
Analyzing single-server network inhibition

Tuomas Aura
Helsinki University of Technology

Lab. for Theoretical Computer Science
FIN-02015 HUT, Finland

Tuomas.Aura@hut.fi

Matt Bishop, Dean Sniegowski
University of California

One Shields Avenue
Davis, CA 95616-8562, USA

{bishop,sniegows}@cs.ucdavis.edu

Abstract

Network inhibition is a denial-of-service attack where
the adversary attempts to disconnect network elements
by disabling a limited number of communication links or
nodes. We analyze a common variation of network inhibi-
tion where the links have infinite capacity and the goal of
the attacker is to deny connections from a single server to
as many clients as possible. The problem is defined for-
mally and shown to be NP complete. Nevertheless, we de-
velop a practical technique for network-inhibition analysis
based on logic programming with stable-model semantics.
The analysis scales well up to moderate-size networks. The
results are a step towards quantitative analysis of denial of
service and they can be applied to the design of robust net-
work topologies.

1 Introduction

Network inhibition is a denial-of-service attack where
the attacker disables network elements in order to discon-
nect communicating parties. We discuss a variation of the
attack where the goal is to cut a single server (or a group
of replicate servers) apart from as many clients as possible.
This is a common scenario for analysis because most sys-
tems have only few mission-critical services and the analy-
sis is initiated by the concern about their availability. We as-
sume the network to have adaptive routing and links with in-
finite capacity so that a node is fully connected to the server
as long as at least a single good route exits.

Network inhibition is one of the rare instances where
there are well-defined quantitative measures for security
against denial-of-service attacks. The goal of this paper is
to add to this body of knowledge and to show that quanti-
tative measures of robustness can be implemented in prac-
tice. We encode the networks as logic programs and use
a general-purpose model finder smodels [13] for evaluating
the seriousness of the attacks.

Most models of denial of service define the availability
formally and then either attempt to prove that a particular
system is fair in the presence of any malicious adversaries or
propose an access control policies that guarantee the avail-
ability under all circumstances [18, 1, 12]. These models
have been designed with the multi-user operating system of
a single computer in mind. We argue that a more fruitful
approach for distributed systems such as open communica-
tions networks is to evaluate the degradation of the services
as a function of the cost to the attacker. It should be possible
to compare degrees of security even if availability cannot be
guaranteed under all circumstances. That way, the analysis
methods will benefit real communications systems such as
the Internet that can never be made provably secure against
denial of service.

Sec. 2 overviews related work. Sec. 3 defines the net-
works and attacks against them. In Sec. 4, the problem of
finding an optimal attack is shown to be NP complete. The
following Sections 5 and 6 show how to encode the net-
works as a logic programs and how to find optimal attacks
from the programs. Sec. 8 reports on an implementation
and practical modelling techniques. The general principles
for quantitative analysis of denial-of-service resistance are
summarized in Sec. 9. Sec. 10 concludes the paper.

2 Background and related work

Although inhibition attacks on communications net-
works are a computer security issue, they have mostly been
studied in graph-theoretical papers. In the graph model
of a network, the edges of the graph represent commu-
nications links and the vertices of the graph are network
nodes. The edges may have capacities that limit the flow
of data though them. Representing the network as an ab-
stract model has been advantageous for the construction of
mathematical theories and algorithms.

An attack against the network is defined as removal of
edges from the graph or reduction of their capacity. In prac-
tice, one should be equally worried about the possibility of

0-7695-0671-2/00 $10.00 � 2000 IEEE

vertices (network nodes) being removed. However, destruc-
tion of nodes can be reduced to attacks against links to and
from them.

The goal of the attacker is to disconnect communicating
parties or, in some models, to reduce the maximal transfer
capacity of between them. In the time of wideband com-
munications and adaptive routing, any single good route
between two network nodes is often sufficient to carry all
high-priority traffic until the failed components have been
repaired. This is particularly true for military communica-
tions where the systems are designed to be survivable with
redundant capacity and strict priorities for critical data. The
reduction of capacity might be more serious for a commer-
cial operator of an open network whose customers will ex-
perience a drop in service quality.

Naturally, an attacker with unbounded resources can de-
feat any network. We are interested in the cases where the
attacker’s resources are limited. The limitations are repre-
sented in the models by a cost for disabling each communi-
cation link (or node) and a fixed budget for the attacks. The
malicious adversary will, assuming it has enough knowl-
edge of the network structure, use its resources in a way
that maximizes the damage. This is different from statisti-
cal models of network reliability where network elements
are assumed to fail randomly and independently, and the
worst case scenario is unlikely to occur.

In order to measure the damage, we also need to know
the value of the lost connections to the defender. The mod-
els from the literature mentioned below differ mostly in the
way the damage is evaluated. Otherwise, all the models
build on the same theory of minimal graph cuts and maxi-
mum flow.

The simplest problem is to deny the connection between
two given nodes. An optimal attack can be found in polyno-
mial time with any MIN CUT algorithm. The best known
algorithm is by Stoer And Wagner [16]. Cutting all con-
nections between two groups of nodes is equally easy. It is
reduced to the minimal cut problem by merging both groups
into single nodes.

