
Development of a Software Security Assessment Instrument to
Reduce Software Security Risk

David P. Gilliam
Caltech, Jet Propulsion Laboratory

ikivid. y. Gilliain @ ipl.iiusu..qov

John C . Kelly
Caltech, Jet Propulsion Laboratory

john.c.kellvtv@ ipI.nusu.,q!ov

John D. Powell
Caltech, Jet Propulsion La bora tory

John. Powell @ i d . nnsu. ,zov

Matt Bishop
University of California at Davis

bishop @cs.iduvis.edu

Abstract

This paper discusses joint work by the California
Institute of Technology's Jet Propulsion Laboratov and
the University of Califorriia at Davis (UC Davis)
sponsored by the National Aeronautics and Space
Administration to develop a security assessment
instrument for the software development arid niaititetiatice
life cysle. The assessment instrument is a collection of
tools and procedures to support development of secure
sofhvare. Specifically, the instrument offers a formal
approuch for engineering network security into software
systems and application throughout the sofhvare
development and maintenance life cycle.

The. security assessment instrument includes a
Vulnerability Matrix (VMatrix) with plat ford
application, arid signature fields in a database. The
information in the VMatrix has become the bases for the
Database of Vulnerabilities, Exploits, and Signatures
(DOVES) at UC Davis. The instrument also includes a set
of Security Assessment Tools (SAT), including the
development of a property-based testing tool by UC
Davis, to slice software code looking for specific
vulnerability properties. A third component of the
research is an investigation into the verijication of
software designs for compliance to security properties.
This is based on innovative model checking approaches

that will facilitate the developmetit arid verification of
softvare security models

Keywords

Security Toolset, Vulnerability Matrix, Property-Based
Testing, Model Checking, Security Verification

1. Introduction

Software on networked computer systems must be
free from security vulnerabilities. Security vulnerabilities
in software arise from a number of programming factors,
but which can generally be traced to poor software
development practices, new modes of attacks, mis-
configurations, and unsecured links between systems. An
otherwise secure system can be compromised easily if the
system or application software on it, or on a linked
system, has vulnerabilities.

(SAT) for use in the software development and
maintenance life cycle to mitigate these vulnerabilities.
The National Aeronautics and Space Administration
(NASA) has funded the Jet Propulsion Lab in conjunction
with the University of California at Davis (UC Davis) to
develop a software security assessment for use in the
software development and maintenance life cycle.

Currently, there is a lack Security Assessment Tools

0-7695-1.269-0101 /$10.00 0 2001 IEEE 144

mailto:cs.iduvis.edu

The goal of the effort is the use of a formal analytical Ernst and Young website where vulnerabilities and
exposures are ranked by severity and frequency among
other factors, are also provided.

The VMatrix led to the development and extension of
a database controlled and maintained by UC Davis, the
Database of Vulnerabilities, Exploits, and Signatures,
(DOVES). DOVES contains additional vulnerabilities
and exposures beyond that which is now contained in the

approach for integrating security into existing and
emerging techniques for developing high quality software
and computer systems. The approach is multifaceted,
with activities and prototype tools in the following sub-
domains:

Assessment instrument for reducing risk during
development, configuration, and installation of
secure systems VMatrix.
Model based development and verification for secure
software architectures 3. Security Assessment Tools (SATs)
Security testing, and verification and validation
(V&V) techniques

Assessments of high profile NASA systems believed
be vulnerable to attack will provide a metric to

determine the effectiveness of these activities and
prototypes.

The inception of this work was previously reported to
IEEE WETICE Workshop on Enterprise Security.[11
Two parts have been accomplished to date, the
Vulnerability Matrix (Vmatrix) and the Security
Assessment Tools (SATs). A third part, the property-
based testing Tester’s Assistant (TA), will be completed
in June. The security assessment instrument will be
verified on a JPLNASA Class A Flight Project to assess
the approach and the viability of the security assessment
instrument for assuring the security of software on critical
networked systems.

The SATs are a collection of security assessment and
testing tools to evaluate systems and the software code
running on them. Each SAT has a brief summary stating
the purpose of the tool and its use along with pros and
cons of the tool. Also provided is a list of similar tools or
alternative tools, and a classification of the tool.
Additionally, the discussion of each tool includes a
website where the tool can be found. A journal paper,
“A Classification Scheme for Security Tools,” provided
on the SATs web page, discusses a classification scheme
of these security related tools and their usage.

A more complete description of the tools and a
discussion of how to use each of the tools is currently
being developed. Additional SATs are being collected as
they become available to include in the current list.

The SATs will be categorized and cross-referenced to
alternate tools so that code developers, system

2. Vulnerability Matrix (Vmatrix) administrators, and network and computer security
professionals can have a central location to search for
Specific took for Use in Writing SeCUre Software code and
securing computer systems.

