bob's
sequence number under TCP). If Eve is in
positions E1, E2, or E3, she is able to observe
Bob's responses thereby allowing her to send
meaningful subsequent packets to Bob. If Eve
is in position E4, she can still observe Bob's
responses if she is able to modify the reply
path from Bob to Alice. This can easily be
done through source routing in IP networks.
Modifying router settings are also an option to
Eve. Finally, even if Eve is in position E4 and
is unable to direct Bob's traffic to Alice
through Eve's own network, if Eve can predict
Bob's responses (e.g., what Bob's sequence
number will be), she can still carry on the
communication with Bob. Predicting
sequence numbers is discussed in [Morris 85]
and [Bellovin 89] and was used in the recently
publicized IP spoofing attack.

Eve's second major goal is to prevent
Alice from interfering with the attack. Eve
can achieve this goal in many ways; we will
discuss three: (1) prevent the packets from
reaching Alice (or Alice's packets from
reaching Bob), (2) take away Alice's ability to
respond, and (3) completing the
communication before Alice's alerts can reach
Bob.. The first approach requires Eve to
modify the routing behavior of the network. If
Eve is a node in the routing path (e.g., she is a
router or has used source routing to make the
route flow through her), she simply doesn't
forward the packets to Alice. Even if Eve is
not on the path between Alice and Bob, she
could modify the routing information in one of
the routers in the path to misroute Alice's

Figure 3

Proceedings of the 19th National Information Page 6 of 8
Systems Security Conference pp. 371–377 (Oct. 1996)

packets. Eve could also wait for the
internetwork between Alice and Bob to fail
and launch her attack then.

The second approach, taking away
Alice's ability to respond, can be much
simpler for Eve to implement. Eve can (1)
cause Alice to crash (not terribly difficult), (2)
wait for Alice to go down for other reasons
(e.g., maintenance), or (3) block the TCP/IP
part of Alice's operating system so that it
cannot process Bob's packets. This latter
approach, perhaps the most graceful, was used
in the recently publicized IP spoofing attack.

The third approach, completing the
communication (at which time Bob has
completed the action) before Alice can alert
Bob, is trivial in the order-based
communication (e.g., RPC). Bob will have
completed any operation prior to sending any
messages to Alice; therefore, by the time Alice
is aware that something it wrong, she is too
late. For dialogue-based communication, the
solution is more difficult, because Bob will be
sending data to Alice before Bob completes
the requested operation. However, if the
communication between Eve and Bob is much
faster than between Alice and Bob, Eve could
complete the attack in time.

3.4 Attack Summary
For Eve to achieve her goal of getting

Bob to perform an action for Eve when he
thinks he is doing it for Alice, Eve must (1)
get the forged message to Bob, (2) if
necessary carry on a dialogue with Bob, and
(3) prevent Alice from interfering with the
communication. Internetwork routing will
usually take care of the first subgoal for Eve.
The last two goals may be achieved in a
number of ways; our suggested approaches
were by no means complete.

4 An Example Attack
Having mapped out a general plan for

Eve to exploit access control which is based
on IP addresses or names, we now examine a
particular instance of such an attack. The
attack, launched this past Christmas, has
gained the attention of the popular press, the

usenet, and CERT. The attack can be mapped
directly onto the general plan we discussed
back in March of 1994. The only novel step
in this attack was the way in which the
attackers prevented the equivalent of Alice (in
this case a server to an X-client (Bob)) from
responding to Bob's replies. Namely, the
attackers filled up Alice's internal TCP/IP
structures preventing that layer from
responding (by sending a reset, RST) in
response to Bob's messages. This approach
provides a number of additional benefits;
however, we will not discuss them at this time.

This particular attack involved a
server (Alice) and an X-client (Bob) (see
Figure 4). Eve was in position E4. That is,
she was unable to observe the messages
passing between Alice and Bob.

Step 1: "Wedge" Alice's OS such that
it cannot process Bob's replies. This is
performed by sending multiple connection
requests to the rlogin port (port 513) from a
non-existent host. Alice responds to each
request (the second part of the TCP
handshake), but since the originating host does
not exist, the third part of the handshake never
comes. Alice is left with several partially
opened connection, each filling up space in
her internal data structures. Alice is only able
to support up to eight of these partial
connections before internal tables fill up and
she stops responding.

Please note that had Eve listed her
own IP address in the forged, artificial
requests, her own TCP/IP software would
have sent a reset command, RST, following
Alice's reply. The RST would have freed
Alice's data structures. Therefore, Eve had to
use an artificial address as the sender of the
request—one that would never reply to Alice's
responses.

Step 2: Predict what Bob's sequence
number will be. The attackers approach is
essentially the same as those described in
[Morris 85] and [Bellovin 89]. Eve sent 20
connection attempts to Bob's remote shell
server; the starting sequence number for each
connection request incremented by a

Proceedings of the 19th National Information Page 7 of 8
Systems Security Conference pp. 371–377 (Oct. 1996)

predictable value of 128,000. Eve used her
own address in the forged, artificial request to
make sure the replies, with Bob's initial
sequence numbers, were visible to her.