Cunningham [4] solves another polynomial problem:
how to partition a network into separate components at the
lowest cost. Each edge has an associated cost. Optimality is
defined as the lowest cost per created network component.
Cunningham also discusses the optimal reinforcement of a
network against the attack.

A more complex problem is the multi-way cut. The goal
is to disconnect 3 or more given nodes from each other.
Dahlhaus & al. [5] show this problem to be NP complete.
It follows that the more general problem of disconnecting
three or more arbitrary pairs of nodes is also intractable.

Phillips [15] introduces the network inhibition problem
that is like MIN CUT but the links can be partially disabled
with linearly increasing cost. Rather surprisingly, it turns

out that finding an attack that minimizes the residual capac-
ity of the network between the two nodes is NP complete.
Like [4], this paper is interesting because it models the dam-
age to the network as a function of the investment by the
attacker.

In the reminder of this paper, we will analyze another
variation of the network inhibition problem that we find to
be especially relevant in protecting Internet services. We
will try to determine how many communication links or
network nodes need to be removed from the communica-
tions network to disconnect a given number of nodes from
a single center node, called the source. The idea is to an-
alyze the damage to the connectivity from a single host’s
point of view. When the network is modelled as a (directed)
graph, this translates to the question if finding a minimal
weight cut that reduces the size of the graph partition with
the source node in it below a given threshold. Despite of
the similarities with the other network inhibition problems,
this appears to be an independent question. We have named
this the single-server network inhibition problem although
it might also be called minimum multicast cut since the at-
tacker might be trying to minimize the number of receivers
for a multicast (or broadcast) transmission. The links and
nodes in our model may have have two kinds of weights:
a cost of disabling and a value of being connected to the
source. The links are assumed to have infinite capacities.
Partial destruction of an edge is thus not possible. The fol-
lowing section formalizes the network and attack models.

3 Network and attack models

We model the communications network as a directed
graph. To accommodate communications terminology, the
vertices are called nodes and the directed edges are called
links. The nodes and links can be given weights to denote
their relative importance and robustness.

Definition 1 (communications network) A communica-
tions network is a quadruple CN = hN;L; s; c; di where

1. N is set of nodes,

2. L � N �N is a set of links,

3. s 2 N [f�g is called the source node,

4. c : N [L! Z+ [f1g is called a cost function, and

5. d : N ! N is called damage function.

2

The source node is a server or a client from whose per-
spective the analysis will be done. The source can also be
� which means that the source itself has been disabled. The

0-7695-0671-2/00 $10.00 � 2000 IEEE

cost function gives the cost of disabling nodes or links for
the attacker. Disabling these components will be modelled
by removing vertices and edges from the directed graph.
The costs are positive integers, or infinite meaning that par-
ticular network components cannot be disabled. The dam-
age function tells how valuable it is to the defender to have
each node connected to the source. The damage values are
nonnegative integers.

In an attack, some nodes and links are disabled. For-
mally, an attack on a network is a set of disabled nodes and
links. For networks where all links are bidirectional, an at-
tack that succeeds in partitioning the network corresponds
to a cut of the graph hN;Li. The total cost of the attack for
the attacker is the sum of the costs of disabling the individ-
ual nodes and links.

Definition 2 (cost of attack, remaining network) Let
CN = hN;L; s; c; di be a communications network and
A � N [L an attack on it. The cost of the attack is

CostCN (A) =
X

fc(x) j x 2 Ag:

Denote the disabled nodes by AN = A \ N , the disabled
links by AL = A \ L, and the reverse links by A�1

L
=

fhn;mi j hm;ni 2 ALg. The remaining network after an
attack A is

CNA =

hN nAN ; L n (AL [A
�1
L

[AN�L [L�AN); s
0; c0; d0i

where c0 and d0 are, respectively, the restrictions of c and d
to the nodes and links of CNA. s0 = � if s 2 A and s0 = s
otherwise. 2

The communications links are modelled as directed
edges. However, most real links are bidirectional. We have
chosen to represent bidirectional links as two unidirectional
edges. The above definition ensures that both directions of
a bidirectional link fail at the same time. It is enough to
include one of them in the attack because including both
links in the attack would increase the cost of the attack but
not affect connectivity. This is a practical choice and it has
no bearing on the generality of the model: two independent
links in opposite directions can be represented by adding
dummy nodes with zero damage values on the links.

Our model of the network assumes the use of adaptive
routing algorithms and it ignores the capacity limitations of
the communication links. As long as there at least one good
route from the source to a node, the service is available. The
service is denied when the last connection from the source
fails. The lack of capacity bounds is probably the greatest
limitation of the model.

We say that a node is connected to the source if there
is a path in the directed graph hN;Li from s to the node.
That is, the nodes that are available for the source (or for

which the source is available), are in the closure of the
source node with respect to the link relation. The nodes that
are not connected to the source are disconnected. When all
links are bidirectional, the network can be interpreted as an
undirected graph. In that case, nodes become disconnected
when the network is partitioned. Only the nodes in the same
partition with the source are connected to it.

