
Abstract
Balancing the needs of a data analyst with the pri-

vacy needs of a data provider is a key issue when data is
sanitized. This work treats both the requirements of the
analyst and the privacy expectations as policies, and
composes the two policies to detect conflicts. The result
can be applied to an intermediate data representation to
sanitize the relevant parts of the data. We conclude that
this method has promise, but more work is needed to
determine its effectiveness and limits. 

1. Introduction
The Internet has blossomed into a medium used for

communications by all segments of society that have
access to computers. It has become a major influence in
the commercial, academic, and government sectors.
People use it for personal as well as for commercial pur-
poses. This rapid growth has meant that the Internet is
outstripping the tools available to it, and forcing devel-
opers and architects to devise new technologies to allow
people to use the Internet safely.

The catch is the word “safely”. What is safe to one
person or entity may be unsafe to another. For example,
most businesses accepting transactions over the Internet
store the numbers of customer credit cards on-line at
least until the transaction is completed, and sometimes
even longer as a convenience to the customer (who need
not re-enter it). To the store, the credit cards being on-
line is a necessity and, because of the protections on
their system, one they believe is safe. But a customer
may feel that the credit card being on-line is unsafe,
because of the threat that an unauthorized user may gain
illicit access to the card number.

A similar situation arises in co-operative relation-
ships among businesses, government, and in fact any
two or more entities that share information. A company
may need to share information with one of its associated

firms, but not reveal all information in order to protect
the privacy of its clients. For example, a business may
wish to reveal to its trade association the amount of wid-
gets sold in each foreign country, but not whom the pur-
chasers were. In this case, the company must redact
information from the raw data before providing it. The
redaction may take one of two forms: summary or sani-
tization.

A summary is a completed analysis of the data in
which the relevant information is used to compute statis-
tics such as counts, means, and so forth. Typically, a
gross description of the data is given to provide context.
The U. S. Bureau of Statistics presents summaries of
raw data to the public, and does so in such a way that the
raw data cannot be rederived from the summary. Hence
the summary conceals all aspects of the raw data that the
Bureau wishes to suppress. A summary of the corporate
data mentioned above would name the continents and
state the number of widgets purchased by customers
from that continent.

Sanitization takes the opposite approach. The raw
data is presented for others to analyze, but the data is
transformed so that sensitive items are suppressed. Med-
ical records given to researchers are treated in this fash-
ion. Diagnostic information, symptoms, and treatments
are given, but information identifying the specific
patient, such as name, address, phone number, and so
forth, are redacted. A sanitized set of the corporate data
mentioned above might consist of a list of purchasers,
their addresses, and the number of widgets each pur-
chased, but the names and addresses (except for the con-
tinents) would be replaced by meaningless strings.

The benefits of sanitization are that the recipient of 
the data can analyze the raw data and derive statistics, or 
take actions, based upon the data itself rather than the 
provider’s summary of the data. But it also introduces a 
drawback when the recipient needs to derive informa-
tion based upon the components of the data that are san-
itized. In our medical example, the recipient may want 
to check the prevalence of a particular disease with 
respect to geography. As the provider has suppressed 

We gratefully acknowledge funding through grant CCR-
0311671 from the National Science Foundation to the Univer-
sity of California, Davis.

How to Sanitize Data

Matt Bishop, Bhume Bhumiratana, Rick Crawford, Karl Levitt

Department of Computer Science
University of California, Davis

One Shields Ave.
Davis, CA 95616-8562

{bishop, bhumirbh, crawford, levitt}@cs.ucdavis.edu

Proceedings of the 13th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE’04) 
1524-4547/04 $ 20.00 IEEE 



addresses, the recipient cannot determine the geographi-
cal location of the people with the disease from the med-
ical records.

This tension is particularly acute in the realm of 
computer security. When analyzing systems for intru-
sions, computer security analysts typically look for spe-
cific traces, or signatures, indicating attacks have 
occurred. This requires access to data such as system 
logs, network traffic, and the like. But embedded in this 
data is confidential information, passwords being the 
obvious example. This data is not to be revealed to the 
analysts. It is important to realize that the issue here is 
not only one of trust; some information is required by 
law or contract not to be disclosed.