Bob did not suffer the same fate as
Alice, namely halting after a number of
connection requests, because Eve canceled
each request with a reset command (RST)
freeing the internal structures. Eve's own
TCP/IP software probably took care of this for
her.

Step 3: Have a dialogue with Bob
pretending to be Alice (which is still in a
confused state). In this particular case, the
dialogue was a TCP/IP connection to the
remote shell server. Although Eve could not
see Bob's replies, she accurately predicted that
Bob's starting sequence number would be
2,024,384,000—exactly 128,000 more than
the last requested shell connection in step 2.
Eve's requested action: place a "+ +" in the
/.rhosts file (a shell command such as "echo
+ + >> /.rhosts" was sent). Bob,
believing the connection was from Alice,
carried out the request.

At this stage, the goal we set forth for
Eve has been completed. She was able to get
Bob (the X-client) to perform an action (place
a "+ +" in /.rhosts) for her; something only
Alice could legitimately do. Following this
attack, the adversary easily logged into Bob
via rlogin. In fact, at this point anyone from
anywhere could rlogin to Bob.

5 Popular questions
Couldn't this attack be simply

stopped by configuring routers (or
firewalls) to not forward an obviously
forged packets? This is true in limited
circumstances. For example, if the gateway G
in figure 2 did not forward the packet which
states that it is from A onto A's network, then
the forgery in figure 2 could not take place.
However, this is only a partial solution. If
hosts A and B (Alice and Bob) are not on the
same network already, this approach cannot
work. Furthermore, even if Alice and Bob are
on the same network, this cannot prevent
attacks coming from Eve if she is on the same
network already. In short, this solution is
limited in scope. A solution should not be
dependent on the network architecture.

Couldn't we simply write a more
secure algorithm for choosing initial
sequence numbers? If by "secure" you mean
a less predictable starting sequence number,
the answer is again true, but only in limited
circumstances. This would work if, as in the
case in figure 3, the adversary Eve is in
position E4 and unable to alter routing
information to get the traffic to flow through
her. However, if Eve is in positions E1, E2, or
E3 or if Eve is in position E4 and can use
source router or other means to alter routing, a
more random initial sequence number would
still not work. Eve is still able to observe
what Bob's sequence number is.

What other extensions to this attack
might exist? While numerous possibilities

Figure 4

Proceedings of the 19th National Information Page 8 of 8
Systems Security Conference pp. 371–377 (Oct. 1996)

exist, perhaps the one which concerns us the
most is the placing of a forged request into an
already existing TCP/IP connection. This
would immediately nullify the security
provided by most of today's one-time
password schemes. In fact, we have already
heard rumors of such attacks already existing.
Just as the Internet community was declaring
the end of the reusable password, we may be
witnessing the end of the password concept
itself. The idea of a single authentication at
the beginning of a connection may soon be
history.

What solutions are there? The only
effective solution from the network is to use
cryptography to authenticate the origin of each
packet using data secret to the originator. This
way, if Eve wants to spoof Bob by imitating a
packet from Alice, Eve won’t know the secret
information needed to construct the fake
packet. Note that Eve can get around this if
the sequence numbers are not random by
recording messages between Alice and Bob,
and when Bob repeats a sequence number,
Eve can replay Alice’s end of the previous
conversation. We leave discussion of the
usefulness of this attack, as well as
countermeasures, for another time.

A second, more effective solution is
for applications to regard the network as
inherently untrustworthy, and require
application-level authentication (and security
mechanisms) to validate claims. These
mechanisms should assume any data from the
network is bogus, unless the peer application
has secured the data before putting it on the
network. In this way, applications need not
wait for ubiquitous network security services
before enhancing their own security.

6 Summary
We have described a class of attacks

we have called address spoofing. The reason
this class exists rests squarely on the fact that
systems and application developers have
chosen to use a property which was not
designed to provide security, namely the
sender's IP address, as a means of
authentication. We have outlined where and

how this vulnerability can be exploited, and
we described a real instance of such an attack.
Finally, we hope to have convinced you that
the solution is not with "fixing" parts of the
protocols (addresses and sequence numbers)
which are not broken, but with getting systems
and application developers to build their
security on properties developed with the
purpose of providing security in the first place.

References
[Bellovin 89] Bellovin, S., "Security

Problems in the TCP/IP Protocol
Suite," Computer Communication
Review, Vol. 19, No. 2, pp. 32-48,
April 1989.

[Morris 85] Morris, R.T., "A Weakness in
the 4.2BSD Unix TCP/IP Software,"
Computing Science Technical Report
No. 117, AT&T Bell Laboratories,
Murray Hill, New Jersey.

