

s

Abstract – Th
improve syste
technologies
provide a bas
computer and
questioning t
security guide
and give exam
the assumptio

Index terms
assumptions

As the discip
moved from
being adapte
practices dev
sets of best p
enabling peo
Examples of
include the n
Evaluation C
the NIST Sy
Microsoft W
various guid
imply that b
configuratio
security of th
systems dev
and maintain
refer to all o
checklists as

Whenever o
“better” than
The problem
policy defin
context, “be
meaningless
example, a U
secure if all

† Author’s ad
California at
USA

Proceedings of the 9th Colloquium for Information Systems Security Education
Georgia Institute of Technology
Atlanta, Georgia, 6-9, June 2005

ISBN 1-9335
Best Practices and Worst Assumption

Matt Bishop

e development of best practices and checklists to
m security has popularized techniques and
for strengthening systems. These techniques
is for teaching the importance of assumptions in
 information security, and the necessity of

hem. We present an example of analyzing a set of
lines to determine the underlying assumptions,
ples of how to demonstrate the importance of

ns to the effectiveness of the guidelines.††

– Education, best practices, challenging

I. INTRODUCTION

line of computer security has matured, it has
 an art practiced by experts to a technology
d for use by non-experts. The principles and
eloped by the experts are being distilled into
ractices and security checklists aimed at
ple to improve the security of systems.
 these standards, guidelines, and checklists
ow defunct Trusted Computer Security
riteria (also called the “Orange Book) [1],

stem Administration Guidance for Securing
indows 2000 Professional System [2], and
elines for secure programming. All these
y following the development, implementation,
n, installation, and/or maintenance guidelines,
e resulting system is better than that of

eloped, implemented, configured, installed,
ed without the guidelines. For simplicity, we

f standards, best practices, and security
 “security guidelines”.

ne suggests that a system’s configuration is
 another, the question of “better how” arises.
 is that the term “security” assumes some

ing what “security” means. Without this
tter” is ambiguous. To measure “security” is
 without first stating the security policy. For
niversity workstation may be considered

users can read each other’s data. The purpose

dress: Dept. of Computer Science, University of
Davis, One Shields Ave., Davis, CA 95616-8562

of a university, after all, is to share information and
encourage collaboration among faculty, students, and
staff. However, this system would be non-secure were it
transported to a commercial environment, where
disseminating information could compromise trade
secrets. Similarly, in a law office, where absolute
confidentiality between lawyer and client is required, such
a system would be unacceptable.

When preparing a security guideline, one tailors it to a
particular environment. This environment includes a
security policy and assumptions about the people and
procedures (including enforcement procedures) in place.
Erroneous assumptions about the environment lead to
security measures that are ineffective, and a set of
guidelines that do not reflect reality. This in turn may lead
to a false sense of security, which weakens the actual
security of the system!

Part of analyzing the security of a system includes
questioning whether the assumptions underlying the
security measures are appropriate for the environment. An
obvious example comes from the play A Funny Thing
Happened on the Way to the Forum, in which one
character decides to kill himself because of unrequited
love. He is promptly told, “It’s against the law to kill
oneself. The penalty is death.” The penalty here has the
opposite of its intended deterrent effect. An example from
the computer arena occurred when a major software
company was going to be sued for violating an antitrust
law. The company offered to supply free computers to
schools as part of a settlement. The effect, of course,
would be to spread the company’s influence even farther
— precisely what the lawsuit was trying to prevent. No
one ever broke into a system by compromising a model
proved secure. Attackers compromise the implementation
of the model, which is not proved to implement the model
correctly. The assumption that the system correctly
implements the model is just that, an assumption — and
because this assumption is often wrong, the security of the
system may be compromised.

This suggests an approach to teaching the need to analyze
assumptions: take the security guidelines, analyze them to
see what assumptions the authors are making, and apply
those guidelines to other environments where one or more
of those assumptions fail. This approach has two benefits.
First, it helps students understand the importance of

10-99-4/05/$15.00 © 2005 IRI/CISSE 18

assumptions, by showing them how guidelines proposed
or recognized by some authorities fail when assumptions
are changed. It also takes advantage of a quirk in human
nature, namely that of challenging an authority. Second, it
helps the students learn how to craft guidelines, and the
importance of minimizing the number of assumptions
made so their guidelines can be applied as widely as
appropriate.