The goal of the project described in this paper is to 
study the tension between the needs of analysts for data, 
and the needs of others for privacy of components of 
that data. The specific goal is to alert both analysts and 
providers of data when a conflict between the analytic 
needs and the privacy requirements exists, and to ensure 
that once the conflict (if any) is resolved, the sanitization 
can meet the needs of both parties. Section 2 discusses 
the approach for resolution in detail. Section 3 discusses 
the mechanics of sanitization, for both data that is com-
plete when sanitization begins and for data that is being 
accumulated throughout the sanitization process. Sec-
tion 4 presents a proposed architecture for a sanitization 
system, and section 5 contrasts this approach with previ-
ous work. Section 6 summarizes our progress. 

2. Privacy and analysis
The tension between privacy and analysis underlies 

all of sanitization. If privacy is to be respected, parts of 
the raw data must be deleted. If analysis is to be success-
ful, the parts of the raw data used must be left 
untouched. What happens when privacy constraints dic-
tate that some parts of the raw data used for analysis 
must be altered?

We formalize this problem as follows. Given a pol-
icy X and a data set Y, we write X(Y) when the data set Y
satisfies the policy X. A privacy policy is a set of proper-
ties p that the sanitized data must satisfy. A sanitization
function s: D

 

×P

 

→D takes a data set d

 

∈ D and a privacy 
policy p

 

∈ P and produces a second data set d

 

′

 

 ∈ D
such that d

 

′ satisfies p, written p(d

 

′). An analysis policy 
is a set of properties a that data must satisfy in order to 
do the desired analysis correctly. A privacy policy p and 
an analysis policy a are consistent under the sanitization 
function s if and only if, for all sets of data d, d satisfies 
a if and only if s(d, p) satisfies a:

a, p consistent under s

 

⇔ (

 

∀d

 

∈ D)[a(d)

 

⇔ a(s(d, p))]

This relation also defines equivalence classes of 
sanitization functions. Let s1 and s2 be sanitization func-
tions. Then they are equivalent if they can be used inter-
changeably. More formally, s1

 

≡a,p s2 when for all data 
sets D, a(s1(d, p)) holds if and only if a(s2(d, p)) holds.

As an example, consider a site with an Internet con-
nection. The managers wish to analyze the network traf-
fic for the land attack. This attack occurs when a 
network packet has the same source and destination 
ports and addresses [1], and can disable systems. The 
analysis policy may be expressed as:

a packet constitutes a land attack if and only if
the source and destination IP addresses are equal

the source and destination ports are equal

The company values the privacy of its employees, and 
each employee has his or her own computer system. 
Allowing the security analysts to see the IP address 
would immediately allow them to tie the network traffic 
to an individual, and the company is concerned that, for 
example, security analysts could build profiles of the 
individuals from their electronic mail. Hence the IP 
addresses must be kept private. So, the privacy policy is:

no IP addresses shall be revealed

This policy is actually ambiguous, because it does 
not state how the addresses are to be suppressed. First, 
the IP addresses can simply be deleted. In this case, the 
data set s1(d, p) has no IP addresses, and does not satisfy 
the policy a as the veracity of the first property cannot 
be determined. So a and p are not consistent under s1.
Simply replacing the IP addresses by a single string, say 
“IPADDRESS”, may false positives, and again a and p
are not consistent under this sanitization function. The 
IP addresses can be replaced by random addresses. In 
this case, the data set s2(d, p) has IP addresses, but the 
same IP address may be sanitized into two different 
addresses. So two IP addresses in s2(d, p) may produce 
false negatives. Again, a and p are not consistent under 
s2. Finally, the IP addresses can be replaced by random 
addresses, but consistently so that each IP address is 
replaced by the same random string whenever it occurs. 
Given two IP addresses in s3(d, p), the first property of a
holds in d if, and only if, it holds in s3(d, p). Thus, a and 
p are consistent under s3. Note that the particular ran-
dom addresses used are irrelevant; in fact, all sanitiza-
tion functions providing such a mapping are in the same 
equivalence class.

A critical issue is how to express the above policies. 
One goal is to derive from the policies specific criteria 
that the sanitization function must meet in order for the 
two policies to be consistent with respect to that func-

Proceedings of the 13th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE’04) 
1524-4547/04 $ 20.00 IEEE 



tion. Thus, the language chosen to express the policies 
must lead directly to the derivation of an appropriate 
sanitization function. If the policy language is too high 
level, this will not be automatic. But if the policy lan-
guage is too low-level, it may lack the expressive power 
needed, or be too detailed to use. Complicating the 
selection is the need to reconcile the two policies and 
determine inconsistencies. One approach is to compose 
them, and then check the resulting policy for any incon-
sistencies. However this is done, the policy language 
chosen must have an analysis engine available that 
allows this reconciliation.

