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Abstract 
We present an analysis of a class of attacks we call address spoofing.  
With the recent publicity surrounding an instance of such an attack, we 
have written up a presentation we gave nine months before the attack; 
we include an analysis of the recent attack.  First, we present some  
fundamentals behind network communication and routing.  Next we 
discuss the class of attacks we call address spoofing.  We then give a 
real-world example of an attack in this class.  Finally, we address some 
of the questions related to these attacks. 

 

1  Introduction 
Last year we began analyzing known 

vulnerabilities and attacks for the purpose of 
modelling them.  We believe a sufficiently 
complete model will allow us to both predict 
new instances of general attack classes and 
build generic schemes for detecting 
exploitations of general vulnerability classes.  
This paper discusses one vulnerability/attack 
class we call address spoofing. 

Many of today's network services use 
host names or addresses for both identification 
and authentication.  A system using such a 
service composes a message and sends the 
message to the service on a remote system.  
The service on the remote system allows or 
disallows the request solely on the sender's 
address included in the request.  For example, 
a remote login may be allowed without formal 
authentication (e.g., no password is required) 
if that remote login is coming from a "trusted" 
host.  Table 1 describes some of the services 
using the senders address for authentication.  
Many higher level network services (e.g., 
network back-ups) are built on these 
vulnerable services thereby inheriting or 
extending their risks. 

Unfortunately, addresses were not 
designed to provide authentication, and an 
adversary can take advantage of this fact by 
forging an artificial request.  This paper 
explores how, why, and under what conditions 
an adversary can exploit services using 
address-based authentication.  Following a 
discussion of the problem in the most general 
sense, we present a specific example of such 
an attack.  Finally, we will conclude by 
answering some of the questions surrounding 
this problem. 

2  Background Fundamentals 
In order to more fully understand why 

and how address spoofing can be performed, 
we first cover some of the basics of 
communication and routing.  These basic 
properties will be used to characterize an 
adversary's capabilities and strategies. 

2.1  Connectionless vs. Connection-
oriented Communication 

As mentioned in the previous section, 
an adversary exploits the services of interest 
by forging a message; however, before we can 
define what a "message" is, we must examine 
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some of the fundamentals of network 
communication. 

Communication across a network falls 
into two broad categories: connectionless and 
connection-oriented communication.  In 
connectionless communication, typically 
supplied by a protocol layer such as UDP, no 
state information about previously exchanged 
information is kept.  If a process wants to send 
a message to another process which is already 
waiting, the first process simply constructs the 
message and gives it to the connectionless 
protocol layer (e.g., UDP) to deliver.  Because 
no state information is kept, the underlying 
protocol being used does NOT guarantee that 
messages will arrive at their destination or 
even if they will arrive in the order that they 
were sent.  However, this lack of state also 
makes connectionless protocols such as UDP 
very efficient and therefore desirable for many 
network services. 

Processes requiring more robust 
communication, at the cost of some efficiency, 
use connection-oriented communication; the 
TCP layer provides such services.  
Connection-oriented communication 
"guarantees" that information will both arrive 
and arrive in order at the destination process, 
or if delivery could not be made, at least the 
sending process will be notified.  Connection-
oriented communication goes through three 

phases: connection set-up, data exchange, and 
connection tear-down.  Under TCP, the set-up 
and tear-down process are performed by three 
way handshakes; the set-up handshake is 
described below. 

The connection set-up is a three way 
handshake during which each host tells the 
other its beginning sequence number and 
acknowledges the beginning sequence number 
of the other host (see Fig. 1).    The connection 
is NOT considered established until both hosts 
have acknowledged the other host's sequence 
number.  Once the connection is established, 
the sequence numbers will be used to 
guarantee in-order delivery of data.  In the 
first packet exchange in figure 1, Host A 
(Alice) notifies Host B (Bob) that she wants to 
establish a connection and provides her 
starting sequence number X.  In the second 
packet exchange, Bob sends his starting 
sequence number, Y, and acknowledges that 
he has received Alice's starting number (it is 
incremented by one).  In the final exchange, 
Alice acknowledges that she has received 
Bob's starting sequence number (once again, 
incrementing Y by one).  At this point, the 
connection is established and data can be 
exchanged. 