In the next section, we review one set of security
guidelines. We then discuss some underlying
assumptions. The fourth section proposes exercises to
help students understand these assumptions better. We
conclude with a brief discussion of the pedagogic value of
this technique.

II. GUIDELINES

This section reviews the CIS FreeBSD Benchmark [3].
This is a benchmark intended for systems running the
FreeBSD variant of the UNIX® operating system. The
guideline was developed by the Center for Internet
Security using a consensus-based process. Its purpose is
to quantify how secure a system is, and to enable
managers and administrators to detect when changes
improve the security of the system. It is a good example
of a security guideline, in part because there is an
associated scoring tool that scans a system, reports on
violations of the guidelines, and even computes a
numerical score based on the degree of compliance with
the guidelines.

The guidelines consist of 8 sections, each covering a
different aspect of security (see Table 1). Within each
section, the aspect is broken down into specific items.
Each item has the form of an optional question designed
to determine the appropriate setting, an action to be taken
that configures the item, and a brief discussion of the
item. Where configuration differs between FreeBSD
versions, the actions for the versions from version 4.8 on
are given.1

Section Contents
1 Patches and Additional Software Configuration
2 Minimize inetd Services
3 Minimize Boot Services
4 Kernel Tuning
5 Logging
6 File/Directory Permissions/Access
7 System Access, Authentication, and

Authorization
8 User Accounts and Environment

Table 1. Contents of CIS FreeBSD Benchmark

1 FreeBSD versions 1 through 3 are outdated. FreeBSD
installations use versions 4 (specifically 4.8 on) or 5.

The guidelines state certain assumptions in the
introduction. The critical ones are:

1. The person testing the system, and reconfiguring
it when necessary, is working as the superuser
and running the FreeBSD version of the Bourne
shell with the parameter noclobber unset. This is
necessary because the actions are given in
Bourne shell syntax. The script would overwrite
existing files (hence the need for noclobber to be
unset; otherwise, the overwriting would fail).

2. The actions in each item are executed in the

order given. In fact, they may be copied directly
from the guidelines using “cut-and-paste”. If the
order is changed, the operations may fail, or have
an unintended result.

3. After all changes are made, the system must be

rebooted. This is necessary because some actions
require the kernel being rebuilt, or system
daemons rereading their initialization files.

The benchmark does not provide any guidance about the
environment for which it was written, nor upon the policy
of the specific organization or group using the system. It
does ask specific questions, and conditions the actions
upon the answers to those questions. It also does not
quantify assurance because it prescribes one particular
setting, or set of settings, without considering the
effectiveness of the mechanisms that use the setting. This
is reasonable in the context of the benchmark because it
assumes the same mechanisms on all systems. In contrast,
more general guidelines such as the TCSEC require
evidence of assurance of the mechanisms, and prescribe
how the mechanism is to act rather than prescribing
particular settings for a specific mechanism.

This brings us to the question of the importance of the
assumptions that the guidelines make.

III. UNDERLYING ASSUMPTIONS

Inherent in all security guidelines is a particular purpose:
to conform to some idea of “secure”. The idea of “secure”
varies from guideline to guideline. Moreover, guidelines
are often not explicit about the policies they are trying to
enforce. The policies, or more properly the policy
components, are implicitly assumed.

This affects the applicability of the guidelines to
particular environments. To take an extreme example, the
policy for a system used to regulate the beating of a
patient’s heart in a hospital’s intensive care unit would
disallow access over the Internet (one hopes). So, a
guideline written for that medical system would say that
the system is not to be connected to the Internet. But

Proceedings of the 9th Colloquium for Information Systems Security Education
Georgia Institute of Technology
Atlanta, Georgia, 6-9, June 2005

ISBN 1-933510-99-4/05/$15.00 © 2005 IRI/CISSE 19

applying that guideline to an Internet-based business, such
as Amazon, would result in massive economic losses and
bankruptcy. The security policy of the business, in fact,
must allow connecting to the Internet. The security
guideline for one environment (a hospital) instantiates a
breach of security in a different environment (an Internet-
based business).