2.1. Example policy language

An obvious approach to policy representation is to 
choose a policy language that allows the sanitization 
functions to be derived easily. Coupled with the wide 
variety of data formats, it would be very difficult to con-
struct a policy language that would cover all situations 
for all types of data. Instead, we assume that the data 
itself is structured using XML, and express policies in 
terms of that structure. In essence, our policy language 
is a low-level one, as it is aware of the particular seman-
tics of the data being protected. But it is general, 
because it is not tied to any particular semantics.

An example will clarify this. Consider network traf-
fic. The privacy policy and analysis policy are as above. 
Let the IP addresses and port numbers be mapped into 
the fields with tags “ip” and “port”, and attributes “src” 
and “dest” for source and destination. The low-level 
analysis policy is:

LAND_ATTACK iff
ip:src = ip:dest and port:src = port:dest

and the privacy policy requires that the IP addresses be 
sanitized. This may be translated into three different 
low-level privacy policies, p1, p2, and p3:

p1 ip:src/contents delete; ip:dest/contents delete

p2 ip:src/contents random; ip:dest/contents random

p3 ip:src/contents chash1; ip:dest/contents chash1

respectively, and the sanitization functions s1, s2, and s3

shown above can be generated automatically. (In this lit-
tle language, “:” separates tags and attributes, and “/con-
tents” refers to the contents of the named tag with the 
given attribute.)

Consider how a policy reconciliation engine might 
work, using policy p1 as an example. As the source and 
destination IP addresses are “deleted”, the engine notes 
that they are no longer available. It then compares this to 
the analysis policy, which requires both, and reports that 
the two are inconsistent.

Now use policy p3 as an example. Here, the source 
and destination addresses are mapped using “chash1”, 
which is a cryptographic hash function. If f is a function, 
x = y means that f(x) = f(y), so when the engine com-
pares this to the analysis policy, it notes that the two IP 
addresses are equal whenever the result of applying s3 to 
both are equal. Hence privacy policy p3 is consistent 
with the analysis policy.

2.2. Discussion of XML

Three ways to derive objects to be sanitized are:

1. Fixed objects. Whenever a particular object is 
encountered in the input, it is sanitized.

2. Objects in position. The position of an object is 
determined, and if at a specific position, the object 
is sanitized. This is useful for data streams in which 
objects have fixed positions. 

3. Objects in context. The context of an object is eval-
uated, and the result of the evaluation determines 
how (whether) the object is sanitized.

Pang and Paxson [2] discuss four types of inference 
attacks, the prevention of which involves separation of 
data. An alternate view of these countermeasures is to 
require sanitization to depend on context. For example, 
a version of “known text matching” consists of an 
attacker inserting IP addresses into a network session. 
The network traffic is anonymized, and the attacker 
obtains it. She then compares her known session text 
with the sanitized one. This will immediately show her 
how IP addresses were sanitized. The solution is to rec-
ognize that network addresses in the data area are to be 
sanitized differently than those in the header. In “shared 
text matching”, the user name “alice” should be sani-
tized in contexts where the string refers to a login name, 
but not in a context when it is part of a file name. “Struc-
ture recognition” uses context derived from multiple 
probes within a trace, and “fingerprinting” is similar to 
known-text matching.

XML offers several advantages for this process. 
First, XML structured data has a tree form in which the 
tags are the nodes and content are the leaves, so building 
contexts involves traversing the tree, keeping track of 
the ancestor nodes of the current content. So sanitization 
of attributes and content can easily take context into 
account. Secondly, in the event that the structure of the 
data itself is to be changed, the transformation language 
XSLT, tailored for XML, can express the change easily. 
Third, many tools for processing XML exist, and there 
are established standards for describing many types of 
data and transformations, so the use of XML can draw 
on a body of available work.

Proceedings of the 13th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE’04) 
1524-4547/04 $ 20.00 IEEE 



Unstructured input must be transformed into struc-
tured data. We discuss this in section 4 below.

