
The Software Assurance CBK and University
Curricula

Abstract – The recently proposed Secure Software Assurance

Common Body of Knowledge is a first effort at collecting

information about security-enhanced programming and

systems development. One of its stated goals is to drive

curriculum development in academic institutions. This paper

analyzes the SwACBK’s usefulness in programs for advanced

undergraduate and graduate education, and offers suggestions

for strengthening it.

Index terms – secure software, common body of knowledge

I. INTRODUCTION

The poor state of software today leads to non-secure,
unreliable systems. The cause is complex. Some industry
leaders blame academic institutions for not teaching
students how to program securely, to prevent these
problems. Some academics point to industry’s drive to get
products to market and then retrofit proper security into
the product—a notoriously ineffective approach.
Responsibility is difficult to assess, and ultimately
meaningless. The question is what to do about the
problem.

First, we need to define “the problem” precisely. It
actually has three parts:

1. Teaching programmers the principles and techniques
of secure software assurance design and
implementation;

2. Giving programmers the freedom to use that
knowledge and skill; and

3. Selecting, configuring and using that software
properly.

This paper deals with the first part in the context of
academic education. The goal of an academic education is
to teach students not only how to do something, but also
why one does it that way, and to provide a basis for them
to question, extend, and ultimately improve or create new
methods. For this type of education, the emphasis is on
principles and understanding. Practice and technique play
supporting roles. This enables the student to apply what
she has learned to situations not presented or discussed in
class, rather than being unable to extend the application of
the technologies she has been taught.

Authors’ affiliation: Department of Computer Science, University of
California at Davis, One Shields Ave., Davis, CA 95616-8562 USA

The precise principles and techniques to teach are a
subject of some debate. There is no “Common Body of
Knowledge” that describes what a programmer should
know to be considered competent in developing secure
software. In 2004, the Department of Homeland Security
and the Department of Defense began an effort to develop
a common body of knowledge for secure software
assurance. One of the goals of the effort is “to provide an
inclusive list of the knowledge needed to acquire,
develop, and sustain secure software.”1 An ancillary goal
is to “help ... academia target [its] education and training
curricula.”2 The “Secure Software Assurance Common
Body of Knowledge” (SwACBK) [1] came from this
effort.

The goal of this paper is to suggest changes to the
SWACBK that will make it more useful as a basis for
curriculum development in academia. Specifically, we
argue that the SwACBK should be restructured to
emphasize principles, that it should use a more
comprehensive framework from which material at various
levels of abstraction may be derived, and that it should
include more seminal references.

The core problem with the SwACBK is that it is aimed at
the need of government to procure secure software. In
itself, this is not a problem. But generalizing from that
goal to providing a basis for a sound academic curriculum
assumes that the purpose of the curriculum is to educate
students on how to write secure programs for the
government. The two overlap, but have very different
foci. We begin here, by reviewing the nature of teaching
at universities.

Matt Bishop and Sophie Engle, University of California at Davis

II. BACKGROUND

A. Common Body of Knowledge

A “common body of knowledge” is a collection of
information and a framework that provides a basis for
understanding terms and concepts in a particular
knowledge area. It also provides a set of basic information
that people who work in that knowledge area are expected
to know.

1 [1], p. x
2 [1], p. x.

Proceedings of the 10th Colloquium for Information Systems Security Education
University of Maryland, University College

Adelphi, MD June 5-8, 2006

ISBN 1-933510-98-6/$15.00 © 2006 CISSE 14

The content of a common body of knowledge depends in
part upon the use to which the information will be put.
The SwACBK’s definition is the knowledge needed to
perform “the engineering activities or aspects of activities
that are relevant to achieving secure software”3. Hence, its
goal is to provide a framework for the information
deemed necessary to perform those activities. That it is a
common body of knowledge also means that one goal is
to provide a foundation upon which an academic
curriculum can be built, thereby influencing the content of
that curriculum.

B. Academic Curriculum

The purpose of an academic education is to teach students
how to synthesize information, principles, concepts, and
other materials to be able to apply it to novel situations.
Teaching for this purpose focuses on principles and
concepts, illustrating them by using methodologies and
technologies. Two approaches are common.