The scoring tool bundled with the guidelines measures
compliance with the guidelines. A high rating means the
system meets the guidelines, and a lower rating means the
system fails to conform to the guidelines.

Assumption 0. The scoring tool reflects the guidelines
accurately and completely.

This assumption is pervasive. In what follows, we
interpret the guidelines in light of the actions of the
scoring tool, and point out where the tool amplifies (or
differs from) the guidelines.

A. Section 1: Patches and Additional Software
Configuration

When flaws are discovered in the system, patches or
updates are constructed to remediate the flaw. The flaw
may not be related to security. The FreeBSD Benchmark
says that the “operating system should be promptly
patched after a security hole is located” and gives detailed
instructions about how to download the patch.

The scoring tool amplifies the guidelines. It checks to see
if the program cvsup has updated the source tree in the
past month. This is different than checking that all
security patches to the operating system have been
installed, because no patches may have been announced
in the previous month. Further, the patches may have been
downloaded, but not installed. So, if a system
administrator relies on the tool, the resulting message
about patches may, or may not, be accurate. This leads to
the first set of assumptions:

Assumption 1. Patches are released at least monthly.

Assumption 2. The system administrator uses cvsup to
download patches.

Assumption 3. Once a patch is downloaded, it will be
installed, and the relevant programs recompiled and
reinstalled (and, if appropriate, the system rebooted).

The next item pertains to host authorization. When a host
connects to a FreeBSD system, that system can be
configured to check an authorization file to determine
whether the host should be allowed to connect. The
particular mechanism is called “tcp wrappers” and can be
implemented by using a specific program (tcpd) to “wrap”

servers, or by instructing inetd to invoke the mechanism
automatically. The guideline recommends setting the “W”
and “w” options, which instruct inetd to invoke the
mechanism for all services. Interestingly, the scoring tool
for FreeBSD only checks that either flag is set; this means
that one can configure inetd to check that the mechanism
is invoked for some services, rather than all services.2
Further, if the “wrap” method is used, so that tcpd is
explicitly invoked in the configuration file, the scoring
tool asserts that this method of host authorization is not
used. This leads to the next set of assumptions:

Assumption 4. Tcp wrappers is invoked using command-
line options to inetd rather than by directly invoking tcpd
in the inetd configuration file.

Assumption 5. If host authorization is provided for either
internal or external servers, then it will be provided for
both internal and external servers.

Although this item states that its goal is to “enable [tcp
wrappers] with inetd,”3 it does not provide information on
other servers that use this mechanism.

Assumption 6. All network services that require host
authorization are either started by inetd or are explicitly
described in the benchmark (sshd).

The third item recommends enabling sshd. It presents a
small script to enable version 2 of the protocol, allow root
logins, and the printing of the message of the day,
“/etc/motd”. The first assumption here is that the site
requires remote access to the system. If remote access is
never authorized, then there is no reason to run sshd (and
in fact it should not be run). Hence:

Assumption 7. Users will need to access the system from
a network.

This also assumes that version 1 of the protocol should be
disabled. But if some users authorized to use ssh will have
access to version 1 clients only, this causes problems:

Assumption 8. Users authorized to use ssh will never
need to use version 1 clients.

The second assumption is that remote root logins are not
permitted. In general, allowing them is undesirable,
because of the need for accountability. In FreeBSD, root
is a role account [4], and it is typically shared among
many users. (See section 3C below.) If a root user is

2 Specifically, “w” refers to internal servers that inetd handles
without invoking another server, and “W” refers to external
services (such as FTP) that inetd handles by invoking another
server (such as ftpd).
3 [3], p. 3.

Proceedings of the 9th Colloquium for Information Systems Security Education
Georgia Institute of Technology
Atlanta, Georgia, 6-9, June 2005

ISBN 1-933510-99-4/05/$15.00 © 2005 IRI/CISSE 20

logged in, who is the actual user? When users use su or
sudo to acquire root privileges, the action is logged. But a
remote login as root records that root logged in, not who
was logging in as root. This eliminates the ability to tie
that instantiation of root back to an individual.