3. Mechanics
A key question in sanitizing data is how effective 

the sanitization is. Many of the results from anonymity 
and pseudonymity in the cryptographic world apply 
here, the difference being that in this context anonymity 
and pseudonymity apply to hiding data rather than iden-
tity. The key question is how difficult an attacker would 
find inverting the sanitization mapping. In many cases, 
one need not invert the mapping completely; merely 
eliminating possible data may provide information that 
the sanitizer wishes to suppress.

Second, in some cases the data to be sanitized is not 
known initially. For example, a policy may require login 
names to be changed. The sanitizing engine (which 
applies the sanitizing functions) must determine this 
data by looking for words that follow the string “login:”. 
The data not being known initially, the function is in a 
sense constructed after, or as, the data is being analyzed.

When the complete set of data to be sanitized is 
available at the time of sanitization, the sanitization 
functions can be derived completely before the data is 
sanitized. This is static sanitization. When the complete 
set of data to be sanitized is not available at the time of 
sanitization, the sanitization function may change as the 
data becomes available and is sanitized. This is dynamic
sanitization. These are handled differently. In what fol-
lows, we assume the sanitization functions are defined, 
at least in part, by the contents of the complete set of 
data being sanitized, as in our example above.

3.1. Static sanitization

Static sanitization arises when a file or data set will 
not change during the sanitization process. In this case, 
the data can be analyzed to determine the sanitization 
function completely before the analysis proceeds. The 
sanitization engine makes passes over the complete data 
set until the sanitization function is constructed, and 
then makes a final pass over the data to perform the san-
itization. This is analogous to a two-pass assembler, in 
which symbol names and definitions are determined on 
the first pass, and then the object code is assembled on 
the second pass.

As an example, a log file is to have user names 
removed. The third field of the log file contains the user 
names; other fields may also have them, but the format 
of the log entries varies after the first three fields. Hence 
the sanitizer must scan the log file first to build up a col-
lection of user names from the contents of the third field 
of each entry. Then it maps each into a unique replace-

ment string, and processes the log file line by line. The 
names are replaced by the replacement strings regard-
less of which field they appear in.

It is possible to build a one-pass sanitizer. Given a 
structured data format in which the words to be sani-
tized occur in well-defined places, exactly the same 
techniques that create one-pass assemblers could be 
used to construct one-pass sanitizers.

3.2. Dynamic sanitization

Dynamic sanitization occurs when the data source 
continues to add to the data as sanitization proceeds. In 
this case, the sanitization function may not be known 
until the processing is completed. If the sanitization is 
ongoing, the sanitization function may not be a fixed 
mapping, but may change throughout the sanitization 
process.

This problem is considerably more complex than 
static sanitization. First, when the sanitization function 
changes, must the already processed input be redone to 
conform to the new sanitization function? This policy 
decision must take into account the nature of the data 
already processed, to determine if the change would 
apply to any previously processed data; it must account 
for the availability of the already processed data, which 
may have been transferred out of the control of the 
entity doing the sanitizer; and it must account for the 
cost of re-doing all the processing.Second, the complex-
ity of the changes to the function may affect the cost of 
sanitizing incoming data; the concern is that if the sani-
tization becomes prohibitively expensive, it will be 
stopped. This area requires more study.

3.3. How to sanitize data

Basic ways to sanitize objects are:

1. Deletion. Here, the objects to be sanitized are sim-
ply deleted.

2. Fixed transformation. All occurrences of the object 
are replaced by a fixed string.

3. Variable transformation. Occurrences of the object 
are transformed in different ways depending upon 
the context and structure of the object. For example, 
translating an IP address into one value for FTP 
connections, and a different value for HTTP mes-
sages, is an example of variable replacement. 
Replacing objects with random data is another.

4. Typed transformation. This is a form of variable 
transformation, except that the replacing objects are 
related when the types of the object being replaced 
are the same. For example, replacing all file names 
with a value generated by one cryptographic hash 
function, and all IP addresses with addresses 

Proceedings of the 13th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE’04) 
1524-4547/04 $ 20.00 IEEE 



selected from the 10. network, would be an exam-
ple of this.

4. Architecture of a Sanitization Engine
Pulling this together, Figure 1 describes a simple 

sanitization engine. The advantage of using a structured 
representation of the input data is that the sanitizer can 
easily derive context from the XML form, and use that 
to determine how to sanitize the data. 