The first approach is to begin with the concepts and
principles, and illustrate them with examples. Teaching
the Flaw Hypothesis Methodology (FHM) using this
approach would begin by describing the technique. Then
the instructor would illustrate how to apply the
methodology to some example system. The system need
not be real, although if it were a system that students were
familiar with, the instructor could lead the class in a
simple exercise.

The second approach is to begin with examples, and from
them derive the broader concepts and principles. To teach
the Principle of Least Privilege, for example, an instructor
might present several instances where too many privileges
caused breaches of security. From these cases, the
conclusion follows that the level of privilege should be a
minimum—stating the principle being taught.

Both methods emphasize principles and concepts; they
differ only in how the students are led to those. Training
would focus specifically on how to develop secure
software for particular environments. Training curricula
are therefore fundamentally different than academic
curricula, although they may contain some common
material. Two examples illustrate this claim.

The Computer Science Accreditation Board (CSAB)
accredits many academic programs. The key points of a
curriculum that will succeed in being accredited include
Curriculum Standard IV-7, that the “[t]heoretical
foundations, problem analysis, and solution design must
be stressed within the program’s core materials”4.
Proposed criteria amplify this; for example, Criterion 1(b)

3 [1], p. viii.
4 [2], p. 3.

states that an accredited program is to enable students to
“apply design and development principles in the
construction of software systems of varying complexity”5.
Throughout, the criteria stress students understanding
principles and how to apply them.

Similar requirements exist on university campuses. The
University of California campuses are highly respected
institutions of graduate and undergraduate education.
Each campus has a division of the systemwide Academic
Senate, composed of all ladder faculty at that institution.
The Committee on Courses of Instruction sets regulations
for approval of courses. The Davis Division’s Committee
on Courses of Instruction’s policies and procedures are
typical of the nine campuses. Item II.A.1 states that a
“University course should present an integrated body of
knowledge, with primary emphasis upon elucidation of
principles and theories rather than upon development of
skills and techniques”6. The requirement for graduate
courses, III.B.1.c, is stated more specifically: they “have a
strong foundation in the theory, methods and principles
used in research” and “focus on understanding and
assessing the current state of knowledge, on research [...],
and on methodology”7. Again, the emphasis is on
principles and concepts at all levels of courses.

As a counterpoint, checklists are typically used in
training, with some exceptions [4]. In academic curricula,
the focus is on how to derive checklists, taking into
account the relevant principles, the goals of the checklists,
and the environment in which the checklists are to be
used. The designers of the checklist must understand the
theory and principles underlying the actions on the
checklist, even if the users do not.

C. Security-Enhanced Systems

The terms “secure software” and “secure systems” are
misleading, because they imply absolutes. Strictly
speaking, “secure” systems are systems that satisfy two
properties:

1. The set of security requirements that the system
is to satisfy is complete; and

2. The system is developed, deployed, and operated
in a manner that provides sufficient assurance to
assert that the system satisfies the security
requirements.

Technologies to develop these systems are called high
assurance technologies and use a multitude of methods.
Unfortunately, these methods require expertise, time, and
money, and so are not used often enough. Instead,

5 [2], p. 17.
6 [3], http://academicsenate.ucdavis.edu/ra/policy.htm#lvl&emph.
7 [3], http://academicsenate.ucdavis.edu/ra/policy.htm#Course.

Proceedings of the 10th Colloquium for Information Systems Security Education
University of Maryland, University College

Adelphi, MD June 5-8, 2006

ISBN 1-933510-98-6/$15.00 © 2006 CISSE 15

developers use methods that provide lower assurance.
Given the state of most commercial systems and software,
the gap between standard methods used in the industry,
and high assurance methods, is painfully obvious.

The content of the SwACBK attempts to address the gap
between industry standard methods and high assurance
methods by providing a framework to teach students and
practitioners about ways to develop security requirements
and increase assurance. The SwACBK is not aimed at
high assurance; it is aimed at assurance higher than most
software and systems currently provide.

For brevity, we follow the standard practice of calling
software “secure” if it is developed with the two
properties above. The more rigorous the derivation of the
security requirements, and the more convincing the
evidence of assurance, the more secure the software is.

III. 3. PROBLEMS WITH THE SWACBK

The SwACBK has several problems that inhibit its use in
driving academic curriculum.