Assumption 9. Remote logins as root are unnecessary.

The final assumption is a tricky one, and unintended by
the authors of the standard. There is a typographical error
in the action because a quotation mark is left off one
entity.4 If one knows the program awk’s command
language, the error is obvious; but if not, the user may be
puzzled. Hence:

Assumption 10. The system administrator is familiar with
awk’s command language.

B. Section 6: File/Directory Permissions/Access

Section 6 deals with the permission modes of some
system and user file objects. The first item considers the
user and group databases. In FreeBSD, password
information is distributed among 4 files. The first,
“/etc/passwd”, contains the information that is to be
accessible to users. The second, “/etc/master.passwd”,
contains other information such as aging and password
hashes, and should not be generally readable. Each of
these files has a binary version for quick access. Finally,
group information is kept in the file “/etc/group”, which
needs to be readable by everyone.

The guideline recommends changing the permission of
“/etc/passwd”, the corresponding database, and the group
file to allow the owner to read and write, and the group
and world to read only; and to change the permission of
“/etc/master.passwd” and its corresponding database file
so that only the owner can read and write it. The implicit
assumption here is that only root will need to alter any of
the files, and read the master password file and database.

Assumption 11. Only root needs to alter the password
and group files, and read or alter the master password
files.

Examining the scoring tool, two other assumptions
become apparent. The guidelines recommend changing
the group of these files to wheel, but the tool tests that the
group owner of the file has GID 0. Similarly, it checks the
ownership of the files against the user identification
number (UID) 0, even though the guidelines recommend
changing the owner of these files to root.

4 Line 3 ([3], p. 3) in the awk script reads:

/^#PermitRootLogin/ { $1 = "PermitRootLogin};
and is missing a closing quotation mark after PermitRootLogin.

Assumption 12. The UID of user root is 0, and the GID
of group wheel is 0.

The second item states that user home directories should
be kept private by making them accessible only to the
owner. This action makes subdirectories and files in the
directories inaccessible to other users. It restricts sharing,
in the sense that the users must take special action to
make data available to one another without violating the
guideline (sending documents via email, for example),
and will break other services such as web page serving,
where users keep their web pages in a subdirectory
“public_html”.

Assumption 13. Data in user directories never needs to be
shared. This includes web pages.

The discussion contains a warning that users should be
warned before this change is made, and that the change
should be made with caution. As an alternative, it
suggests turning off world read permission on home
directories, but setting owner and group read, write, and
search permission on that directory. This recommendation
assumes that group writing to home directories is
acceptable, and home directories are not world-writable
(because the write permission for world is not cleared).
Hence:

Assumption 13½. Owners wish to allow group access
(read, write, search) to their hone directories, and do not
have permissions set that allow anyone else to write to the
directory.

The scoring for the second item checks that all world
permissions are turned off, and that the group write
permission is disabled if the group of the owner contains
more than one user. Thus, the scoring does not reflect the
guidelines, in that if group read and search permissions
are turned on, the scoring tool will accept the directory as
meeting the guidelines. This leads to another assumption:

Assumption 14. Group read and search permission are
not relevant to the security of the system.

C. Section 8: User Accounts and Environment

Section 8 presents recommended settings for various
aspects of user accounts and environments. The first
recommendation is to block login access to system
accounts. The action is to set the uucp account’s shell to
an invalid shell (thereby preventing logins). The
discussion warns that if the uucp account is to be used,
this action should not be taken. The scoring tool adds
more information. A “system account” is defined as one
with UID between 1 and 499 inclusive. Thus, the
underlying assumption is:

Proceedings of the 9th Colloquium for Information Systems Security Education
Georgia Institute of Technology
Atlanta, Georgia, 6-9, June 2005

ISBN 1-933510-99-4/05/$15.00 © 2005 IRI/CISSE 21

Assumption 15. No user accounts have UIDs in the range
1 to 499 inclusive.

