
n the United States in the late 19th century, when
desperadoes rampaged through the Wild West,
communication, commerce, and even basic trust in
civil authority were threatened. Today's electronic
highway is similarly threatened by a new breed of

"highwaymen," called crackers, ranging from malicious
pranksters to hardened terrorists. For the sake of public
trust in the Internet, an infrastructure must be designed to
support its safe use; systematic mechanisms and protocols
must be developed to prevent breaches of security.

Since the Internet is an international collection of inde-
pendent networks owned and operated by many organi-
zations, there is no uniform cultural, legal, or legislative
basis for addressing misconduct. Because the Internet has
no central authority through which it can regulate the
behavior of those using it, most organizations connected
to the Internet have their own security policies. But these
policies vary widely in their objectives and how they are
put into effect.

Today most companies have a formal or informal infor-
mation-security policy-a written or oral statement of
objectives for ensuring that a system and the information
in it meet with only appropriate treatment. Associated
with this statement are those corporate and personal prac-
tices that must be implemented to reach the policy's goals.
Typical policy objectives include protecting the confiden-
tiality of private information, preventing unauthorized
modification of data (that is, ensuring data integrity), and
preserving the availability of system resources (such as

Basic to any security policy is prevention of intrusion-
that is, denial of access to a system's data or resources by
someone not cleared for such access. Even an uninten-
tional intrusion violates security.

As serious as an intrusion is, it is just the start of securi-
ty problems. Determining what the intruder may have
done once he or she gained access is usually more critical.
As far back as 1980, the consultant James P. Anderson of
Fort Washington, Pa., in his seminal report Computer
Security Tbreat Monitoring and Surveillance, defined a still-use-
ful list of the types of mischievous actions an intruder can
carry out, which may be summarized as:

Masquerading (impersonating an authorized user or a
system resource, such as an e-mail server).

Unauthorized use of resources (running a lengthy pro-
gram that eats up computing cycles and so keeps others
from running programs).

Denial of service (by, say, deliberately overloading a sys-
tem with messages to keep others from gaining access to it).

Unauthorized disclosure of information (illicitly reading
or copying an individual's personal information, such as a
credit card number, or sensitive corporate data, such as
business plans).

Unauthorized alteration of information (tinkering with
file data).
A single intrusion can result in a number of these problems.

Ways to detect an intrusion and assess what the intrud-
er did must be well thought out. For the most part, they
will rely upon the ability of each system on the Internet to

computer time), in accordance with
tations of the system's users. In
printed form, the policy and prac-
tices can range from a single page
to manuals of several volumes.

Just as a legal system is designed
to stop wrongdoers from harming
those who live within its bound-
aries, a security policy prevents the
unacceptable use of an information
system's resources and data without
impeding legitimate activity. The
policy must protect not only the
data stored on those company com-
puters connected to the network,
but the data contained in the com-
munications relayed by the network
as well; electronic mail passed along
by network routers must be as
sacrosanct as personnel records
stored on the corporate mainframe.

A formal security policy may

the needs and expec- keep a log of events. The logs are- invaluable for intrusion

As it stands today, the In
so the only option i s to U

occur and how best to
consist of a mathematical model of the system as a collec-
tion of all its possible states and operations, plus a set of
constraints on when and how they may exist. But just as it
is difficult to write laws that precisely define unacceptable
behavior, it is hard to write security policies that formally
and precisely express which activities are disallowed.

In current practice, security policies are usually stated
informally, in ordinary language-which hobbles the task
of translating their intent into a computerized form that
automates enforcement. Imprecise translation, however, is
not the only problem; automated security mechanisms
may be configured incorrectly, too. In either case, the
problem opens the system to malicious behavior.

detection and analysis, indeed, they are basic to all post-
attack analysis. Authors of the security policy must deter-
mine what to log (keeping in mind how the desired level
of logging will affect system performance) and how the
logs should be analyzed. The logs should note who has
entered the system as well as what they have done.

Before a detailed examination is made of security meth-
ods, the issues affecting security enforcement warrant a
broad overview.

An ounce of prevention, a pound of detection
The means of enforcing security policy involves either

prevention or detection. Prevention is prophylactic-it

5 6 0018 9235 /97 /$10 OOOIg97 IEEE IEEE SPECTRUM A U G U S T 1997

seek!; to preclude the possibility of malicious behavior.
Detection, on the other hand, aims to discover and record
any possibly malicious behavior as it occurs.

Among the protection mechanisms are access controls
such as permission to access files, cryptography for safe-
guarding sensitive data such as credit card numbers, and
authentication by asking for a password. All these are
designed to ensure that only an authorized person can
gain access to systems and alter information. Audit mech-
anisms, on the other hand, are investigative tools that
detect and quantify malicious behavior. For example,
some tools examine user activities on the system as they
occur, while others check the records (called "audit logs")
of system behavior.

