
How Useful Is Software Fault Injection for Evaluating the Security of COTS
Products?

Panel Moderator: Jim Reynolds, Teknowledge
Panelists:

Matt Bishop, University of California at Davis
Anup Ghosh, Cigital

James Whittaker, Florida Institute of Technology

Panel Abstract

Software fault injection (SFI) is a controversial method
for identifying errors and improving software. Many
respected researchers believe the method holds promise,
including the members on our panel, although with
careful qualifications. On the other hand, COTS software
manufacturers tend to view the method with skepticism
for several reasons. One problem is the difficulty in
verifying that injected faults are representative of real
world faults. Another is that SFI may not be as efficient in
identifying errors in software as more conventional
testing. The three panelists explored wide-ranging
alternatives to the industry view.

Position Statements

Matt Bishop

SFI is a testing tool that deliberately tries to cause
errors in existing programs. The most common example is
to supply, or inject, illegal data for input either through
the standard input or through the environment. This is
what attackers do when they test programs for
vulnerabilities. In that context, the question of whether
injected faults are representative of real world faults is not
a fair question. The proper question is whether an attacker
could use an injected fault to cause a security (or
reliability) problem. If so, then the injected fault
corresponds to a real world fault. One problem is
describing the goal of the program, and its desired
properties, in terms that can be used to derive inputs that
can cause faults. Property-based testing tests conformance
to specific properties, such as security properties. These
are stated in a low-level specification language (TASpec)
that is tied directly to the code. These properties can be
used to generate test cases that will exercise the code to
determine whether the code fails to satisfy the property.
Combined with proper test coverage metrics, these faults

can assure that the code satisfies the properties to an
appropriate level of coverage.

Anup Ghosh

SFI is an innovative technology that can be used to
sidestep many of testing’s difficult problems. Fault
injection has been used successfully in the past in safety-
critical applications to find failure modes that would have
otherwise been extremely difficult to find using standard
testing techniques. The $64,000 question is whether and
to what extent fault injection is useful for assessing
security of software systems. Our experience reflects that
software fault injection is useful in limited contexts. For
instance, we have been able to successfully inject buffer
overrun attacks in stack buffer variables to determine a
program’s susceptibility to stack-smashing attacks.
However, these results have limited value in determining
whether such an attack is actually possible via standard
user input (a more difficult problem to tackle). Fault
injection via software wrappers can be useful in assessing
the robustness of COTS operating systems by enabling
simulation of failing OS resources that applications
depend on. While this type of software fault injection falls
more in the "dependability" bucket, it has applications to
security such as determining susceptibility to denial-of-
service. In the end, the value derived from SFI is highly
dependent on the skill of the analyst. It is yet another tool
to help determine how systems might break. Proper use of
SFI can enable development of more robust systems.
However, if you are looking for a tool to reveal all
security-related flaws, keep looking.

James Whittaker

There are many varieties of security-related software
defects. Some can be found using fairly ordinary testing
strategies; others are manifested only when the system
under test is operating in a stressed environment. Stress
can be induced by load, interoperability problems with

another application, or faults in the environment of the
system. Indeed, the failure of one component may have
cascading effects on other applications and/or the security
of the network/enterprise. Software testers concerned with
security must be able to force both interoperability stress
and stress from faulty components in order to expose
these bugs to scrutiny. Tools for such fault injection are
badly needed. However, we believe that injection of faults

into a software’s environment are much more appropriate
for security testing than injection of faults into the source
code of the system under test. For one, environment faults
are more realistic (they will be the ones the hackers try to
exploit). Also, environment faults are much more difficult
to stage in the laboratory. Thus tools to inject
environment faults are what’s really needed.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