The next item is to check that there are no accounts
without passwords. The assumption here is that there are
no utility accounts, for example a “date” account that
prints a date and exits immediately.

Assumption 16. Only users with passwords may access
accounts through login.

The third item requires that password aging be enabled,
and sets a 91 day expiration period for each password.
Only accounts with passwords should have aging enabled;
accounts with password authentication blocked should not
have passwords expired. The scoring tool defines blocked
passwords as those with the following hashes: “LK”,
“*LK*”, “*”, “np”, or “!!”. This leads to the first
assumption:

Assumption 17. Accounts with password authentication
blocked will be blocked using a program, rather than by
direct editing of the password file.

A much larger assumption is that password aging
enhances security.

Assumption 18. A system that uses password aging is
more secure than a system that does not.

The fourth item changes the account creation template to
reflect the password expiration times. Unlike the check in
item 3, the check here expects the expiry time to be in
months, weeks, or days; if hours or some other form is
given, the scoring tool rejects it. Hence:

Assumption 19. The password expiration time in the user
account template is given in months, days, or weeks.

The fifth and sixth items look for accounts with UID 0
(that is, for root accounts other than the one named root).
The fifth checks for the account toor, which is typically a
root account with the shell set to the Bourne shell rather
than C-Shell (which the account root uses).

Assumption 20. If an account named toor is present, it
has a UID of 0.

The sixth recommends deletion of all accounts with a
UID of 0. The scoring tool looks for UIDs of 0 here, and
if the account name is anything other than root, it reports
the problem. The assumption here is that there should
only be one account with a UID of 0.

Assumption 21. A system with multiple accounts with
UIDs of 0 is less secure than a system with only one such
account.

D. Summary

To organize these assumptions, consider a site’s security
policy. It contains several components. For our purposes,
we consider the following components:

• Network: these control what services are to be
provided over the network, and how remote
authorization of hosts is to be handled. It does
not control remote user access. Assumptions 2, 4,
5, and 6 speak to this.

• User account: these control the setting of file and

directory permissions, and management of those
accounts, including account names and
privileges. Assumptions 13 (13½), 14, and 15
speak to this.

• System access: this controls how users log into

the system, including remote user access,
password expirations, and authentication.
Assumptions 7, 8, 9, 16, 17, 18, and 19 speak to
this.

• System account: these control the setting of file

and directory permissions for the system, and
management of system accounts, including
account names and privileges. Assumptions 11,
12, 15, 20, and 21 speak to this.

• System administrator: these control the

requirements and actions of system
administrators, including subscribing to mailing
lists and the rules for patching the system.
Assumptions 1, 3, and 10 speak to this.

Now let us consider what these assumptions tell us about
each set of policy components.

IV. ANALYSIS OF ASSUMPTIONS

The goal of the student exercises is to show how the
guidelines improve security for the set of assumptions that
the guidelines make. We approach this backwards. We
ask whether a system can follow the guidelines yet be
obviously non-secure, or fail to meet the guidelines and
be obviously as secure as one that does.

This approach provides several benefits. First, by
following the guidelines, we must alter the assumptions in
order to produce a non-secure system. Second, this is a

Proceedings of the 9th Colloquium for Information Systems Security Education
Georgia Institute of Technology
Atlanta, Georgia, 6-9, June 2005

ISBN 1-933510-99-4/05/$15.00 © 2005 IRI/CISSE 22

standard technique for understanding the weaknesses in a
system: what assumptions did the designers and
implementers make? Attackers will determine one or
more of these assumptions, and then try to make them
untenable to open a security hole. Third, students enjoy
finding ways to dodge or evade rules, so by positing the
guidelines as “rules,” the teacher can play upon this
rebellious desire to guide the students towards a deeper
understanding of security. After all, learning should be
fun!

We introduce three types of errors. A false positive (or
type I) error occurs when a system follows the guidelines
but is not secure. A false negative (or type II) error occurs
when a system does not follow the guidelines but is
secure. Keeping Assumption 0 in mind, we assume that
the scoring tool reflects the correct interpretation of the
guidelines. If it reports a system does not conform to the
guidelines, we treat that as a report of a security problem;
if it reports a system conforms to the guidelines, we treat
that as a denial that there is a security problem.