 

 
Figure 1 
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An important feature to note is that 
Bob's sequence number, Y, must be used in 
the third part of the handshake - Alice's 
second packet.  If Alice is not able to 
demonstrate to Bob that she knows his 
sequence number, Bob will terminate the 
connection before it is fully established. 

 

2.2  Routing 
Routing, under the internet protocol 

suite, is almost magical.  A host wanting to 
send a packet to a remote host somewhere else 
on the internetwork need only place the packet 
on the network, and the packet will be 
automatically routed through the network until 
it reaches its destination.  Neither the sending 
nor receiving host need to know about the 

underlying architecture of the internetwork 
(hence, we often refer to an internetwork as a 
cloud).  What is even more interesting for our 
needs is that, for the most part, during a 
packet's travels across the internetwork, only 
the destination address of the packet is 
examined.  Therefore, the source address can 
be anything, including a non-existent host, and 
the internetwork will still deliver the message. 

In Figure 2, our adversary E (Eve) 
wants to send a message to B (Bob) 
pretending to be A (Alice).  Fortunately for 
Eve, she only needs to construct the packet 
and place it on the internet.  The cloud will 
properly route the packet to Bob, and he will 
be unable to tell that it was not Alice who sent 
it.  Once again, this feature will be important 
when we describe the potential attacks. 

Service Explanation 

r* commands remote login, remote shell, remote copy, etc.; host 
address can provide authentication by .rhosts and 
hosts.equiv files. 

mountd file system mounting; host address is used to allow 
access and access rights.  Host access is usually 
specified in a file called something like /etc/exports. 

TCP/UDP wrappers wrappers around network services; wrappers are often 
used to deny access except to a few hosts to network 
services.  IP access/restriction can be set in specific 
configuration files. 

firewalls IP firewalls are used to restrict access into a network to 
certain services and certain IP addresses.  IP 
access/restrictions can be set in configuration files. 

Table 1 
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3  The Attack 
We are now prepared to present the 

address spoofing attack class.  In this section 
we will explain exactly what we consider is an 
attack, explain the restriction in the attack, and 
provide the strategy for an adversary. 

3.1  Definition 
Our model includes three players, 

Host A (Alice), Host B (Bob), and the 
adversary, Host E (Eve).  Bob explicitly grants 
Alice special privileges.  This granting of 
privileges is performed by listing Alice's name 
(or address) in special configuration files (e.g., 
.rhosts).  Thus, Alice is able to get Bob to 
perform certain actions, actions he will not 
perform for just anybody, simply because she 
is who she says she is.  Eve's goal is the 
following: To get Bob to perform a specific 
action that he would perform for Alice but 
not Eve. 

3.2  Restrictions 
We must concern ourselves with two 

major issues: (1) the placements of Alice, 
Bob, and Eve and (2) the nature of the 
communication used to get Bob to perform the 
desired actions. 

3.2.1  Architecture 
The placement of the three players can 

be described as the model's architecture.  The 
most basic architecture has Alice and Bob on 

the same network as in figure 2.  In this 
scenario, either Eve is also on the same 
network or she is outside the network.  
However, for the purpose of this presentation 
we will examine the more general architecture 
where Alice and Bob are on separate 
networks.  In this scenario, Eve's location 
relative to Alice and Bob can be described by 
one of the following four categories: (1) on the 
same network as Bob, (2) somewhere on the 
path between Alice and Bob, (3) on the same 
network as Alice, or (4) not on either of Alice 
or Bob's network and not in the path of the 
data (see figure 3)  Each of Eve's four 
positions will dictate different strategies used 
by Eve and different defensive/detection 
strategies used by Alice or Bob. 

Please note that the simpler 
architecture, where Alice and Bob are on the 
same network, is really a special case of our 
more general architecture depicted in figure 3.  
Namely, E1 and E3 collapse into one case, E4 
remains as is, and E2 is eliminated. 