Olne class need not be employed exclusively, in fact,
most. systems employ both. Audit can serve to review the
effec:tiveness of access controls, while audit logs usually
have the highest levels of access control to prevent a
cracker from covering his or her tracks by altering them.

Even so, policies cannot be enforced exactly because of
the 'limitations inherent in translating policies stated in
everyday language into the software that enforces its
intent. A case in point: the file protection mechanism of
the IJnix operating system can limit access to a file, but it
cannot prevent any user who has permission to read a file
from, making a copy of it.

Besides the technological gap, there can be a gap
between social policies and information security policies.
People can usually distinguish between unintentional mis-
take!; and malicious actions; computers cannot. There is
even a gap between policies and actual user behavior: a
system can be abused by careless authorized users.

The goal of protection mechanisms is to restrict a usei's
activities to those allowed by the security policy. A securi-

ty policy might forbid any external user< viewing of infor-
mation on an internal Web server, allow all internal users
to view the information, but permit only certain corporate
users to add to or change information on the server.

When a person tries to access a protected object--be it
a text file, a program, or some hardware resource, such as
a server-the system's access control mechanism deter-
mines whether that person is authorized to do so. If so,
the person gains access; if not, the access is denied and an
error message may be returned to the user. The decision is
usually made during run-time at the beginning of each
access. Alternatively, users may be given an electronic
token, which they turn in at system start-up prior to mak-
ing any accesses.

Creating and maintaining a security policy [Fig. 11 is an
iterative process, during which the policy's authors must
identify the organization$ and users' security expectations,
set them forth in a policy, enforce the policy, re-assess the
system in light of policy violations or intrusions, and
modify the original policy specification. During the re-
assessment step of each iteration, both the policy and the
protection mechanisms may be refined to address new
attacks, close vulnerabilities, and update the policy to
accommodate new user and organization requirements.

Protection's vu I nera bi I ities
A cracker transgresses a security policy by exploiting

the vulnerabilities in the system, if there were none, all
attacks would fail. Vulnerabilities exist because the system's

MATT BISHOP, STEVEN CHEUNG,
& CHRISTOPHER WEE

University o f California at Davis

BISHOP, CHEUNG B WEE THE THREAT FROM THE NET 57

designers, implementers, and administrators, when considering
the problems would-be intruders might present, make assump-
tions and tradeoffs-about the environment in which the system
will be used, the quality of data on which it will work, and the
use to which it will be put. These assumptions stem from person-
al experience, beliefs about the environment in which the system
operates, and the laws and cultural cus-

reconnected to the download system, it had to request the
download server's network address over the Internet by sending
its domain name to a domain-name server, whose job it was to
return the actual network address. If an attacker corrupted the
domain-name-to-network-address translation tables in the
domain server, it could "lie" and give a false network address.

JavaS implementers tnrsted that the
toms of the workplace. Vulnerabilities
can be extremely subtle, existing in sys-
tems for years before being noticed or
exploited, further, the conditions under
which they can be exploited may be
quite fleeting.

A good example of how assumptions
breed vulnerability is to be seen in the
development of the Unix operating sys-
tem. Unix was created by programmers
in a friendly environment, in which
security mechanisms had to deal only
with simple threats, such as one user
accidentally deleting another's files. But
as the Unix system's popularity grew, it
spread into commercial realms, where
the threats were very different.

For example, the original design of the Unix system has one all-
powerful user (the "super-user"). Now in military and many
other environments, the existence of such a user is a serious flaw.
In fact, most attackers attempt to gain access in the guise of this
user, so they can modify log-in programs or system libraries or
even the Unix kernels, to let them return later. So the starting
assumptions about security needs, reasonable though they were
in the environment in which the Unix system was born, did not
generalize well into other environments.

Vulnerabilities also arise when a use is made of systems that
was not foreseen when they were built. Suppose a company
decided that data from external World Wide Web servers should
be barred from the company's network, say, to prevent unautho-
rized software From being sneaked into the system. To this end,
the company could set up a firewall-software that can be con-
figured to block specific types of communications between
internal and external networks. To prevent Web traffic, the fire-
wall might be configured to block communications using server
port 80, which is the default port used by the Webs hypertext
transport protocol (http) to transfer data. However, if someone
outside the firewall purposely ran a World Wide Web server that
accepted connections on port 25, the firewall would let communi-
cations to that server through on port 25. Because this kind of
usage is not covered by the assumption (all http communications
will go through the firewall at port SO), the site is vulnerable.

Another source of weakness is any flaw in the software sys-
tem's implementation. A good example here are early server
implementations that did not check input data. This allowed
attackers to send messages to a Web server and have it execute
any instructions in those messages.