A. Network Policy Component Assumptions

Assumption 2 assumes the system is connected to a
network and that the host can contact one of the FreeBSD
cvs servers. This means that the site allows outgoing
network connections for remote sites with the appropriate
port numbers (2401 and 5999, among others). If these
ports are blocked, the cvsup execution will fail, resultng
in a false positive because the system administrator
cannot use cvsup to download patches.

Now, consider assumption 4. Suppose the system
administrator configured inetd to invoke tcpd, the tcp
wrapper program, from the configuration file. In this case,
the option “W” is unnecessary. If all internal services are
disabled, so the “w” option is not given either, the scoring
tool will report that the system fails to satisfy element 1.2
of the guidelines. This leads to a false negative.

Assumption 5 shows the converse of assumption 4. If the
“w” option is given, and external services are provided
without explicitly wrapping them with tcp wrappers in the
inetd configuration file, the scoring tool will report that
the system satisfies guideline 1.2 (as only one of “w” or
“W” is checked); yet this system is less secure than one in
which the external servers are wrapped—a false positive.

Finally, assumption 6 points out that servers started at
boot time and that are neither started by inetd nor
explicitly in the guidelines need not have host
authorization. This is a dangerous assumption, because
the need for host authorization should depend upon the
type of service and not how it is started. For example,
FTP servers are normally started by inetd, but need not
be. Similarly, web servers are normally not started by

inetd. Yet failing to wrap these services may allow
connections from hosts that the system administrator
wants to refuse access to. A system following the
guidelines would, under the inverse of this assumption,
cause a false positive. In other words, the guideline’s
recommendation is too narrow.

B. User Account Policy Component Assumptions

For assumption 13, consider a system in which the users
must share data among themselves. Guideline 6.2 requires
that the user directories be inaccessible by anyone other
than the owner. Thus, if assumption 13 is false and the
policy allows sharing, the guidelines lead to a denial of
service, which is a false positive. The guidelines
themselves note that the recommendation may not always
be easy to follow, and suggest that a “more realistic
approach would be to use chmod with the
u=rwx,g=rwx,o–r flags.” The problem with this
recommendation is its goal is to make the home directory
searchable only by other users, as assumption 13½ states.
Instead, it denies other users the ability to list the contents
of the directory (“o–r”) unless they are in the directory’s
group (g=rwx). Hence, if this alternative is used, the
home directory could be world writable (so anyone could
add or delete files) and world searchable (so anyone could
access files that were known to be in the directory), and
the system would satisfy the guideline (false positive).
Note that the scoring tool does not accept systems
configured with the alternative settings, instead reporting
them not to meet guideline 6.2.

The scoring tool checks that all world permissions are
turned off, and that the group write permission is disabled
if the group of the owner contains more than one user.
Assumption 14 points out the effect of this
implementation. Thus, a system with group read and
search permissions turned on for home directories will
pass this check whether or not the group contains only the
owner of the file. Hence, a system that is reported to meet
the guidelines in fact does not, meaning a system that is
not secure according to the guidelines is reported as
secure. But the denial of service comment for the previous
assumption applies here, even more so because group
access is commonly provided to enable collaborators to
share files—and that requires read, write, and search
access to the relevant directories.

Assumption 15 is that any account with a UID under 500
is a system account. It is traditional to use low integers as
system account UIDs, but the limits of the range have
never been set. On a distributed FreeBSD system, the
system account with the highest UID is “www”, with UID
80. The adduser program, which is used to add users to
the system, would therefore begin adding user accounts
with UID 81. This leads to a false negative.