3.2.2  Communication Nature 
Here we are concerned with how 

Alice and Bob normally communicate.  For if 
Eve is to get Bob to perform some action by 
making him believe Alice is requesting it, 
Eve's communication with Bob must be 
indistinguishable from Alice's communication 
with Bob (at least from Bob's perspective).  
We divide communication into two broad 
categories we call orders and dialogues.  In 
order communication, Alice sends a single 

 
Figure 2 
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message to Bob.  
Bob may reply, 
but he we assume 
he has already 
carried out the 
order before 
replying.  A 
popular form of 
order 
communication is 
the remote 
procedure call 
(RPC) over UDP. 

In 
dialogue communication, Alice and Bob 
exchange several messages prior to Bob 
carrying out any request.  If the dialogue does 
not make sense from Bob's perspective, Bob 
will not carry out the requested action (indeed, 
Bob may stop the dialogue before he even 
receives the request).  Any communication 
over TCP must be considered a dialogue 
because as we showed earlier, several 
messages (packets) must be exchanged to set 
up a TCP/IP connection.  Furthermore, Bob 
will be replying to Alice (not to Eve, who is 
pretending to be Alice).  If Alice receives 
Bob's replies, she may tell Bob that she isn't 
talking to him, at which point Bob will 
terminate the dialogue.  Eve may need to keep 
the dialogue going for some time, so she will 
need to prevent Alice from alerting Bob. 

The nature of the communication, 
order or dialogue, used to get Bob to perform 
the desired action will dictate Eve's strategy. 

3.3  Strategy 
For Eve to complete her goal, she 

must achieve two main subgoals: establish a 
forged communication with Bob and prevent 
Alice from alerting Bob until it is too late.  we 
examine each of these goals and their 
challenges in the following section. 

For Eve to transmit a forged packet to 
Bob, she must simply construct the packet and 
place it on the network.  The routing software 
in the network will deliver the packet for Eve.  
If the communication is order-based in which 
only a single packet is needed (e.g., a remote 

procedure call 
over UDP), then 
Eve has 
completed her 
communication 
subgoal.  
However, if 
communication is 
dialogue-based, 
Eve will need to 
send multiple 
packets to Bob, 
the contents of 
which will 

depend on replies that Bob makes (e.g., Bob's 
sequence number under TCP).  If Eve is in 
positions E1, E2, or E3, she is able to observe 
Bob's responses thereby allowing her to send 
meaningful subsequent packets to Bob.  If Eve 
is in position E4, she can still observe Bob's 
responses if she is able to modify the reply 
path from Bob to Alice.  This can easily be 
done through source routing in IP networks.  
Modifying router settings are also an option to 
Eve.  Finally, even if Eve is in position E4 and 
is unable to direct Bob's traffic to Alice 
through Eve's own network, if Eve can predict 
Bob's responses (e.g., what Bob's sequence 
number will be), she can still carry on the 
communication with Bob.  Predicting 
sequence numbers is discussed in [Morris 85] 
and [Bellovin 89] and was used in the recently 
publicized IP spoofing attack. 

Eve's second major goal is to prevent 
Alice from interfering with the attack.  Eve 
can achieve this goal in many ways; we will 
discuss three: (1) prevent the packets from 
reaching Alice (or Alice's packets from 
reaching Bob), (2) take away Alice's ability to 
respond, and (3) completing the 
communication before Alice's alerts can reach 
Bob..  The first approach requires Eve to 
modify the routing behavior of the network.  If 
Eve is a node in the routing path (e.g., she is a 
router or has used source routing to make the 
route flow through her), she simply doesn't 
forward the packets to Alice.  Even if Eve is 
not on the path between Alice and Bob, she 
could modify the routing information in one of 
the routers in the path to misroute Alice's 

 
Figure 3 
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packets.  Eve could also wait for the 
internetwork between Alice and Bob to fail 
and launch her attack then. 