A. Secure Software in General

A basic aspect of security is interdependence. Software
can be secure (for whatever definition of “secure” is
appropriate) only when the system it runs on is secure,
because if an attacker can disrupt the system resources on
which the software relies, the software will fail. Similarly,
secure software installed incorrectly may not be secure,
because the installation process may use vulnerable
passwords or cryptographic keys, or rely on flawed
system components. Systems protected by flawed
procedures are not secure, because an attacker can subvert
those procedures; consider the success of social
engineering, for example.

The SwACBK deals with this problem in §5.2.5, which
states that “[s]ecurity inspired requirements on nature and
attributes of computing hardware, infrastructure, or other
externally available services must be explicitly recorded
as requirements or assumptions and assured.”8 The
problem is that, in chapter 8 (“Secure Software
Verification, Validation, and Evaluation”), no discussion
of these requirements and assumptions is given, leading
the reader to believe that, once validated to be secure, the
software may be moved to other environments safely.
Assurance relies specifically on assumptions made, and
assurance evidence rests on them. Software can never be
“secure” but can only be secure with respect to a set of
assumptions. The SwACBK fails to make this point
effectively. Developers of curricula who rely on the

8 [1], p. 60.

guidance of the current SwACBK may well miss this
point, and produce an inferior curriculum as a result.

B. Orientation

A common body of knowledge must address many
realms, because security affects all of government,
industry, and academia. The SwACBK developers
understood this, and included members of each of those
communities. But some sections focus on the needs and
problems of government to such a degree that the
environments of academia and industry are overlooked.

Consider for example §2.2, “Dangerous Effects.” This
section provides background so that readers will
understand the threats and risks underlying software and
system security. But all the examples for the section focus
on attacks upon government agencies and national
security, leaving the impression that the threat to software
security is primarily a national security threat. Industry is
mentioned only once, in a comment that large
organizations such as the Department of Defense and
Microsoft are probed often. Risks to academic institutions
are not mentioned at all.

When motivating the need for a generally useful common
body of knowledge, the goal is to convince readers that
the work transcends a specific type of organization, and
can be applied to a variety of institutions. This section
convinces the reader of the grave threat to national
security that poor software security poses, but does not
explain why software developers working for private
industry or academic institutions should be concerned.

A second example is in §7.2.1. The list of sources for
information on vulnerabilities, exploits, and patches
includes 2 government sites and 1 industry site. Well-
known non-governmental sites such as Security Focus,
the Open Source Vulnerability Database, and ISS’ X-
Force are omitted. As many of these sites provide more
information than the government sites listed, their
omission is surprising.

A guide to an academic curriculum needs greater breadth,
because students may go into industry, or may become
teachers. A curriculum must focus on the goal of the
lessons, which are to teach generally applicable principles
and concepts—and how to use them in a variety of
environments, including government.

C. Classifications

In many places, the SwACBK presents simple
classifications of ideas, or tools, or methodologies, in
order to structure the discussion. But the classifications

Proceedings of the 10th Colloquium for Information Systems Security Education
University of Maryland, University College

Adelphi, MD June 5-8, 2006

ISBN 1-933510-98-6/$15.00 © 2006 CISSE 16

are not rigorously derived from some stated basis, and
hence are (at best) confusing and (at worst) misleading.

Two examples will show the nature of the problem. In
§6.7, “Architectures for Security,” the SwACBK provides
a set of architectural styles or style elements for security-
aware architectures. Listed are reference monitors,
“layered”, “system high”, and “filters, guardians, and
firewalls” to provide compartmentalization. The problem
is that “layered” refers to a type of architecture in which
security services are built (layered) on top of more basic
security services. Underlying these services are reference
monitors that control access to resources. Filters,
guardians, and firewalls can be examples of reference
monitors, or security mechanisms built upon reference
monitors. System high refers to a security level for the
most secure data. The elements of the list are not
organized in a cohesive manner, nor is there any guidance
about the relationship of elements in the list. A more
useful list would begin with the reference monitor as the
architectural underpinning of the elements of the list. As
processes either run in isolation or communicate with
other processes, the list would next enumerate
mechanisms to do either. Above that comes how the
processes should be organized: as multiple independent
levels of security, multiple single levels of security, and
so forth. Then might come the ways the mechanisms
handle (attempted) violations: tolerate the intrusion,
isolate the attacker, turn on deception, and so forth. The
classification of the style and elements does not matter;
that there be a structure or organization of the elements
and styles within the classification does.