Another good example is the initial implementation of Sun
Microsystems Computer Corp.'s Java programming language,
used to provide downloadable and executable programs called
applets. To limit the dangers to the system receiving an applet,
the designers restricted the actions the applet could perform, yet
a number of implementation flaws allowed the little programs to
breach those restrictions.

Also, it was the intent when designing Java to constrain each
applet to connect back only to the system from which it was
downloaded. To do this, an applet had to be written so that it
identified the download system by its alias, or domain name (say
www.xyz.com), not its absolute, or network, address (that is,
123.45.6.7), which is the actual address the Internet uses to
locate the download system.

The problem, then, was that, when the applet asked to be

domain-name server's look-up table
would be correct and reliable but, under
fire from an attacker, it need not be.
They later fixed this leak by having
applets refer to all systems by addresses,
not names.

Errors made when configuring the
security system give rise to other vulner-
abilities. For example, most World Wide
Web servers allow their, system adminis-
trators to use the address of the client
asking for a page to control access to
certain Web pages-such as those con-
taining private company data. Should
the system administrator mistype an
address, or fail to restrict sensitive pages,
the company security policy can be vio-

lated. Any time a system administrator or user must configure a
security-related program-in the specific case noted by typing in
a list of allowed-user addresses-a vulnerability exists.

Hardware vulnerabilities, usually more subtle, can also be
exploited. Researchers have studied artificially injecting faults
into smart cards by varying operating voltages or clock cycles so
that the cryptographic keys inserted by the cards issuer could be
discovered by comparing good and bad data. Evidently, while
the "burning of keys into hardware is supposed to protect them,
it may not protect them well enough.

Vulnerabilities are not confined to end systems like servers.
The computers, protocols, software, and hardware along the path
to the server-that is, those that make up the Internet itself-
have weak points, too. Consider the vulnerability of a router-a
computer designed to forward data packets to other routers as
those packets traverse the Internet to their final destination.

A router uses a routing table to determine the path along
which the packet will be forwarded. Periodically, routers update
each other's tables, making it possible to reconfigure the net-
work dynamically as more paths are added to it. I f , through
design or error, a router were to announce that it were the clos-
est one to all other routers, they all would send it all their pack-
ets. The misconfigured router would try to reroute the packets,
but all routes would lead back to it. So the packets would never
reach their destination-a perfect example of a denial-of-service
attack and one that would bring the Internet to its knees.

Whom do you trust?
Central to the problem of vulnerability,is the issue of what or

whom to trust. Designers and engineers trust a system will be
used in a certain way, under certain conditions; design teams
trust that the other teams did their jobs correctly so that pieces
fit together; program designers trust that the coders do not
introduce errors; consumers trust a system will perform as speci-
fied. Vulnerabilities arise at every loose link in the chain of trust.

The vast scope of the Internet demands trust. Suppose Robin
in Seattle wants to send a love letter via electronic mail to Sam
in Terra del Fuego. Robin types the letter on a computer and
uses a mail program to send it to Sam, trusting that:

The mail message contains the letter as typed, not some
other letter.

The mail program correctly sends the message from the local
network to the next network.

The message is sent on a path, chosen for efficiency by
routers, over the Internet to Sam's computer.

5 8 IEEE SPECTRUM AUGUST 1997

The destination computer's mail-handling program will receive
the message, store it, and notify Sam that it has arrived.

Sam will be able to successfully read the message using a mail-
reading program.

For Robin's confidence to be well-placed, multiple pieces of
hardware (including computers and dedicated routers) and the
transport medium (be it twisted pair, fiber-optic cable, satellite
link, or some combination thereof) must operate in the way in-
tended. In addition, numerous pieces of software (including the
mail programs, the operating systems, and the software that
implements message transportation) must work correctly. In fact,
the number of components in the network can become quite
large and they must all interact correctly to guarantee that elec-
tronic mail is delivered safely. But if one of the components acts
in some other way, Robin's trust i s misplaced.

The man in the middle
~ uppose that an attacker is competing with Robin for Sam's
affections, and wants to intercept their e-mail billet-doux. If

'the messages traveling over the Internet can be modified en
route, the message Sam receives need not be the one Robin sent.
To do this, the attacker must change the router tables so that all
e-mail messages between Robin's and Sam's computers are for-
warded to some intermediate system to which the attacker has
easy access. The attacker can then read the messages on this
intermediate site, change their contents, and forward them to the
original destination as if the intermediate site were legitimately
on the message's path-a so-called "man in the middle'' attack.