The VMatrix task was initiated to develop a searchable
database containing a taxonomy of vulnerabilities and
exposures. The information in the database is intended,
in part, to provide network security professionals an
understanding of the vulnerabilities and their exploits so 4. property-~ased Testing

-
they can better secure their systems. Equally important, i t
also provides developers with an understanding of the
vulnerabilities and exposures in code that introduce
security risks to software and systems. The intended goal
is to enable developers to write more secure code and to
model and test it to mitigate these security risks.

The Vmatrix, examines vulnerabilities and exposures
and the methods used to exploit them. The VMatrix lists
vulnerabilities and exposures along with their Common
Vulnerabilities and Exposures (CVE) listing[2]. The
VMatrix includes a brief summary and a description of
the vulnerability or exposure, the affected software or
operating system, how to detect the vulnerability or
exposure and the fix or method for protecting against the
exploit. Also included is catalogue information,
keywords, and other related information as available,
regarding the vulnerability or exposure. Interesting links,
including links to Mitre with the CVE listing and the

The role of property-based testing is to bridge the gap
between formal verification and ad hoc verification. This
provides a basis for analyzing software without
sacrificing usefulness for rigor, yet capturing the essential
ideas of formal verification. It also allows a security
model to guide the testing for security problems

Property-based testing [3] is a technique for testing
that programs meet given specifications. The tester gives
the specifications in a language that ties the specification
to particular segments of code. The specification has
assertions, which indicate changes in the security state of
the program, and properties, which describe a specific
security state (that, in this context, is considered secure).
The idea is to ensure that the properties always hold.

The tester consists of two parts. The instrumenter
inserts statements into the source code that emit assertions
about the current state of execution. The execution
monitor takes that information as input and determines if

145

the current state of execution violates any of the
properties. If so, the program has a security flaw.
Together, the instrumenter and execution monitor make
up the: Tester’s Assistant (TA).[41

I

Knowldge of security t Proprty-baaed Teating
I
I

PBT Model
Figure 1

The design of the TA was previously reported at last
year’s WETICE, June 2000. The original goal was to
develop the TA to test programs written in C++ code for
the UNIX environment. However, the TA task has been
changed to test programs written in JAVA instead. This
eliminates some problems such as pointer aliasing
(because JAVA does not have it). It also introduces some
problems, because certain system functions (such as the
printing functions) are not written in JAVA. If the call to
such a function is instrumented, the native code
instrumented, or the statements must surround the call to
the routine instead of being invoked as the first
instruction in the routine. The first would require
developing a much more general instrumenting tool, so
we opt for the second. When the method being invoked is
computed at runtime, the complexity of the wrapping
instatements is considerable,

We have also modified the TASPEC specification
language[5] to clarify ambiguities uncovered by our
testing. For example, consider the assertions authenticated
(bob), password (bob), password (alice) are present in the
database. The instrumented program puts out the property
authenticated (x) and password (x). Does the execution
monitor report a violation, because there exists one value
for x such that the property fails, or does it say the
property is satisfied, because there exists one value of x
such that the property holds? We have chosen the latter,
but one could equally well choose the former. The only
difference that would cause is in the writing of
specifications.

5. Model-Based Security Specification and
Verification

Analyses based on discrete finite models can be used
to verify and check compliance to desired security
properties. Many security properties cannot be verified by
test activity alone, however verification through analyses
and modeling at the design stage can increase the
confidence that the specification provides a sound base
for developing a secure program or communication
protocol. The analysis and modeling process can begin
early in the software development life cycle. Modeling
tools and languages used together provide a machine-
readable model that facilitates automated verification of
system properties. Models should be updated
periodically, as requirements and designs become more
mature. Analysis of up-to-date models can contribute to
verification by testing programming code through test
case generation via Model Checking. [6,7]

X

Y

- X
Y v -

Process P1 Process P2

Figure 2

...

Processors P 1, P2
Figure 3

Software model checkers automatically explore all
paths from a start state in a computational tree (See
Figures 2-4). The computational tree may contain
repeated copies of sub-trees. State of the art Model
Checkers such as SPIN exploit this characteristic to

146

improve automated verification efficiency. The objective
is to verify system properties with respect to models over
as many scenarios as feasible. Since the models are a
selective representation of functional capabilities under
analysis, the number of feasible scenarios is much larger
than the set that can be checked during testing. Model
Checkers differ from traditional formal techniques by the
following characteristics:
0 Model checkers are operational as opposed to

deductive
Model checkers provide counter examples when
properties are violated (error traces)
Their goal is oriented toward finding errors as
opposed to proving correctness since the model is an
abstraction of the actual system