The second approach, taking away 
Alice's ability to respond, can be much 
simpler for Eve to implement.  Eve can (1) 
cause Alice to crash (not terribly difficult), (2) 
wait for Alice to go down for other reasons 
(e.g., maintenance), or (3) block the TCP/IP 
part of Alice's operating system so that it 
cannot process Bob's packets.  This latter 
approach, perhaps the most graceful, was used 
in the recently publicized IP spoofing attack. 

The third approach, completing the 
communication (at which time Bob has 
completed the action) before Alice can alert 
Bob, is trivial in the order-based 
communication (e.g., RPC).  Bob will have 
completed any operation prior to sending any 
messages to Alice; therefore, by the time Alice 
is aware that something it wrong, she is too 
late.  For dialogue-based communication, the 
solution is more difficult, because Bob will be 
sending data to Alice before Bob completes 
the requested operation.  However, if the 
communication between Eve and Bob is much 
faster than between Alice and Bob, Eve could 
complete the attack in time. 

3.4  Attack Summary 
For Eve to achieve her goal of getting 

Bob to perform an action for Eve when he 
thinks he is doing it for Alice, Eve must (1) 
get the forged message to Bob, (2) if 
necessary carry on a dialogue with Bob, and 
(3) prevent Alice from interfering with the 
communication.  Internetwork routing will 
usually take care of the first subgoal for Eve.  
The last two goals may be achieved in a 
number of ways; our suggested approaches 
were by no means complete. 

4  An Example Attack 
Having mapped out a general plan for 

Eve to exploit access control which is based 
on IP addresses or names, we now examine a 
particular instance of such an attack.  The 
attack, launched this past Christmas, has 
gained the attention of the popular press, the 

usenet, and CERT.  The attack can be mapped 
directly onto the general plan we discussed 
back in March of 1994.  The only novel step 
in this attack was the way in which the 
attackers prevented the equivalent of Alice (in 
this case a server to an X-client (Bob)) from 
responding to Bob's replies.  Namely, the 
attackers filled up Alice's internal TCP/IP 
structures preventing that layer from 
responding (by sending a reset, RST) in 
response to Bob's messages.  This approach 
provides a number of additional benefits; 
however, we will not discuss them at this time. 

This particular attack involved a 
server (Alice) and an X-client (Bob) (see 
Figure 4).  Eve was in position E4.  That is, 
she was unable to observe the messages 
passing between Alice and Bob. 

Step 1:  "Wedge" Alice's OS such that 
it cannot process Bob's replies.  This is 
performed by sending multiple connection 
requests to the rlogin port (port 513) from a 
non-existent host.  Alice responds to each 
request (the second part of the TCP 
handshake), but since the originating host does 
not exist, the third part of the handshake never 
comes.  Alice is left with several partially 
opened connection, each filling up space in 
her internal data structures.  Alice is only able 
to support up to eight of these partial 
connections before internal tables fill up and 
she stops responding. 

Please note that had Eve listed her 
own IP address in the forged, artificial 
requests, her own TCP/IP software would 
have sent a reset command, RST, following 
Alice's reply.  The RST would have freed 
Alice's data structures.  Therefore, Eve had to 
use an artificial address as the sender of the 
request—one that would never reply to Alice's 
responses. 

Step 2:  Predict what Bob's sequence 
number will be.  The attackers approach is 
essentially the same as those described in 
[Morris 85] and [Bellovin 89].  Eve sent 20 
connection attempts to Bob's remote shell 
server;  the starting sequence number for each 
connection request incremented by a 
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predictable value of 128,000.  Eve used her 
own address in the forged, artificial request to 
make sure the replies, with Bob's initial 
sequence numbers, were visible to her. 

Bob did not suffer the same fate as 
Alice, namely halting after a number of 
connection requests, because Eve canceled 
each request with a reset command (RST) 
freeing the internal structures.  Eve's own 
TCP/IP software probably took care of this for 
her. 