A second example arises in §2.4, “Method for Attacks,”
which tries to enumerate the different types of attacks.
The document splits attacks into attacks against the
operating system, against software, and against physical
attacks. But this classification scheme is not exhaustive.
For example, a covert channel may disclose information,
but does not appear to fall into any of these categories.
Further, it is not clear why these categories were chosen.
What does this particular classification lead to? Why not
use a model such as Cohen’s attack classification [5],
which has examples and detailed descriptions?

The lack of rigor in classifications makes constructing a
curriculum that follows those classifications difficult,
because the curriculum will not provide the correct
relationships between the entities so classified. More
importantly, there is little assurance that the
classifications are complete (as is the case for the
different types of attacks). Hence, a discussion following
the SwACBK may omit some critical parts of the
mechanisms under discussion.

Worse is the failure to build a framework upon which the
classifications rest. The current schemes do not organize

information well, something critical for people who are
not entirely familiar with the field.

D. Basis and Depth

The SwACBK’s §3, “Fundamental Concepts and
Principles,” presents a list of principles developed by
Saltzer and Schroeder [6], with some additions. Two such
additions (§3.3.11, “Defense in Depth” and §3.3.12,
“Analyzability”) are actually different views of existing
principles (§3.3.6, “Separation of Privilege” and §3.3.3,
“Economy of Mechanism”, respectively). The rest of the
chapter focuses on concepts such as reliability, assurance,
and security.

The discussion of models mentions the Bell-LaPadula
model (§3.5.1), but presents no integrity models. The lack
of discussion of the Clark-Wilson Integrity Model is
especially glaring,9 as it combines concepts of assurance,
integrity, and auditability, and reflects widespread
practices in industries such as the financial community.

In the discussion of malicious logic (“malware”),
computer viruses and worms are discussed, but their
common ancestor, the Trojan horse, is mentioned only
once,10 and in the context of a “back door.” The definition
provided is that of a back door, and the generality of the
Trojan horse is overlooked.

The importance of reference monitors and validation
mechanisms to assurance, and hence to secure software
and systems, is critical; yet reference monitors are
mentioned only four times, and very briefly. Similarly,
that proofs in assurance do not eliminate the need for
testing11 deserves an explanation, or discussion, because
the reason that the statement is correct is subtle (and deals
with the difference between abstraction and
implementation).

As a final example, the SwACBK does not discuss the
trade-off between dynamic analysis and static analysis.
What are the benefits of each, and when is the use of each
appropriate? The SwACBK cannot of course discuss this
in depth, but it can (and should) mention that such a trade-
off exists, and compare the two techniques in that light.

That the SwACBK does not emphasize principles enough
produces most of the problems identified in this section.
Beyond depth of understanding, principles provide an
organization for ideas and methodologies built upon those
principles. A curriculum founded upon such an
organization will provide a more coherent basis for

9 The paper by Clark and Wilson is referenced in section 3.10,
Recommended Reading, and once in the Bibliography.
10 [1], p. 17
11 [1], p. 137

Proceedings of the 10th Colloquium for Information Systems Security Education
University of Maryland, University College

Adelphi, MD June 5-8, 2006

ISBN 1-933510-98-6/$15.00 © 2006 CISSE 17

educating students, leading to a deeper understanding of
not only how things work, but why they work, and how to
approach new problems.

E. Motivation

Discussing why a particular issue is significant is often as
important as discussing the problem itself, because it
provides context. The SwACBK provides motivation for
why software security needs to be addressed, and makes a
good case for having a common body of knowledge. But
it often omits the motivation for individual facets of
software assurance; the result is that the reader has no
sense of the importance of those aspects of software
assurance.

As an example, consider §9.5, which discusses static
analysis. The opening sentence states that static analysis
techniques “are conservative, making worst case
assumptions to ensure the soundness of the analysis.”12

The SwACBK does not explain this comment further. The
problem is that the statement is true for a specific set of
assumptions, namely that it is better for a static analysis
technique to report security vulnerabilities erroneously
(false positives) than fail to report a security vulnerability
(false negative). Most analyzers (and techniques) can be
configured to do the reverse, in which case the statement
is incorrect. Motivating the statement by saying that false
negatives are generally considered worse than false
positives would provide the perspective that the reader
needs to evaluate the comment.