4.1. XML converter and reverter

The XML converter takes unstructured data as input 
and applies a structure to it. This application must know 
the semantics of the input data to convert it to a useful 
form. For example, if the data is network traffic, the con-
verter must structure the data so the desired information 
can be gleaned from it. FTP control session data has a 
well-defined format [RFC], so the contents of the pack-
ets can be structured (GET is followed by a file name, 
for example, and USER by a user name). The precise 
structuring must take into account the information to be 
used in the analysis of the data (as stated by the analysis 
policy), as well as the data to be suppressed (as stated by 
the privacy policy).

As a detailed example, consider sanitizing FTP net-
work traffic in an environment in which the analysis pol-
icy requires access to the packet bodies. The privacy 
policy requires that IP addresses be suppressed. But 
some FTP control commands require that IP addresses 
be sent in the bodies of the packets. The naive solution, 
sanitizing at the IP level, will fail to meet the privacy 
policy because the addresses in the packet bodies will 
not be sanitized. But if the session is reconstructed, the 
commands that require IP addresses to be in the session 
will be obvious. Hence the converter must supply 
enough information to allow the sanitizer to determine, 
from context, which occurrences of the IP addresses to 
sanitize. It is worth noting that the representations of the 

IP addresses in these contexts will differ. IP addresses in 
packet headers are binary; IP addresses in the session 
layer will be in ASCII. These representation details 
should be hidden from the sanitizer, and handled at the 
conversion into structured format and restoration into 
unstructured format.

4.2. Sanitizer

The sanitizer takes the structured data, converts it 
into a tree representation, and applies the sanitization 
rules of the privacy policy. One model for the sanitizer is 
to derive structure from the contents of the data, but this 
would require that the sanitizer know about the format 
of the data. For simplicity and to avoid writing a new 
sanitization engine for each type of input data, we use a 
model in which the sanitizer assumes that all context is 
encapsulated in the XML structure. Thus, the converter 
must be aware of the contexts in the privacy policy.

As an example, consider FTP traffic. The sanitizer 
must sanitize IP addresses at both the session and IP lay-
ers. The sanitizer will keep two types of states. The first, 
the IP state, is applied to the fields in the IP header (as 
represented in XML). The second, the FTP state, is 
applied to the session data. Note that the FTP state may 
span multiple IP packets, so the FTP state will need to 
persist even when an IP packet completes. This informa-
tion can be encapsulated in the privacy policy using 
appropriate constructs. 

4.3. XML reverter

The XML reverter deconstructs the structure of the 
sanitized structured data, restoring it to its original form 
while keeping the sanitizations. This preserves the origi-
nal format of the input data, so tools that work on the 
original input data will work on the sanitized data. It is 
the reverter’s responsibility to attend to components that 
must be changed as a result of the sanitization. For 
example, returning to our FTP network traffic, the TCP 
checksums for the packets that have sanitized data in 
them are now incorrect, and must be patched.

5. Related work
Pang and Paxson [2] explore the sanitization of net-

work traffic. Their goal was to make public full trace 
data (as opposed to only packet headers) without com-
promising the privacy requirements of their institution. 
They implemented policy scripts to operate on the appli-
cation-protocol-level data, and split the sanitization into 
network-protocol-level data sanitization and applica-
tion-protocol-level data sanitization.Their tools allowed 
verification that the anonymization mechanisms worked 
correctly and adequately protected the data to be kept 
private.

data XML converter

sanitizer

structured data

sanitized XML reverter sanitized
structured datadata

Figure 1. The architecture of sanitization. Raw data is 
translated into an appropriate structured format. The 
sanitizer sanitizes the structured data, which is then 
reprocessed into the original format, giving a sani-
tized representation of the input data.

Proceedings of the 13th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE’04) 
1524-4547/04 $ 20.00 IEEE 



Other than Pang and Paxson, most work has 
focused on the issue of anonymizing or suppressing 
data. Many cryptographic studies have explored how to 
do this, but none examine the trade-off between analysis 
and privacy, focusing instead on preventing or limiting 
the reconstruction of anonymized data. Inference attacks 
in databases similarly examine controls to suppress data, 
but not the trade-off between access and privacy. As the 
trade-off is the central theme of our study, our work dif-
fers considerably from theirs.