Using cryptography to hide the contents of messages, while
often seen as the ultimate answer to this problem, is merely a
part of the solution, because of a simple yet fundamental prob-
lem of trust: how do you distribute cryptographic keys? Public-
key (cryptographic systems provide each user with both a private

key known only to that user and a public key that the user can
distribute widely. With this scheme, if Robin wants to send Sam
confidential mail, she enciphers a message using Sam's public
key and sends the enciphered message to him [Fig. 21. Only
Sam, with his private key, can decipher this message, without
that key, the attacker cannot read or change Robin's message.

But suppose the attacker i s able to fool Robin into believing
that the attacker's public key i s Sam's, say by intercepting the
unencoded e-mail message that Sam sent giving Robin the public
key and substituting his own. Thus, Robin would encipher the
message using the attacker's public key and send that message to
Sam. The attacker intercepts the message, deciphers it, alters it,
and re-encrypts it using Sam's real public key. Sam receives the
altered message, deciphers it, and the romance goes sour.

The situation becomes even more complicated with the
World Wide Web. Suppose Robin uses a Web browser to view a
Web site in Germany. The German Web page, put up by an at-
tacker, has a link on it that says: "Click here to view a graphic
image." When she clicks on the link, an applet that scans her
system for personal information (such as a credit card number)
and invisibly e-mails it to the attacker, is downloaded along with
the image. Here, Robin trusted the implied promise of the Web
page: that only an image would be downloaded. This trust in
implied situations ("this program only does what it says it does")
is violated by computer programs containing viruses and Trojan
horses. PC users spread viruses by trusting that new programs
do only what they are documented to do and have not been
altered, so they fail to take necessary precautions.

Auditing's objectives
Auditing, a way of finding such problems, has five main aims:
To trace any system or file access to an individual, who may

then be held accountable for his or her actions.

[I] As with most software processes, the creation of a security system is cyclic. Once the policy developers determine
what the ultimate users of a system expect and need in the way of security, the cycle of enforcement, reassessment,
and modification that makes up its life begins.

BISHOP, C H E U N C 6. WEE - T H E THREAT FROM THE NET 5 9

To verify the effectiveness of system protection
mechanisms and access controls.

To record attempts that bypass the system's protec-
tion mechanisms.

To detect users with access privileges inappropri-
ate to the user's role within an organization.

To deter perpetrators (and reassure system users)
by making it known that intrusions are recorded,
discovered, and acted upon.

While the goals of auditing are clear, they do
not dictate that any particular audit scheme, or
model, be followed, nor do they indicate how to
perform the auditing. Thus current auditing con-
sists of various ad boc practices.

Auditing requires that audit events-such as user
accesses to protected files and changes in access
privileges-be recorded. A log is a collection of
audit events, typically arranged in chronological
order, that represents the history of the systemi
each logged event represents any change in the
state of the system that is related to its security.

Because of the complexity of modern computer
systems and the inability to target specific actions,
audit logs can be voluminous. In fact, the logs are
often so large that human analysis is quite time-consuming. It is
therefore desirable to have tools that would cull entries of inter-
est from the log. But development of such automated audit tools
for all types of computer systems is hampered by three things: a
lack of standard formats (such as ASCII or binary) and semantics
(the order in which statements occur) for audit logs, and (as
mentioned initially) the practice of stating security policies in an
ordinary language that does not lend itself to automation.

While some tools have appeared to aid in log analysis, they are
difficult to use. As a result, logs are usually inspected manually
(often in a cursory manner), or possibly using some audit brows-
ing tools that employ algorithms able to cluster together related
data. All too often, they are not reviewed at all.

When the log is reviewed, the auditor compares the users' ac-
tivities to what the security policy says that user may do and
reports any policy violations. An auditor can also use the log to
examine the effectiveness of existing protection mechanisms and
to detect attempts to bypass the protection or attack the system.
The identities of those behind attempts to violate the policy
sometimes can be traced in the history of events, provided the
audit log contains sufficient detail.

On networked computers, tracing the user may require an
audit of logs from several hosts, some quite remote from the sys-
tem where the intrusion occurred. Law enforcement agencies may
want to use these logs as evidence when prosecution of the per-
petrators is warranted, and this can spark jurisdictional and other
legal disputes.

The Internet's basic design philosophy is to introduce new
resources and capabilities at the end points of the network-the
client and the server-so as to keep the infrastructure simple,
flexible, and robust. The disadvantage of this philosophy is that
the Internet Protocol requires only that the network make its
best effort to deliver messages; it does not require that messages
be delivered at all costs. Nor does it require that records of
delivery be kept, as a result, logging on the Internet is merely a
function of implementation, not a requirement of the protocols.