In practice, all nodes in the original network will be con-
nected to the source. When some nodes and edges are dis-
abled in an attack, the disabled nodes and possibly some
other nodes become disconnected from the source. The
success of the attack is measured by the number and im-
portance of the nodes that it manages to disconnect from
the source.

Definition 3 (damage) Let CN = hN;L; s; c; di be a
communications network and A an attack on it. The dam-
age caused by A is defined as

DamageCN (A) =X
fd(n) j n 2 N and n is disconnected from c in CNAg:

2

Obviously, if the source is disabled in an attack (i.e. the
source of CNA is �), all nodes become disconnected. The
cost of disabling the source should usually be very high or
infinite.

In order to find the best attacks or to assess the reliability
of the network, we need to find an attack that causes maxi-
mal damage with a given cost.

Problem 4 Maximize DamageCN (A) over all attacks A �
N \ L for which CostCN(A) � C. 2

In the graph terminology, this means minimizing the to-
tal weight of the nodes reachable from the source (or the to-
tal weight of the source partition for undirected cases) with
a given total weight of disabled edges.

An equally interesting problem is to minimize the cost
for a desired damage:

Problem 5 Minimize CostCN (A) over all attacksA � N\
L for which DamageCN (A) � D. 2

Since the allowed cost or damage is a parameter, we
would actually want to plot the optimal solutions for dif-
ferent parameter values. That is, we want to compute the
damage caused by optimal attacks as a function of the cost
to the attacker.

4 Complexity of computing the cost-damage
curve

In this section, we will show that the problem of deter-
mining whether a given attack causes maximal damage for

0-7695-0671-2/00 $10.00 � 2000 IEEE

bisection /
attack

source s

n2

n2

n2

n2

n2
n2

Figure 1. Reduction of graph bisection to
Problem 6 (n=6)

its cost is an NP complete problem. The proof is done by a
reduction from the minimal graph bisection problem. This
is not surprising given similar results on other closely re-
lated graph problems (see Sec. 2). Furthermore, the prob-
lem remains NP complete even if all links are bidirectional,
only links can be disabled, the cost of disabling a compo-
nent is constant and the damage value of a node is constant.

Since NP completeness is proven for decision problems
(ones that return answer yes or no), we have to restate the
optimization problem in the following way.

Problem 6 Let CN = hN;L; s; c; di be a communica-
tions network. Does an attack A � N \ L exist such that
CostCN (A) � C and DamageCN (A) � D? 2

If we can find an optimal solution for a fixed C or D,
clearly we can answer the decision problem. Thus, the op-
timization is at least as hard as the decision.

Theorem 7 Problem 6 is NP complete with the size of the
network even if all links are bidirectional, d(n) = 1 for all
n 2 N , and c(n) = 1 for all n 2 N and c(l) = 1 for all
l 2 L. 2

Proof First, the problem is in NP. A naive non-
deterministic program could guess the state of each link
(disabled or not), count the disabled links to check that there
are at most C and to check by depth-first search from the
source that at most jN j �D nodes remain connected to the
source.

To show NP hardness, we will describe a polynomial-
time reduction from the minimal graph bisection problem
(i.e. minimum cut into bounded sets or bisection width) [7,
8, 14] that is known to be NP complete. The goal in graph
bisection is to divide a graph into two equal-size partitions
so that the number of edges between the two partitions is
less than some B.

Let a graph G = hV;Ei with some even n = jV j be
given for the bisection problem. We add to the graph a new
node s (source) and connect it to each of the the original
vertices v through n2 routes. Note that n2 is larger than the
number of edges in any bisection of G. (Actually, n2=4+ 1
routes would suffice but it will not hurt to be generous.)
Each route consists of a new auxiliary node aiv, an edge
from the source to the auxiliary node, and an edge from
the there to the original vertex. The resulting graph will
be considered as network and, therefore, it is denoted by
hN;Li. Formally,

N = V [fsg [faiv j v 2 V and i = 1 : : : n2g

L = E [fhs; aivi; ha
i

v ; si; ha
i

v; vi; hv; a
i

vi j

v 2 V and i = 1 : : : n2g:

(E includes both hv; v0i and hv0; vi since the original graph
is undirected.) hN;Li has n3+1 new vertices and 2n3 new
edges. This may seem like a lot but it is, nevertheless, a
polynomial increase.

To define a communications network CN =
hN;L; s; c; di, let c be 1 for all links and infinite for
all nodes, and let d be 1 for all nodes.

We claim that the original graph G has a bisection of
size B, 1 � B � n2=4 < n2, or less if and only if the new
networkCN has an attack with damage at least n3=2+n=2
and with cost not higher than n3=2 + B. The situation is
illustrated in Fig. 1.

(only if) Assume first that such a bisection exists. In-
clude in the attack the B or less edges of the bisection (the
ones that cross between the two partitions). Moreover, se-
lect one of the partitions and include in the attack the n3=2
edges that connect the auxiliary nodes of that partition to
the source. This disconnects n3=2 auxiliary nodes plus half
(n=2) of the original vertices from the source.