0

Figure 4

Model based securitv specification and verification:
Model checking addresses issues in security protocols

by examining a large number of ways to circumvent the
security mechanism. In contrast to purely analytic
methods, model checking is capable of examining the
larger venue by validation of the overall security system
in local, regional, or global environments. These methods
have more leverage since they model real world
scenarios, and they embrace more than just the
mathematics of the protocol. For example, the Needham-
Schroder protocol (1978) was proven secure using the
BAN logic for protocol specification. However, Lowe
(1998) and Wu (1998) using the model checking system
SPIN, have discovered successful attacks abrogating the
effectiveness and usefulness of this protocol.[8,9] We
propose to extend this approach to protocol validation by
(I) proposing models of security protocol systems, and
(2) validating those configurations. These modeling
techniques have developed around a multi-agent
programming paradigm that has emerged as a convenient
framework around which internet applications can be
successfully validated.

However, Model Checking suffers from the known
drawback of “State Space Explosion”. The state space
that a Model Checker must exhaustively explore grows at
the rate of m“ where:

n is the number of variables contained in the
discrete mathematical model
m is the range of discrete values that a
variable may have

Thus, the model must necessarily be an abstraction of
the actual system to make Model’Checking feasible with
reasonable computing resources. In most cases, any
substantial system will produce an intractable state space
if modeled in its entirety. Therefore, a careful choice,
based on domain ,and Model Checking expertise, must be
made with regard to the portion(s) of the system to model.

Invariant - always p
p is a property the model must always have

Safety - not ever q
q is a property the model must never have

Liveness - r implies s will eventually be “true” at some
point now or in the future

always the case that if property r holds at the
current state, then property s will hold at some
state now or in the future
used to guarantee that significant sequences take
place

Three common properties to check for are:

0

Security verification of new architectures:
Architectures that support change and facilitate

maintenance are essential to secure systems. However,
these architectures are inadequately tested by traditional
verification techniques. Model Checking offers ways to
begin modeling and investigating the behavior of the
planned system, and to validate that key properties hold
invariantly in the system as Omodeled. This technique
will be explored in collaboration with security
vulnerabilities and property based testing as part of this
study.

The modeling of network security systems (NSSs) and
validation of the associated properties using Model
Checking represents an ambitious undertaking. The
complexity of such a system produces state space
explosion beyond the capability of state of the art model
checkers. This complexity exists on two levels:

System Complexity - The NSS itself
Environmental Complexity - The diverse
environment (the internet) in which it must
operate

Using abstraction as a
complexities involves the
based on valid

means of coping with these
removal of irrelevant details
assumptions about the

147

system’s/environment’s behavior. Readily available
domain and model checking expertise offers the
opportunity for valid abstraction to cope with system
complexity. However, the environmental complexity is
much higher than the system complexity. Further, the
environment is continuously changing and evolving with
the constant emergence of new network security attacks.
The dynamic nature of the environment is a significant
barrier to abstraction because the validity of assumptions
may change as the environment changes.

The proposed approach to overcoming the
environmental complexity is compositional in nature. A
taxonomy of possible atomic network activities will be
developed. The environmental model will be divided into
independent components based on this taxonomy. The
component relationships will be preserved through the
Flexible Modeling Framework (FMF) that is being
developed for this project. These components will be
allowed to act on the NSS in all possible variations via
the FMF. Finally a subset of these components and their
relationships, deemed valid by the FMF, will be
combined with the NSS model to form a maximal sub-
model that is within the operational limits of a model
checker over its available resources. The FMF preserves
the properties within the sub-model such that a
verification resulting in a property violation may be
validly extrapolated to the full model at large. This
facilitates the partial verification of models that are too
large for current state of the art Model Checkers.

Partial verification of the model refers to the fact that
only properties that do not require the behaviors of the
full model (or a very large sub-model) can be fully
verified through a sub-model. This is not a new notion.
However, the contribution of the FMF is that the
modeling by components methodology facilitates
automated support for sub-model construction and
possible component reuse. Devising a valid sub-model
with respect to a given property manually is a tedious
process requiring a great deal of domain and model
checking knowledge. This approach allows all sub-
models whose state space is within the capability of the
Model Checker to be examined automatically. The sub-
model is constructed on the tly. The property is verified
over Ihe sub-model. Then the sub-model is destroyed and
a new sub-model is created. The sub models are
examined in a smallest to largest sequence. When an
error is discovered, the ability to extrapolate the error
result will eliminate, the need to examine remaining sub-
models because. Note, if no property violation is found
via the examination of all sufficiently small sub-models
the notion that the property holds for the entire model
may not be extrapolated. The ability to extrapolate
property violations only is analogous the fact that Model
Checking results over a full model can find actual system
errors but cannot prove actual system correctness.