In a logging process known as packet sniffing, special software
running on each node reads and logs data contained in the pack-
ets. Depending on the amount of traffic on the Net, sniffing can
use up a lot of processing power and storage space. To minimize
this resource drain, sometimes only the header portion of pack-
ets-which may contain such information as the packetS source,
destination, and the number of packets making up the complete
transmission-is logged and the message data in the packet is
ignored. Deducing user behavior and the actions caused by the

60

message from the relatively low-level information obtained by
sniffing calls into play many extrapolations and assumptions.

Whereas there is no standard for all types of systems, most
World Wide Web servers do use a standard audit log format, so
audit tools have been developed for a wide range of Web
servers. Also, there is something of a standard for electronic
mail: e-mail often has the name of each computer encountered,
and some further information, placed in the headers of the mes-
sage as the mail moves over the Internet. These headers consti-
tute a mini-log of locations and actions that can be analyzed to
diagnose problems or to trace the route of the message.

Although prevention mechanisms are designed to prohibit
violations of the security policy in the first place, a specter of ac-
countability-the attacker's fear of being discovered-is raised
by detection mechanisms and thus serves as a deterrent. An
audit, then, may be thought of as a defense against attacks, too,
albeit a reactive one, in which clues to the identity and actions
of the intruder can be detected.

System check
Fortunately, several tools exist to help administrators check

their systems' security For Unix systems, three popular tools are
Satan, tripwire, and Cops, these are available free of charge at
many sites on the Internet.

Satan is a World Wide Web-based program that analyzes sys-
tems for several known vulnerabilities exploitable only through
network attack-such as the ability of a cracker to make avail-
able to any server files that are supposed to be restricted. It pro-
vides a Web browser interface, and allows scanning of multiple
systems simply by clicking on one button. The browser presents
a report outlining the vulnerabilities, and provides tutorials on
the causes of each, how to close (or mitigate) the security flaw,
and where t o get hold of more information (such as the
Computer Emergency Response Team, or CERT as it is popular-
ly known, a group within Carnegie Mellon UniversityS Software
Engineering Institute in Pittsburgh that issues advisories about
computer security).

Another means of verifying security is by checking up on the
integrity of the system software-such as log-on programs and
libraries-by seeing that the software has not somehow been
altered without the administrator's knowledge. Tripwire is an
integrity checking program that uses a mathematical function to
compute a unique number ("hash) based on the contents of
each file, be it a document or program. Each hash, along with
the name of its corresponding file, is then stored for future refer-

IEEE SPECTRUM AUGUST 1997

ence. At random intervals, a system administrator reruns tripwire
and 'compares the results of the new run with the results of the
original one. If any of the hashes differ, the corresponding file
has been altered and must be scrutinized more closely.

Cops examines the contents of configuration files and direc-
tories and decides if either their contents or settings threaten
system security. For example, on Sam's Unix system, the con-
tents' of a configuration file might state that Robin need not sup-
ply a separate password to use Sam's system. This poses a double
security problem at many sites, since anyone who obtains access
to Robink account also obtains access to Sam's system. Tripwire
will not detect this problem, as it simply looks for files that
changed-and the access control file does not change-but
Cops will scan the configuration file, reporting that Robin does
not need a password to log in to Sam's system, as part of its anal-
ysis of the configuration file's contents.

Intrusion detection
ntrusions can be detected either by manual analysis of logs
for any suspicious occurrences or by automated tools that
detect certain specific actions. Examples are unusual log-in

times or unusual system characteristics, such as a very long run
time for one supposedly simple program. Automated methods,
of course, process lots of data more quickly and efficiently than
humans could. The data comes from either logs or from the cur-
rent state of the system [Fig. 31.

Human analysis entails looking at all or parts of the logs for a
system with a view to uncovering suspicious behavior. The audit
data may, though, be at such a low level, as previously men-
tioned, that events indicating an intrusion or attack may not be
readily detectable as such. Here, detecting attacks may require
corrmelating different sets of audit data, possibly gleaned from
multiple logs; thus, a change in access privileges from the privi-
lege log might be compared with the log-in logs record of the
location from which the user who changed the privileges logged
in. The data may span days or weeks and is often voluminous.

Another hindrance is that the person conducting the analysis
must have special expertise, both in the hardware and software
that constitute the system being audited and the particular way
in which it is configured, to understand what may have hap-
pened and what actually did occur.

The previously mentioned consultant, James P. Anderson,
also made the first serious study of how computers were being
used to detect security violations. Modern computers have a
capacity to analyze large amounts of data accurately, provided
they are programmed to analyze the right data; to correctly
detect intrusions, they must be told what to look for.

For this purpose, three methods have been established:
anoinaly detection, misuse detection, and specification-based
detection. Among them, there is no one best approach to
detecting intrusions; in practice, the particular combination of
approaches used is tailored to an organization's specific needs.