(if) Assume that an attack satisfying the conditions
DamageCN (A) � n3=2+n=2 and CostCN (A) � n3=2+B
exists. It is impossible for the attack to disconnect more
than half of the vertices V from the source. This is because
to disconnect a vertex, all n2 routes through auxiliary nodes
must be disconnected and n3=2 + B < (n=2 + 1)n2. Sup-
pose then that the attack would disconnect k < n=2 of the
vertices V . We will see that the attack cannot cause enough
damage. The routes to the k vertices through corresponding
auxiliary nodes must be cut thus disabling kn2 links and
disconnecting, at no extra cost, up to kn2 auxiliary nodes in
addition to the k vertices. At least (n3=2 + n=2)� (kn2 +
k) nodes must still be disconnected by disabling at most
(n3=2 +B)� kn2 � n3=2� kn2 + n2=4 links.

Since no more original vertices may be disconnected,
these nodes must all be auxiliary nodes whose correspond-
ing vertex in V is still connected. Therefore, links on

0-7695-0671-2/00 $10.00 � 2000 IEEE

s

n1 n2

n3

50 100
d(n1)=1

d(n2)=1

d(n3)=3

100 60

Figure 2. A simple communications network

both sides of these auxiliary nodes must be disabled which
would cost a total 2 � ((n3=2 + n=2) � (kn2 + k)) =
n3=2� kn2 + (n=2� k)(n2 + 2). But since n=2� k � 1
and n2 + 2 > n2=4, this is more than we can afford. The
conclusion is that that to get the desired damage, the attack
must disconnect exactly n=2 original vertices V .

Disconnecting the routes to the n=2 vertices through
their auxiliary nodes costs n3=2 disabled links, leaving a
budget of only B for further work. However, the n3=2 aux-
iliary nodes become disabled at no additional cost. All that
still needs to be done is to separate the n=2 disconnected
vertices of V from the n=2 connected ones. If this can be
done by disabling at most B edges of the original graph,
there is a bisection of weight B or less in G.

This suffices to show that there is an attack with the given
properties exactly when there a bisection meeting the given
budget. Hence, any algorithm for deciding the existence
of the attack can also decide the existence of the bisection.
Since the transformation was polynomial, Problem 6 is also
NP complete. 2

Theorem 7 remains true also in networks where the
nodes break and links are unbreakable. This can easily be
shown by adding a breakable node in the middle of each
link.

5 Networks as a logic programs

In this section, we show how a communications network
can be described with a logic program. Consider, for ex-
ample, the (artificially small) network in Fig. 2. The net-
work has three unidirectional links and one bidirectional
link. The cost of disabling the links is marked on them.
Nodes cannot break (i.e. their cost is infinite). The damage
values of the nodes are also marked on them. (The dam-
age value of the source node s does not matter because the
nodes here cannot break and the source will therefore never
be disconnected.)

The corresponding logic program is in Fig. 2. Lines 1–
10 describe the network structure. The other lines give rules
about how nodes are connected to the source. These lines
will be the same for all networks. This simple program is all

it takes to model the behavior of the network with breaking
components.

The rules on Lines 12-15 force each node and link to
be either broken or ok but not both. As we will explain in
Sec. 6, without these rules, the program could have models
where some network components are neither broken nor ok.

Lines 17-19 of the program give the basic rules of con-
nectedness. For any link, if the node at the beginning of
the link is connected, the link is not broken and the node at
the end is not broken itself, then the end node is also con-
nected. These rules force the predicate connected to be
true for all the nodes that are connected to the source. We
will choose a semantics for the logic programs in such a
way that the predicate will be true only for this minimal set
of nodes and not for any other ones. Thus, we don’t need
any special rules for saying when a node is disconnected.

Note that our formal definition allows a bidirectional link
to be broken in one or both directions. On the other hand,
the connectedness rule (line 18 in Fig. 3) says that breaking
in one direction is enough to disable communication in both
directions. It may seem that one could mistakenly double
the cost of disabling the link by putting both directions of
the link in the attack setA. This problem is avoided because
we are interested only in attacks that with minimal cost for a
given damage. An optimal attack plan never tries to disable
the same link twice.

The logic-program representation of any communica-
tions network can can be constructed in the same way. The
structure of the network is described with the predicates
node, link and source, and the lines 12-19 of Fig.3
are copied as such.

6 Stable models as attack scenarios

We will interpret the logic programs according to the sta-
ble model semantics of Gelfold and Lifschitz [9]. The sta-
ble models are defined for a ground logic program, i.e. one
without variables. Therefore, we have to first remove vari-
ables from the program by substituting them with all possi-
ble constant value combinations. Our programs are strongly
range-restricted: the possible values of all the variables are
those listed in the node and link predicates. Such pro-
grams can be grounded efficiently. In the experiments, we
used an implementation by Syrjänen [17]. After grounding,
the program has grown in size but it is variable-free. The
predicates with only constant arguments are called atoms.
Atoms and negated atoms are called literals.