Sobirey, Fischer-Hübner, and Rannenberg [3] first 
suggested pseudonymity (consistent replacement of 
words to be sanitized) for intrusion detection. They 
focus on protecting user privacy. They discuss the need 
to balance pseudonymity with the preservation of 
enough information to perform an adequate analysis, but 
do not describe how to achieve that balance. This paper 
also identifies the problem of conditional reconstruction, 
in which one may map pseudonymizers to users given 
additional (external) knowledge.

Biskup and Flegel [4] discussed the pseudonymized 
known user and host names that appeared in file names, 
and in the user and host fields of the logs. They dis-
cussed in detail several possible architectures for pseud-
onymizing log files, but did not explore how this affects 
the ability to analyze data especially under criteria that 
change as the analysis progresses.

Lundin and Jonsson [5] describe an experiment in 
which they developed a “pseudonymizer” that 
exchanges pseudonyms for names in firewall logs. The 
mapping between names and pseudonyms was not ame-
nable to reconstruction. The authors concluded that even 
pseudonymized users sometimes could be reidentified 
through their behavior, and some information (such as 
working hours) could be deduced from the sanitized 
logs. Further, knowledge of the users’ behavior helped 
distinguish false alarms from legitimate reports of intru-
sions. Sanitizing the logs reduced this knowledge, 
increasing the need to investigate alarms that otherwise 
would have been quickly dismissed as patently false. 
This work was experimental, and did not examine the 
balance between security and privacy in detail.

 Our work is closest to that of Pang and Paxson but 
uses a slightly different approach. We abstract the net-
work notions into structures, and focus on the structures. 
This gives us generality and extends the framework to 
make applying a contextual model of analysis simpler.

6. Conclusion
A primary goal of this project is to make explicit 

the conflicts between analysis and privacy, and to enable 
policy makers to determine what the trade-off should be 

when the two conflict. Because we want our results to be 
widely applicable, we are focusing on structured data 
using XML, and methods to sanitize data in that context.

Our project has developed a sanitizer using this 
technology for network data. It can sanitize header 
information including TCP, UDP, IP, and MAC 
addresses, as well as the bodies of the packets at any of 
these network layers. Our department has used a proto-
type of this tool to sanitize wireless network traffic, as 
well as logs containing DHCP lease information, to 
meet University privacy requirements so that a research 
group could use the data to analyze patterns of use of 
wireless. Preliminary performance data implies the 
tool’s performance is acceptable. These results are 
encouraging.

In our society, the need for security is great, and 
with that need comes the requirement that data be ana-
lyzed for threats. But the importance of privacy, the 
“right to be let alone” [6], is fundamental to human soci-
eties, and must be respected. How the conflict between 
security and privacy is to be balanced is a matter of pol-
icy, and open to debate; but that those debating must 
understand what the conflicts are seems self-evident. We 
hope this work, in its own small way and within its spe-
cific problem domain, contributes to this understanding.

7. References
1. T. Daniels and E. Spafford, “Identification of Host 

Audit Data to Detect Attacks on Low-Level IP Vul-
nerabilities,” Journal of Computer Security 7(1) pp. 
3–35 (1999).

2. R. Pang and V. Paxson, “A High-Level Program-
ming Environment for Packet Trace Anonymization 
and Transformation”, Proceedings of SIGCOMM 
2003 pp. 339–351 (Aug. 2003) 

3. M. Sobirey, S. Fischer-Hübner, and K. Rannenberg, 
“Pseudonymous Audit for Privacy Enhanced Intru-
sion Detection,” Information Security in Research 
and Business—Proceedings of the IFIP TC11 13th 
International Conference on Information Security
pp. 151–163 (May 1997).

4. J. Biskup and U. Flegel, “Transaction-based Pseud-
onyms in Audit Data for Privacy Respecting Intru-
sion Detection,” Proceedings of the Third 
International Symposium on Recent Advances in 
Intrusion Detection pp. 28–48 (Oct. 2000).

5. E. Lundin and E. Jonsson, “Anomaly-Based Intru-
sion Detection: Privacy Concerns and Other Prob-
lems,” Computer Networks 34(4) pp. 623–640 (Oct. 
2000).

6. S. Warren and L. Brandeis, “The Right to Privacy”, 
Harvard Law Review 4 pp. 193ff (1890).

Proceedings of the 13th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE’04) 
1524-4547/04 $ 20.00 IEEE 