Anomaly detection compares the current behavior of a per-
son using a system to the historical behavior of the person
authorized to use the system. The technique presumes that devi-
ations from prior behavior-say, different log-in times or the use
of different commands-are symptoms of an intrusion by an
unauthorized person using a valid account. Similar reasoning
suggests that a program altered to violate the security policy-
that is, one changed by a virus so it now writes to other executa-
bles or to the boot program-will behave differently than the
unaltered version of the program.

An intrusion detection system (IDS) based on anomaly detec-
tion must first be trained to know the expected. behavior of each
user, and there could easily be hundreds of users. This normalcy
profile is built using statistical analysis of each user's use of the
system and logical rules that define likely behavior for various
types of users-programmers, sales managers, support person-
nel, and so on. Once a normalcy profile is established, the IDS
monitors the system by comparing each user's activity to his or
her normalcy profile. If some activity deviates markedly from
the profile, then the IDS flags it as anomalous and, therefore, a
possible intrusion.

Admittedly, a legitimate user can be flagged as an intruder (a
false positive) because abnormal behavior is not necessarily an
attack; for example, a legitimate user may become more profi-
cient in using a program and thus employ commands not previ-
ously invoked. False negatives also occur when an intruder's
actions closely resemble the normal behavior of the legitimate
user whose log-in they have obtained. Finally, establishing the
right time period over which to analyze the user's behavior and
how often to retrain the IDS system affects its performance.

One anomaly detection system observes the interaction
between a program and the operating system, and builds nor-
malcy profiles of the short sequences of system calls normally
made. Activity outside this is presumed to be. part of an intru-
sion. For example, if an attacker tried to exploit a vulnerability in
which unusual input, such as an e-mail message sent to a pro-
gram rather than a person, caused a mail-receiving program to
execute unexpected commands, these commands would be
detected as anomalous and a warning given.

Unlike anomaly detection, in which normal user behavior is
taught so that unusual behavior characteristic of an attack can be
distinguished, misuse detection does not require user profiling.
Rather it requires a priori specification of the behaviors that con-
stitute attacks; if any observed behavior matches a specified
attack pattern, the IDS warns the systems administrator.

The techniques used to describe the attacks vary. One method
is to list events expected to be logged during an attack. A graph-
based misuse detection IDS employs a set of ides that describe
how to construct graphs based on network and host activity-for
example, a graph of the connections between the systems
involved in an attack, the time at which they became involved,
and the duration of their involvement. The rules also describe at

[2] In public-key cryptography, a user sends a public-key-encrypted message, as shown here, that can be decrypted only with the recipient's
private key. Many think such a scheme makes communication secure. But an attacker can defeat it by artfully switching the public key.

BISHOP, CHEUNG & WEE - T H E THREAT FROM T H E NET 61

what point such a graph is consid-
ered to represent an attack.

Another is to have an expert
write a set of rules describing “felo-
nious” behavior. For example, sup-
pose an attacker gave unusual input
to a mail-receiving program to
change the way it operated. The
expected system calls were “read-
input; write-file,’’ but the attacker‘s
input would try to change the set
to be “read-input; spawn-subpro-
cess; overlay-program.“ The last
two items in the altered set, which
tell the system to execute another
program, indicate an attack. Were
the attacker to try to intrude using
that technique, the misuse detec-
tion program would detect it.

The misuse detection method
can be highly accurate, but, unlike
anomaly detection, it cannot detect
attacks that fall outside its prepared
list of rules describing violations of

[3] An intrusion detection system (IDS) processes information from both the computer system and
its logs and reports any problems to a security auditor. The initial information can also be used to
determine what other actions should be taken and what further information should be logged.

security. In addition, depends upon having an expert who is
able to specify such rules.

While anomaly and misuse detection catch security breaches
by focusing on the attacker’s behavior, specification-based
detection describes breaches in terms of the system’s expected
behavior. Further, if system behavior has been specified accu-
rately, there are no false alarms. The first step is to formally
specify how the system should behave in all circumstances.
Once fully profiled, the system is monitored and all its actions
compared against the specification; any item of system behav-
ior that falls outside what is specified as correct is flagged as a
security violation.

One approach to specification-based detection uses a special
policy-specification language to describe the security policy in
terms of the access privileges assigned to each program in the
system. This language indicates under what conditions certain
system calls may be made, and it requires knowledge about priv-
ileged programs, what system calls they use, and what directo-
ries they access. Depending on the particular system for which
the policy is being specified and the specification language used,
creating specifications of this kind may require expertise, skill,
and some time-although some effort might be automated using
program analysis. But if the specifications do not cover all even-
tualities, false negatives (intrusion alarms) can occur.

Several companies and research groups have developed intru-
sion detection systems. The authors’ group at the Computer Se-
curity Laboratory of the University of California, Davis, is de-
signing and developing one such tool, called GrlDS, that will
monitor both systems and network traffic, looking for actions
indicating misuse. It also supports analysis of attacks conducted
from more than one outside source, even when the attack is
spread over a large number of systems.