The different semantics for logic programs differ mostly
in the way they interpret the negation. (For example, a neg-
ative literal in Prolog is true if Prolog’s resolution strategy
fails to prove that the positive literal is true.) A stable model
is a set of atoms that passes the following test: (1) For each
atom in the model, remove from the program all rules that

0-7695-0671-2/00 $10.00 � 2000 IEEE

1 node(s).
2 node(n1).
3 node(n2).
4 node(n3).
5 source(s).
6 link(s,n1).
7 link(s,n2).
8 link(n1,n3).
9 link(n2,n3).

10 link(n3,n2).
11
12 nodeOk(N) :- node(N), not nodeBroken(N).
13 nodeBroken(N) :- node(N), not nodeOk(N).
14 linkOk(N,M) :- link(N,M), not linkBroken(N,M).
15 linkBroken(N,M) :- link(N,M), not linkOk(N,M).
16
17 connected(M) :- link(N,M), connected(N), not nodeBroken(M),
18 not linkBroken(N,M), not linkBroken(M,N).
19 connected(N) :- source(N), not nodeBroken(N).

Figure 3. Logic program representation of the network in Fig. 2

have a negative literal for that atom in their bodies (on the
right side of the implication). The idea is that these rules
do not apply to this model. (2) Remove all negative liter-
als from the bodies of the remaining rules. The result is a
program without any negative literals. Such a program has
a unique minimal Herbrand model (a set of atoms that sat-
isfies the implication in each rule of the program) that can
be computed simply as a closure of an empty set of atoms
with respect to the remaining rules. To pass the test, that
unique model must be exactly the same set of atoms as the
original stable model. Thus, a stable model is a fixpoint of
this process of computing what is called the reduct of the
program and its unique minimal Herbrand model. A pro-
gram may have several stable models (e.g. a :- not b.
b :- not a.) or none (e.g. a :- not a).

The stable models are a natural way of defining the
meaning of a logic program. For most applications, they are
the possible sets of conclusions that a rational agent might
make from the program. The stable models of our programs
correspond to all possible attacks against the protocol. The
atoms in each stable model describe accurately the state of
the network (disabled components, connected nodes) after
the corresponding attack.

We will formulate this as a somewhat informal propo-
sition. A more rigorous theorem and proof would require
a formal definition of the transformation from communica-
tion networks to the logic-program representation. We find
the example above to be more illustrative.

Proposition 8 Let CN = hN;L; s; c; di be a communica-
tions network. There is a 1-1 mapping between the stable
models of the logic-program representation of CN and the

possible attacks A � N [L against the network. The sta-
ble model corresponding to an attack A contains the atom
connected(n) for each node n if and only if the node n
is connected to the source in the remaining network CNA.

2

Proof Let � be the logic-program representation of CN
and let A � N [L be an attack. Define MA to be a set
containing exactly the following groups of atoms:

1. node(n) for each node n 2 N ,
link(n,m) for each link hn;mi 2 L, and
source(s) for the source node s

2. nodeBroken(n) for nodes n 2 A,
nodeOk(n) for node n 2 N nA,
linkBroken(m,n) for links hm;ni 2 A, and
linkOk(m,n) for links hm;ni 2 L nA

3. connected(n) for nodes that are connected
to the source in CNA.

We claim that MA is stable model for �. The reduct of
� with respect to MA has the following rules:

a. all the facts about the network structure
(like lines 1-10 in Fig. 3).

b. nodeOk(n) :- node(n). for all n 2 N nA,
nodeBroken(n) :- node(n). for all n 2 A,
linkOk(n,m) :- link(n,m).

for all hn;mi 2 L nA, and
linkBroken(n,m) :- link(m,n).

for all hn;mi 2 A.

0-7695-0671-2/00 $10.00 � 2000 IEEE

c. connected(m) :-
link(n,m),connected(n).

for all links hn;mi such that
hn;mi 2 L n A, hm;ni 2 L n A
and n 2 N nA, and

connected(s) :- source(s).
for the source node s if s 2 N nA.

The next step is to find the unique minimal Herbrand
model M of the reduct. The rules of Type a cause M to
contain all the atoms of Group 1. These are node(n) for
all nodes n 2 N , link(n,m) for all directed links from a
node n to m, and source(s) for the source s. No other
atoms for these predicates can be in M .

Since node(n) 2 M for all nodes, the rules of Type b
add to M atoms nodeOk(n) and nodeBroken(n) for
all nondisabled and disabled nodes, respectively. Similarly,
they add to M the correct atoms for nondisabled and dis-
abled links. Hence, all the atoms of Group 2 are in M . No
other atoms for these predicates can be in M because these
are the only rules that have the predicates on the left side.

The third group of atoms requires a bit more thought.
As Def. 2 says, CNA is obtained from the original network
CN by removing the disabled nodes, disabled links, and
any links attached to the removed nodes. Thus, a node n is
connected to s in CNA iff there is a directed path from s to
n in CN that does not include any of the links or nodes in
A. It is not difficult to see that the rules of Type c induce
connected(n) to be true for exactly these nodes n. This
can be formally shown by induction on the length of the
path and on the length of the proof with the rules of Type c.
Hence, the model M contains all the atoms of Group 3 and
no other atoms with predicate connected. This suffices
to show that M =MA passes the test for a stable model.