Step 3:  Have a dialogue with Bob 
pretending to be Alice (which is still in a 
confused state).  In this particular case, the 
dialogue was a TCP/IP connection to the 
remote shell server.  Although Eve could not 
see Bob's replies, she accurately predicted that 
Bob's starting sequence number would be 
2,024,384,000—exactly 128,000 more than 
the last requested shell connection in step 2.  
Eve's requested action: place a "+ +" in the 
/.rhosts file (a shell command such as "echo 
+ + >> /.rhosts" was sent).  Bob, 
believing the connection was from Alice, 
carried out the request. 

At this stage, the goal we set forth for 
Eve has been completed.  She was able to get 
Bob (the X-client) to perform an action (place 
a "+ +" in /.rhosts) for her; something only 
Alice could legitimately do.  Following this 
attack, the adversary easily logged into Bob 
via rlogin.  In fact, at this point anyone from 
anywhere could rlogin to Bob. 

5  Popular questions 
Couldn't this attack be simply 

stopped by configuring routers (or 
firewalls) to not forward an obviously 
forged packets?  This is true in limited 
circumstances.  For example, if the gateway G 
in figure 2 did not forward the packet which 
states that it is from A onto A's network, then 
the forgery in figure 2 could not take place.  
However, this is only a partial solution.  If 
hosts A and B (Alice and Bob) are not on the 
same network already, this approach cannot 
work.  Furthermore, even if Alice and Bob are 
on the same network, this cannot prevent 
attacks coming from Eve if she is on the same 
network already.  In short, this solution is 
limited in scope.  A solution should not be 
dependent on the network architecture. 

Couldn't we simply write a more 
secure algorithm for choosing initial 
sequence numbers?  If by "secure" you mean 
a less predictable starting sequence number, 
the answer is again true, but only in limited 
circumstances.  This would work if, as in the 
case in figure 3, the adversary Eve is in 
position E4 and unable to alter routing 
information to get the traffic to flow through 
her.  However, if Eve is in positions E1, E2, or 
E3 or if Eve is in position E4 and can use 
source router or other means to alter routing, a 
more random initial sequence number would 
still not work.  Eve is still able to observe 
what Bob's sequence number is. 

What other extensions to this attack 
might exist?  While numerous possibilities 

Figure 4 
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exist, perhaps the one which concerns us the 
most is the placing of a forged request into an 
already existing TCP/IP connection.  This 
would immediately nullify the security 
provided by most of today's one-time 
password schemes.  In fact, we have already 
heard rumors of such attacks already existing.  
Just as the Internet community was declaring 
the end of the reusable password, we may be 
witnessing the end of the password concept 
itself.  The idea of a single authentication at 
the beginning of a connection may soon be 
history. 

What solutions are there?  The only 
effective solution from the network is to use 
cryptography to authenticate the origin of each 
packet using data secret to the originator.  This 
way, if Eve wants to spoof Bob by imitating a 
packet from Alice, Eve won’t know the secret 
information needed to construct the fake 
packet.  Note that Eve can get around this if 
the sequence numbers are not random by 
recording messages between Alice and Bob, 
and when Bob repeats a sequence number, 
Eve can replay Alice’s end of the previous 
conversation.  We leave discussion of the 
usefulness of this attack, as well as 
countermeasures, for another time. 

A second, more effective solution is 
for applications to regard the network as 
inherently untrustworthy, and require 
application-level authentication (and security 
mechanisms) to validate claims.  These 
mechanisms should assume any data from the 
network is bogus, unless the peer application 
has secured the data before putting it on the 
network.  In this way, applications need not 
wait for ubiquitous network security services 
before enhancing their own security. 

6 Summary 
We have described a class of attacks 

we have called address spoofing.  The reason 
this class exists rests squarely on the fact that 
systems and application developers have 
chosen to use a property which was not 
designed to provide security, namely the 
sender's IP address, as a means of 
authentication.  We have outlined where and 

how this vulnerability can be exploited, and 
we described a real instance of such an attack.  
Finally, we hope to have convinced you that 
the solution is not with "fixing" parts of the 
protocols (addresses and sequence numbers) 
which are not broken, but with getting systems 
and application developers to build their 
security on properties developed with the 
purpose of providing security in the first place. 
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