Other, nonresearch systems are less ambitious, but are cur-
rently deployed. CMDF from Science Applications International
Corp. (SAIC), San Diego, Calif., uses the anomaly approach by
building a database of statistical user profiles and looking for
deviations from that profile. NetRanger from WheelGroup
Corp., San Antonio, Texas, and Netstalker from Haystack Labs
Inc., Austin, Texas, detect attacks by comparing system actions
to known exploitations of vulnerabilities.

Counterattack and damage assessment
Several responses to security violations are possible, particu-

larly if the attack is detected while it is occurring, typically with-
in a matter of seconds or minutes after an intrusion starts. The

simplest reaction is to alert other people, while a more complex,
automated detection system might respond autonomously to
any violations of policy. The type of response selected depends
on the degree of confidence that an attack is actually under
way, and upon the nature and severity of the attack.

The first response by a security team to a reported attack is to
gather the information needed to analyze the violation and
decide how to respond further. Also, additional auditing-of
more user accounts or more system resources-may be turned
on, possibly only for those users involved in the violation or pos-
sibly, if the extent or nature of the violation of policy is not fully
understood, for the entire system. Moreover, the system can turn
defense into offense, fooling the attacker by countering his activ-
ities with misleading or incorrect information; the attacker can
even be lured by the security team to a system designed on pur-
pose to monitor intruders.

Another common response to a violation is to determine who
is responsible. After that, legal action might be taken, or more
direct responses (such as blocking further connections from the
attacker‘s site or automatically logging the attacker off) may be
appropriate. However, determining whom to hold accountable
can be very difficult, since Internet protocols do not associate
users with connections, and the attack might be laundered
through multiple stolen accounts and might cross multiple ad-
ministrative domains, as was the case with the attack described
by Clifford Stohl in The Cuckooi Egg (Doubleday, 1989). No for-
mal support infrastructure exists to trace attacks that have been
laundered in this way.

Once a violation has been detected, the attacked system needs
to be analyzed to determine the immediate cause of the system’s
vulnerability and the extent of the damage. Knowing the vulner-
abilities exploited by the attacker can often help to stop on-
going attacks and stop future ones. If the vulnerability cannot be
fixed, knowing its causes helps determine what to monitor.

Security systems that detect deviations-in a user‘s behavior
can indicate only that a user may be an attacker, not what weak
points were exploited to violate the security policy. Misuse
detection systems catch exploitations of known vulnerabilities,
but may give only a partial set of those exploited, because the
activities that trigger the IDS may not be the root cause of an
attack. That is, an attacker may at first use a means to violate the
policy that goes undetected, only subsequent violations, based
in part on the initial one, are reported.

Successful assessment depends upon the integrity of the audit
data and the analysis programs used for the assessment, and a

,

6 2 IEEE SPECTRUM AUGUST 1997

sophisticated attacker may tamper with the audit data or disable
or modify the analysis programs to hide the attack. Thus extra
resources are needed to secure those data and programs.

For example, where security is of utmost importance, as in
military and financial establishments, audit data may be written
to write-only devices, such as write-once, read-many (WORM)
optical storage disks, and analysis programs may be put on a
dedicated machine that does not have ordinary user accounts or
network connections and uses the vendor's distribution of the
operating system.

Assessmcnt can be .approached using event-based or statc-
based. analysis. In event-based analysis, the causal relationships in
the events recorded in the log are tracked down. Parent-child
processes are a good example: the Unix operating system records
each process with an ID that identifies the process that spawned
it ancl the user who started it. Moreover, some versions of Unix
recorld these IDS with the corresponding events in the log.

With the aid of such information, the processes involved in
unauthorized events can be pinned down. By tracing the parent-
child process relationships, it is often possible to determine the
vulnerabilities exploited and assess the damage caused by the
attack. Then the user-process associations can be used to identify
the mer account(s) from which the violation of policy occurred.

The state-based approach constantly analyzes the current
state of the system to see if it is secure in accordance with cur-
rent requirements. A state includes the contents of configuration
files and the rights of users to access various files.

Pickiing up the pieces
sing the information obtained through analysis, the sys-
tem can be returned to a secure state-a process referred
to as recovery. Recovery may mean a number of things.

It may include terminating an on-going attack to stop further
damage, replacing corrupted files with uncorrupted copies, fix-
ing vulnerabilities to protect the system against future attacks,
taking appropriate actions (such as notifying affected parties or
abort.ing planned actions), and restarting system services that
have been made unavailable.