We now know that � has at least one stable model cor-
responding to each A � N [L. We still need to show
that it has no other stable models. Every stable model of �
must have all the atoms of Group 1. Because of the lines
12–15 of Fig. 3, every stable model must also have either
nodeOk(n) or nodeBroken(n) for every node n 2 N ,
and either linkOk(n,m) or linkBroken(n,m) for ev-
ery link hn;mi 2 L. This choice of broken nodes and links
defines a unique attack A0. As above, it can be shown by
induction on the length of the proof that the closure of these
atoms includes connected(n) for all nodes that are con-
nected to s in CNA

0

. Therefore, any stable model of � will
have at least all the atoms of MA for some attack A. But
it is not possible for the stable model to be proper superset
ofMA because stable models are always minimal Herbrand
models [9]. This allows us to finally conclude that the mod-
els MA are the only stable models of �. 2

7 Optimal attacks

The previous section showed that the stable models of
the logic program representation of a communications net-
work accurately describe the different attacks on the net-
work. This makes it possible to use a general-purpose logic
programming system to find optimal attacks and to answer
Problems 4–6. We have used smodels, an efficient sta-
ble models implementation by Niemelä and Simons [13].
While the program of Fig. 3 is a standard logic program,
the additions that we make to it in this section are specific
to smodels.

The simplest way to find the optimal attack would be to
enumerate the attacks, to compute the closure of the con-
nected nodes in each remaining network, and to select one
with cost below the budget B and highest damage. This
approach will work well for small networks like that in
Fig. 3. It will not work for even moderately large networks
as the number of possible attacks 2jNj+jLj grows exponen-
tially with the size the the network. Branch-and-bound tech-
niques and heuristics that find good (although not necessar-
ily optimal) solutions quickly can improve the efficiency.
However, it may be difficult to develop heuristics that are
suitable for a particular problem domain. The idea in using
a general-purpose logic programming system to find the so-
lutions is that such systems already have efficient and well-
tested implementations of the search.

The additional rules that smodels needs for the task are
listed in Fig. 4. The rule on lines 20–24 tell which attacks
are too expensive: if the total cost of the disabled compo-
nents in a model is 151 or more, the atom false will also
be included. (Here false is an atom, not a keyword with
any special meaning.) This rule is simply a shorthand no-
tation and could be expanded to a standard logic program
by replacing it with all combinations of broken components
whose weight exceeds the budget 150. The shorthand no-
tation is not only more convenient for the programmer but
also saves time and space in finding the solution. Line 25
simply creates a contradiction if the atom false is in the
model. Therefore, the program cannot have any stable mod-
els with false in them.

Lines 27-29 are directives for smodels. They ask it to
consider all stable models and to find one with the minimal
sum of the weights of the connected atoms.

8 Implementation

We have implemented an experimental tool for analyzing
the robustness of a network topology. The user inputs a net-
work structure into a graph editor, the network is translated
into a logic program representation, smodels is invoked to
find the optimal attack for a given budget, and the result is
shown on the graph.

0-7695-0671-2/00 $10.00 � 2000 IEEE

20 false :- 151 [linkBroken(s,n1)=100, linkBroken(s,n2)=60,
21 linkBroken(n1,n3)=50, linkBroken(n2,n3)=100,
22 linkBroken(n3,n2)=100,
23 nodeBroken(s)=1000, nodeBroken(n1)=1000,
24 nodeBroken(n2)=1000, nodeBroken(n3)=1000].
25 f :- not f, false.
26
27 compute 0 { }.
28 minimize { connected(s)=0, connected(n1)=1,
29 connected(n2)=1, connected(n3)=3 }.

Figure 4. Finding optimal attacks with smodels

Some general guidelines can be given for creating the
network model:

� A subnetwork behind a single gateway router should
be represented by a single node. The weight (damage
value) of the node can be used to encode the size of the
subnetwork. This will greatly reduce the model size.

� A LAN with a broadcast architecture (e.g. Ethernet)
should be modelled as an auxiliary node that may
break itself but is connected to the stations on the LAN
by indestructible links. That is, the broadcast LAN ei-
ther functions or fails for all stations.

� It is important to distinguish between a single bidirec-
tional link and two unidirectional links. The former
is represented by two link predicates and the latter by
two auxiliary nodes. (See Sec. 3.)

� A group of replicate servers can be either combined
into a single source node or declared separately as
sources in the logic program. This can be used to com-
pare different choices for the placement of replicate
servers.

The analysis method was tested with random sparse
graphs and artificial network models. Results from random
graphs of up to 100 nodes are encouraging although the per-
formance depends heavily on the density of the graph. Tests
should still be done with actual networks. We expect the
results for real communications networks to be at least as
good as they are for the random graphs as real nets are usu-
ally sparsely connected and tend to have mostly local de-
pendencies. (It is difficult to get hold of sufficiently large
maps of an actual networks for the tests.)