PBT

6. Instrument Integration

\
\

\ \
\
\

The various parts of the Security Assessment Instrument
can be used separately or in combination (See Figure 5)
providing the additional benefits of

0 Reduced rework to identify security properties
Increased confidence in the system through
verification at multiple times during the
development and maintenance lifecycle
One tool is capable of verifying the input and
output of another tool in the instrument
Finding additional attacks yet to be seen in the
wild (attacks that have not yet been seen outside
of a laboratory environment) and test for their
viability and severity

I
I
I I

I
I

/ v I I

I Vmatrix I

Discovered attacks not been seen in the wild
Known attacks for Vinatrix / PBT Libaries

F i p r e 5

6.1. Vulnerability Matrix (VMatrix)
The vulnerability matrix provides a searchable knowledge
base from which properties may be extrapolated for use
with PBT (See Section 6.1.) and Model Based
Verification (MBV) (See Section 6.3.). This knowledge
base can also accommodate the discovery of new attacks
not yet seen in the wild that may be discovered through
MBV techniques.

6.2. Property Based Testing (PBT)
Property based testing is a tool that verifies properties
against the code level implementation of a system. These
properties are extracted from the VMatrix (See Section
6.l.), which may have grown due to properties being

148

added through the use of MBV (See Sec 6.3.).
Additionally, PBT is equipped with its own libraries that
contain readily testable properties. Finally, used with the
MBV, the PBT can provide verification of a model’s
fidelity to the system in the MBV.

6.3. Model Based Verification (MBV)
Due to the fact that Model based verification uses precise
abstractions; it offers the ability to verify security
properties early in the life cycle - before an
implementation exists. The MBV can effectively identify
and notify the VMatrix of security anomalies that are not
yet seen in the. wild (See Sec 6.1.). Anomalies found
early in the lifecycle by examining abstractions can later
be passed on to the PBT for verification at the code level
(See Sec 6.2.).

7. Conclusion

The four parts of this work form a coherent technique
for examining new and existing systems and software
code for security flaws. Each part can be used
independently or in conjunction with another. When used
in conjunction with each other, each part leverages
cumulative benefits to classify and focus upon security
properties that will be modeled and tested. The VMatrix
and model-based checking provide the properties that the
software must meet; the property-based tester checks that
the programs do indeed meet these properties. The
VMatrix forms the beginning of a library of TASPEC
properties. Property-based testing requires properties
expressed in TASPEC to test against. Training in the
writing of more secure programs flows directly from the
library of security properties and the system-specific
models. Placing these in the context of a particular
language and environment is an important part of
improving the quality of software and systems.

8. Acknowledgements

The research described in this paper is being carried
out at the Jet Propulsion Laboratory, California Institute
of Technology, under a contract with the National
Aeronautics and Space Administration, and the
University of California at Davis under a subcontract with
the Jet Propulsion Laboratory, California Institute of
Technology.

9. References

[I J D. Gilliam, J. Kelly, M. Bishop, “Reducing Software
Security Risk Through an Integrated Approach,” Proc. of

the Ninth IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative
Enterprises (June, 2000), Gaithersburg, MD, pp. 141-146.

[2] Published and maintained by Mitre. The CVE listing
can be found at: http://cve.mitre.org/

[3] G. Fink, M. Bishop, “Property Based Testing: A New
Approach to Testing for Assurance,” ACM SIGSOFT
Software Engineering Notes 22(4) (July 1997).

[4] M. Bishop, “Vulnerabilities Analysis,” Proceedings of
the Recent Advances in lntrusion Detection (Sep. 1999).

[5] J. Dodson, “Specification and Classification of
Generic Security Flaws for the Tester’s Assistant
Library,” M.S. Thesis, Department of Computer Science,
University of California at Davis, Davis CA (June 1996).

[6] J. R. Callahan, S. M. Easterbrook and T. L.
Montgomery, “Generating Test Oracles via Model
Checking,” NASA/WVU Software Research Lab,
Fainnont, WV, Technical Report # NASA-IVV-98-015,
1998.

[7] P. E. Ammann, P. E. Black and W. Majurski. “Using
Model Checking to Generate Test Specifications,” T”’
International Conference on Formal Engineering Methods
(1 998) pp. 46-54.

[8]G. Lowe. Breaking and Fixing the Needham-
Schroeder Public Key Protocol Using CSP and FDR. In
TACAS96, 1996.

[9] W. Wen and F Mizoguchi. Model checking Security
Protocols: A Case Study Using SPIN, IMC Technical
Report, November, 1998.

149

http://cve.mitre.org