Since systems are generally backed up periodically, a common
technique used in recovery is rollback-that is, restoring a system
to its state before the attack, using the backup files created before
the intrusion occurred. A complete backup of all the files in the
systeim may be effected, or else a selective backup in which only
copies of recently modified files or critical files are saved. Dif-
ferent levels of backup may be combined-complete system
backlup once a week, say, and selective backups once a day-
depending on the level of integrity a site wishes to maintain and
the frequency with which files change significantly.

To reconstruct the pre-attack state of the system, it may be
necessary to use the last complete backup plus any later selective
backlups. So the frequency of the backup is important because,
during rollback, every change made since the last backup may
be lost. For unchanging programs, backups may not be needed if
the program distribution disks are on hand. Note that this roll-
back technique is useful even if complete damage assessment is
not possible.

Another means of returning to a secure state is reconfiguration,
in which the system is modified to bring it to a secure state by fix-
ing all configuration files and, if needed, reinstalling all software.
Reconfiguration is appropriate when one cannot roll back to a
secure state, possibly because backups have not been done recent-
ly or the system has been in an insecure state since its inception.

Many vendors aid recovery by distributing "patches" or fixes
for smoftware once a vulnerability becomes known. Actually, this
can be pre-emptive, because system administrators often receive
program patches before the vulnerability has been exploited on
their system. But sometimes a weakness cannot be fixed: perhaps
the flaw is one of interaction between the software and another
component, requiring modification of the operating system, or

BISHOP, CHEUNG & WEE ~ THE THREAT FROM THE NE1

perhaps no fix is available. In such cases, administrators may be
forced to disable the offending software or service. As an exam-
ple, if an account's password has been compromised, its owner
must change the password before it can be used again. Freezing
the account before the password change can prevent future
attacks through the compromised account.

A brighter future
As the need for security on the Internet increases, new mech-

anisms and protocols are being developed and deployed. But a
system's security will always be a function of the organization
that controls the system. So whether the Internet becomes more
secure depends entirely upon the vendors who sell the systems
and the organizations that buy them.

Ultimately, people will decide what, how, and how much to
trust; and so security is a nontechnical, people problem, deriving
its strength from the understanding by specifiers, designers, im-
plementers, configurers, and users of what and how far to trust. +

To probe further
A seminal work that introduced the idea of using audit logs to detect

security problems is James P. Anderson's Computer Security Threat
Monitoring and Surveillance (James P. Anderson Co., Fort Wash-
ington, Pa., April 1980).

In "Decentralized Trust Management," Proceedings o f the /E€€ Con-
ference on Security and Privacy, May 1996, pp. 164-73, M. Blaze,
J. Feigenbaum, and J. Lacy discuss trust and illustrate the complexi-
ties of managing i t in a distributed environment. Similarly, D.
Denning discusses trust and the effect of misplacing it in "A New
Paradigm for Trusted Systems," Proceedings o f the Fifteenth
National Computer Security Conference, October 1992, pp. 78491.

A different take on security analysis is B. Cheswicks "An Evening with
Berferd in Which a Cracker i s Lured, Endured, and Studied,"
Proceedings o f the Winter 7992 USENlX Conference, January 1992,
pp. 163-74. This paper presents an encounter with an attacker who
attempted to penetrate a Bell Labs system and was spotted. Rather
than block the attack, the authors decided t o allow the attacker
access to a controlled environment to see what he or she would do.

Security problems in various Java implementations and in its design
itself, and in downloadable code in general, are discussed in D.
Dean, E. Felten, and D. Wallach's "Java Security: From HotJava t o
Netscape and Beyond," Proceedings o f the 7996 E€€ Symposium on
Securityand Privacy, May 1996, pp. 190-200.

Identifying intruders in the first place is very complex, and often
impossible. A statistical technique t o correlate two connections to
see if they belong t o the same session is proposed in S. Staniford-
Chen and L. T. Heberlein's "Holding Intruders Accountable on the
Internet," Proceedings o f the 7995 /€E€ Symposium on Security and
Privacy, May 1995, pp. 3949.

Acknowledgments
Assisting intimately in writing this article were Jeremy Frank, who

recently received his Ph.D. from the computer science department
at the University of California, Davis, and works at NASA Ames
Research, Moffett Field, Calif.; James Hoagland, a Ph.D. candidate
at the University of California, Davis, who does research in comput-
er and network security; and Steven Samorodin, a graduate stu-
dent. Without their invaluable help, it would not have been possi-
ble to publish this work.

About the authors
Matt Bishop (M) is on the faculty of the Computer Security Laboratory of

the department of computer science at the University of California,
Davis, and does research in computer and network security.

Steven Cheung is a Ph.D. candidate at the same institution; his doctor-
al research concerns network intrusion detection.

Chris Wee is a postdoctoral researcher at Davis.

Spectrum editor: Richard Comerford

63