In our implementation, the logic program representation
was a slightly optimized version of the one in Figs. 3 and 4.
There is still room for further optimization, in particular, in
preprocessing of the graph before the translation to a logic
program.

9 Quantitative analysis of denial of service

In the view of the previous sections, we will try to form
general guidelines for denial-of-service models. The main
idea is to express the damage caused by an attack as a func-
tion of the resources required for its execution. When de-
termining the seriousness of a threat or comparing architec-
tures, one should inspect the whole range of the function.
By considering a range of optimal attacks, we avoid setting
any awkward thresholds for when an attack is successful
and when not. Meadows [11] presents a formal method for
evaluating resistance of cryptographic protocols against de-
nial of service and suggests a similar measure of robustness
where cost-damage points of the attacks are compared to an
application-specific tolerance level.

Formally, let ATTACKS be the set of possible attacks.
The cost function Cost : ATTACKS ! COSTS is a mapping
from the attacks to the costs of the attacks and the damage
function Damage : ATTACKS ! DAMAGES is a mapping
from the attacks to the damages caused by the attacks.

The COSTS and DAMAGES are sets of scalar or vector
values. In the simplest case, they may be dollar values.
The cost is often a vector of the various resources needed
for the attack: communications bandwidth, computational
power, number and type of conspiring entities, required ac-
cess rights, etc. Damages are more likely to be scalars be-
cause of the need to put the threatened services in an order
by their importance. However, it may sometimes be nec-
essary to express the damage in components, such as lost
money and time. Possible vector values are compared by
components. Thus, scalar values have a natural linear order
and vector values a partial order.

The main question that we want to answer is

Problem 9 For given C 2 COSTS and D 2 DAMAGES,
decide whether there is an attack A 2 ATTACKS such that
Cost(A) � C and Damage(A) � D? 2

If the damages are linearly ordered (scalars), the same
question can be formulated as an optimization problem.

0-7695-0671-2/00 $10.00 � 2000 IEEE

Maximum
damage

Cost of attack

4
5

1

110 160100

Figure 5. Optimal cost-damage curve

Problem 10 For a given C 2 COSTS, find an attack
A such that Damage(A) is maximal over all fA 2
ATTACKS j Cost(A) � Cg. 2

The best picture of the seriousness of the attacks is ob-
tained by plotting the damage caused by the optimal attacks
as a function of the allowed attack cost. For example, Fig. 5
shows how the damage varies as a function of the attack
cost in the network of Fig. 2. The plots for different sys-
tem architectures can be compared to evaluate their relative
robustness under attack. When the cost is a vector-valued
quantity, a single two-dimensional plot cannot satisfactorily
depict the function. In that case, comparisons of the func-
tions take more time and effort.

Similarly, the seriousness of two types of attacks could
be compared by plotting the maximal damage caused by
attacks of either type. When the damage is measured in
more-than-one-dimensional vector values, each component
of the damage must be plotted separately.

An equally interesting problem is to minimize the cost of
an attack for a desired level of damage, although this only
makes sense if the cost is measured in scalar values.

Problem 11 For a given D 2 DAMAGES, find an at-
tack A such that Cost(A) is minimal over all fA 2
ATTACKS j Damage(A) � Dg. 2

It should be mentioned that it is often impossible or un-
necessary to calculate the accurate damage function values.
Nevertheless, these concepts can be used to argue about the
relative greatness of the damages or costs and about the ef-
fects of changes in the system architecture.

The comparison approach has been successfully applied
in some areas completely different from network inhibition.
Aura and Nikander [2] compare the robustness of stateless
and stateful servers and protocols. Dwork and Naor [6] sug-
gest increasing the cost of sending junk mail and Hirose
and Matsuura [10] and Aura, Nikander and Leiwo [3] de-
sign key-agreement protocols where the attacker is always
the first to commit to expensive computations. The gen-
eral idea is that a system is considered robust if Cost(A) >
Damage(A) for all attacks.

To make the analysis easier in practice, attacks and
damages can be evaluated separately from each interested
party’s point of view. In open systems where the partici-
pants have few common interests, it does not make sense
to model the whole system. It is often much easier to con-
sider the threats only from a single entity’s perspective. For
example, it is different to consider the availability of a ser-
vice with the server’s or a client’s interest in mind. For the
server, the goal is to allow as many clients as possible to ef-
ficiently use the service. For the single client, it is important
to obtain the desired services from any of possibly many al-
ternative servers. Rarely is it necessary for every client to
be able to access every service, and even if it is, there may
be no authority that would want to invest in improving the
availability for all these parties. This could be summarized
by saying that doing the analysis with the paying client in
mind rather than for the public good makes it easier to get
useful results.

10 Conclusion

We defined the single-server network inhibition prob-
lem and showed it to be NP complete like many related
problems. Logic programs with stable-model semantics
were used to represent the network. Optimal attacks were
found with a tool that implements this semantics. The tech-
niques of this paper can be used to analyze the robustness of
network architectures against denial-of-service by link and
node destruction.