Proceedings of the 9th Colloquium for Information Systems Security Education
Georgia Institute of Technology
Atlanta, Georgia, 6-9, June 2005

ISBN 1-933510-99-4/05/$15.00 © 2005 IRI/CISSE 23

C. System Access Policy Component Assumptions

The first three assumptions in this group refer to guideline
1.3, enabling ssh. If a system is not to be accessed from
the network (negating assumption 7), then ssh need not be
run. The Principle of Economy of Mechanism [5] says
that it should not be run. Hence a system following the
guidelines is less secure than one violating the
guidelines—a false positive.5

Assumption 8 concerns a potential denial of service. If a
user is traveling and wishes to log in remotely, he or she
must use ssh. However, if the system on which the client
resides only has an ssh version 1 client, the user cannot
access the system unless the keys are set up appropriately
(version 2 ssh supports algorithms other than RSA). Thus,
unless the users only use ssh version 2 clients remotely,
they may be blocked from logging in remotely and
performing necessary tasks, creating a false positive.

Assumption 9 follows from the guideline that root should
never be allowed to log in remotely. But suppose a
program like the backup or dump program needs to be run
automatically. This program typically requires root access
to the system. Thus there are two alternatives. The first is
to create a setuid program, or root server, that is
accessible over the network. The first means that another
setuid program is present on the system to gather the data,
and make it available to a non-privileged backup user
who will download the data over the network. This data is
therefore visible to that user locally. The second requires
the server has protection sufficient so that only authorized
clients may access it. This is the type of protection that
the ssh service provides. Hence, in this case, it is prudent
to allow root to log in remotely to perform the dump.
Such a system is non-secure according to the guidelines,
but not allowing this instance may make the system
backups unavailable, creating a worse security hole under
some policies—a false negative.

Assumption 16 is that uucp and other system accounts
never need to be logged into directly. As the warning in
the guidelines points out, this may not be true for uucp.
This implies that an account such as “date”, which prints
the date and immediately exits, does not exist. For a
public access system, such an account may provide useful
information without compromising security. The scoring
tool report is a false negative.

Assumption 17 deals with blocked accounts. “Blocked”
refers to accounts that exist and are useable, but cannot
have passwords authenticated (and any attempt to do so
will fail). These accounts are used for system functions,
such as owning system files. The scoring tool assumes

5 Vulnerabilities in some versions of ssh are exploitable locally
[6]. Otherwise, this point would be theoretical.

that blocked accounts have the password field of the
“/etc/passwd” file set to one of several values. A popular
way to disable password authentication is to place an “*”
or an “!” before the existing hash. This prevents the
password from being hashed to the stored hash value, yet
allows the original password to be restored easily (just
delete the “*” or “!”). The scoring tool will consider these
blocked passwords as valid, and complain if they are not
set to expire—a false negative.

The truth of assumption 18 is debatable. The goal of
password aging is to force a user to change his or he
password before an attacker is expected to guess it. There
is little empirical evidence that forcing users to do so
prevents this. Techniques to enforce aging either rely on
keeping the last n passwords selected, or on restricting
password changing to a particular time interval of m time
units from the last change (before which changes cannot
be made) to k time units from the last change (after which
a change must be made). The former leaves information
an attacker could use to help guess passwords. The latter
may block a necessary password change (for example, if
an account is compromised before m time units since the
last change). Thus, a system that does not enforce
password aging may be as secure as one that does, in
which case this is a false negative.

The scoring program assumes that the password expiry
time will be given in months, days, or weeks, as
Assumption 19 states. But the manual page for
adduser.conf, the configuration file for adding users,
allows the password expiry time to be given as a date, or
in minutes, hours, or years, also. Settings of minutes and
hours can be used to force a user to change the account
password soon after account creation. If one accepts
password aging as a useful security measure, the
flexibility provided by these options is also useful,
leading to false negatives if those options are used.

D. System Account Policy Component Settings

Assumption 11 asserts that only root is authorized to edit
the password files directly. Assume not. In order to
prevent unauthorized users from doing so, either the files
would need to be owned by a non-root user (which would
create many problems) or group permissions must be set
to allow alteration, and users authorized to alter the files
must be put into those groups. An attacker who gained
access to that group, or the account of any member of that
group, could gain root access—a bad idea. Hence this
assumption cannot be altered without changing the
operating system. This is also true for assumption 12, as
changing the superuser’s UID to something other than 0
would require the kernel to be changed, and changing the
wheel group’s GID to something other than 0 would
require programs such as su to be changed (because they
check for group membership).