Possible future work includes optimizing the search for
attacks by reducing parts of the networks at a preprocess-
ing stage and evaluating other techniques such as integer
linear programming and simulated annealing to solve the
same problem. The ultimate goal should be to develop vul-
nerability detection techniques that can be incorporated as
standard components into network engineering tools.

We also suggested that the analysis of denial-of-service
attacks should, in general, aim to give the damage caused
by optimal attacks as a function of the cost to the attacker
rather than setting sharp thresholds for availability and de-
nial. This makes it possible to compare the robustness of
systems under attack even when it is impossible to guaran-
tee the availability.

Acknowledgments

This research was done mostly while Tuomas Aura was
visiting UC Davis Computer Security Laboratory. His work
was funded by Academy of Finland projects #44806 and
#47754. Matt Bishop Dean Sniegowski were were sup-
ported by grant NAG21251 from the National Aeronautics
and Space Administration (NASA), and by a gift from Mi-

0-7695-0671-2/00 $10.00 � 2000 IEEE

crosoft Corporation. The work benefited greatly from dis-
cussions with Ilkka Niemelä.

References

[1] Edward Amoroso. A policy model for denial of service. In
Proc. Computer Security Foundations Workshop III, pages
110–114, Franconia, NH USA, June 1990. IEEE Computer
Society Press.

[2] Tuomas Aura and Pekka Nikander. Stateless connections. In
Proc. International Conference on Information and Commu-
nications Security (ICICS’97), volume 1334 of LNCS, pages
87–97, Beijing, China, November 1997. Springer Verlag.

[3] Tuomas Aura, Pekka Nikander, and Jussipekka Leiwo. DOS-
resistant authentication with client puzzles. In Proc. Security
Protocols Workshop 2000, Cambridge, UK, 2000. Springer.
To appear.

[4] William H. Cunningham. Optimal attack and reinforcement
of a network. Journal of the ACM, 32(3):549–561, July 1985.

[5] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Sey-
mour, and M. Yannakakis. The complexity of multiway cuts
(extended abstract). In Proc. 24th Annual ACM Symposium
on Theory of Computing (STOC’92), pages 241–251, Victo-
ria, Canada, May 1992. ACM Press.

[6] Cynthia Dwork and Moni Naor. Pricing via processing or
combatting junk mail. In Advances in Cryptology - Proc.
CRYPTO ’98, volume 740 of LNCS, pages 139–147, Santa
Barbara, CA USA, August 1992. Springer-Verlag.

[7] Michael R. Garey and David S. Johnson. Some simplified
NP-complete graph problems. Theoretical Computer Sci-
ence, 1(3):237–267, 1976.

[8] Michael R. Garey and David S. Johnson. Computers and
Intractability, A Guide to the Theory of NP-Completeness.
W. H. Freeman and Company, San Francisco, 1979.

[9] M. Gelfold and V. Lifschitz. The stable model semantics
for logic programming. In Proc. 5th International Confer-
ence on Logic Programming, pages 1070–1080, Seattle, WA
USA, August 1988. The MIT Press.

[10] Shouichi Hirose and Kanta Matsuura. Enhancing the re-
sistance of a provably secure key agreement protocol to
a denial-of-service attack. In Proc. 2nd International
Conference on Information and Communication Security
(ICICS’99), pages 169–182, Sydney, Australia, November
1999. Springer.

[11] Catherine Meadows. A formal framework and evalua-
tion method for network denial of service. In Proc. 12th
IEEE Computer Security Foundations Workshop, pages 4–
13, Mordano, Italy, June 1999. IEEE Computer Society.

[12] Jonathan K. Millen. A resource allocation model for denial
of service. In Proc. 1992 IEEE Computer Society Symposium
on Security and Privacy, pages 137–147, Oakland, CA USA,
May 1992. IEEE Computer Society Press.

[13] Ilkka Niemelä and Patrik Simons. Smodels - an implemen-
tation of the stable model and well-founded semantics for
normal logic programs. In Proc. 4th International Confer-
ence on Logic Programming and Nonmonotonic Reasoning,
volume 1265 of LNCS, pages 420–429, Dagstuhl, Germany,
July 1997. Springer.

[14] Christos M. Papadimitriou. Computational Complexity.
Addison-Wesley, 1994.

[15] Cynthia A. Phillips. The network inhibition problem. In
Proc. 25th Annual ACM Symposium on the Theory of Com-
puting, pages 776–785. ACM Press, May 1993.

[16] Mechthild Stoer and Frank Wagner. A simple min-cut algo-
rithm. Journal of the ACM, 44(4):585–591, July 1997.

[17] Tommi Syrjänen. Implementation of local grounding for
logic programs with stable model semantics. Technical Re-
port B18, Digital Systems Laboratory, Helsinki University of
Technology, October 1998.

[18] Che-Fn Yu and Virgil D. Gligor. A formal specification and
verification method for the prevention of denial of service. In
Proc. 1988 IEEE Symposium on Security and Privacy, pages
187–202, Oakland, CA USA, April 1988. IEEE Computer
Society Press.

0-7695-0671-2/00 $10.00 � 2000 IEEE