Proceedings of the 9th Colloquium for Information Systems Security Education
Georgia Institute of Technology
Atlanta, Georgia, 6-9, June 2005

ISBN 1-933510-99-4/05/$15.00 © 2005 IRI/CISSE 24

Assumption 20 is based upon toor’s being an alternate
form of the root account. But the root privileges require
that the UID be 0, and the tool does not check for this. As
“Toor” could be a proper last name, this account could
exist legitimately without a UID of 0. This would cause a
false negative.

Assumptions 20 and 21 are based upon the belief that
multiple root accounts make a system weaker than one
such account because an attacker need compromise only 1
out of n accounts, rather than exactly 1 account. But this
theory does not take the password management problem
into account. In order to ease the problem of distributing
the root password, many users are given accounts with
UIDs of 0, effectively granting them superuser privileges.
There is no evidence that either approach produces a more
secure system; in fact, the evidence suggests that
procedural issues, such as determining who should have
access to the superuser privileges, have a far greater effect
on the security of the system.

E. System Administrator Policy Component
Assumptions

Assumption 1 may be false. In 2004, for example, no
patches were issued between June 30 and September 19,
or October 4 and November 18. Hence, from July 31
through September 18, and from November 5 through
November 17, the scoring tool would have reported that
the system failed to meet guideline 1.1, when in reality it
had—a false negative.

Once the patch was downloaded and the relevant sources
updated, the guidelines assume that the patched sources
will be rebuilt and reinstalled, and the system rebooted if
necessary. A system administrator may fail to do this, yet
the scoring tool will fail to detect this—a false positive.

Finally, if the system administrator does not know awk’s
command language, he or she will know that an error has
occurred during the action associated with guideline 1.3,
but not be able to repair it. Then the system administrator
must figure out how to make the changes on his or her
own—and that may lead to them simply not being done.

V. CONCLUSION

This paper has demonstrated how to take a set of security
guidelines, look at the underlying assumptions, and ask
what happens when those assumptions are incorrect.

This technique is effective for encouraging students to
challenge guidelines and security checklists. The problem
with these items is not that they are bad. Far from it; they
encourage people to comply with minimal security

requirements. The problem with guidelines and lists is
that they are absolutes, and the users and managers
demanding conformity to those items must accept
deviations when the security requirements, and policy, of
the site warrant it.

The exercise proposed above will help students see
beneath the security recommendations, and help them
determine why those recommendations are being made
and what those recommendations assume about site
policy and capabilities. This in turn emphasizes to them
the fragile nature of security, and will deepen their
understanding of the role of assumptions in security, and
in a lack of security.

Acknowledgement: Thanks to Sophie Engle for useful
comments and discussions. This work was supported by
award CCR-0311723 from the National Science
Foundation to the University of California at Davis.

VI. REFERENCES

[1] Department of Defense, Trusted Computer System
Evaluation Criteria, DOD 5200.28-STD (Dec. 1985).

[2] Souppaya, M., Harris, A., McLarnon, M., and Selimis,
N., System Administration Guidance for Securing
Microsoft Windows 2000 Professional System:
Recommendations of the National Institute of Standards
and Technology, Special Publication 800–43 (Nov. 2002).

[3] Center for Internet Security, FreeBSD Benchmark
v1.0.4 (FreeBSD 4.8 and Above) (2003); available at
http://www.cisecurity.org.

[4] M. Bishop, “Collaboration Using Roles,” Software—
Practice and Experience 20 (5) pp. 485–497 (May 1990).

[5] J. Saltzer and M. Schroeder, “The Protection of
Information in Computer Systems,” Proceedings of the
IEEE 63 (9) pp.1278–1308 (Sep. 1975).

[6] CERT, Multiple Vulnerabilities in SSH
Implementations, Advisory CA-2002-36 (Dec. 2002);
available at http://www.cert.org/advisories/CA-2002-
36.html.

Proceedings of the 9th Colloquium for Information Systems Security Education
Georgia Institute of Technology
Atlanta, Georgia, 6-9, June 2005

ISBN 1-933510-99-4/05/$15.00 © 2005 IRI/CISSE 25

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