F. References

Part of the goal of a common body of knowledge suitable
for guiding curriculum is to make available references to
seminal material, so faculty and students know where to
look for more detailed expositions or historical origins.
The SwACBK provides many references to contemporary
material. In §3.8.1,13 it mentions a collection of seminal
papers. But with only one exception, the SwACBK does
not identify any seminal works that discuss the concepts.

The discussion of reference monitors is a good example.
The citation for the term is a book published in 2003 [7].
But James P. Anderson introduced the concept of a
reference monitor in a seminal study in 1974 [8], and the
term has been widely used ever since. While the book
referenced explains the term, the lack of the original
reference deprives the reader of any hint of the lineage of
the term, or of how widely it is used.

The same study introduced the concept, and term, “Trojan
horse” to computer security. As mentioned above, the

12 [1], p. 131.
13 [1], p. 44.

SwACBK mentions “trojans” in the context of malware14

but it gives no reference to the source document (or to any
other document, for that matter). The only reference for
malware in general is to a book written in 2005 [9]15;
again, the nuances of that term, and of the research
underlying the results presented in the SwACBK, are
never alluded to.

The SwACBK does refer to one seminal paper that
discusses principles of secure design [6]. However, the
only other references from before 1985 are the RISOS
study of vulnerabilities (1976) [10], a book on
anthropology (1978) [11:9], a book on software
configuration management (1980) [12], a paper on
designing for testability (1982) [13], a paper on obtaining
agreement to change organizations (1983) [14], and
Thompson’s Turing Award lecture (1984) [15].
References for the Bell-LaPadula model, the Chinese
Wall model, role-based access control, and originator-
controlled access control are omitted, even though the
models are named in the text16.

G. Use in Higher Education Curriculum

The SwACBK makes several recommendations for
incorporating the material it covers into a program of
study in higher education. Because it distinguishes
between undergraduate and graduate education, we focus
on these separately.

The SwACBK suggests that either separate courses cover
the knowledge area, possibly in conjunction with standard
software engineering courses, or that existing courses be
augmented with the material in the SwACBK. The
biggest problem is that practicing the material requires
reinforcement, so portions of it—especially the analysis
and testing—must be embedded in the grading of
programming assignments. Otherwise, like the good
programming style taught in introductory programming
classes, assigned programs will focus on whether the
program “works” and not on assurance attributes such as
robustness and security. So, whichever approach is
adopted, the assignments given in other courses must also
reinforce the material, by the grading of assignments if in
no other way. The SwACBK should emphasize this last
point.

The SwACBK suggests that graduate programs use the
“guidance for training entry-level practitioners”17 to
address incoming (graduate) students. The guidance for
training entry-level practitioners does not mention

14 [1], p. 17.
15 [1], p. 87.
16 The SSACBK uses [7:4] as a reference for the Bell-LaPadula model
(see [1], p. 41) and implies it is a reference for ORCON (see [1], p. 85).
The seminal papers are not referenced.
17 [1], p. 199.

Proceedings of the 10th Colloquium for Information Systems Security Education
University of Maryland, University College

Adelphi, MD June 5-8, 2006

ISBN 1-933510-98-6/$15.00 © 2006 CISSE 18

teaching the principles and theoretical underpinnings of
software assurance or security. Instead, it focuses on the
students acquiring the skills needed to develop secure
software. This is appropriate for training, but as noted
above, is entirely inappropriate for graduate education,
particularly in which students are expected to do research
in the field of computer security.

IV. APPROACHES TO IMPROVING THE SWACBK

Our goal in this section is to outline ways to make the
SwACBK more suitable for guiding the development of
curriculum at academic institutions. Our goal is not to
make the SwACBK be a curriculum. A common body of
knowledge, as noted above, is a collection of information
upon which a curriculum could be built, and our
suggestions are towards that end.

A. Context

An improved version of the SwACBK would spend some
time discussing the dependencies of the software on the
system, and in particular highlight the assumptions that
the secure software makes about the system, its policies
and procedures, and in general the environment in which
it runs. It would then integrate this discussion into
sections on software verification, validation, and
evaluation.

This holistic view of security is central to the nature of
security. As stated elsewhere, security is holistic; it
depends on technical factors, but also upon social,
organizational, procedural, and administrative factors.
These often play a more critical role than technical
factors, and should be treated with the same degree of
importance as those factors. Specifically, these issues
should be integrated throughout the SwACBK, for
example by showing the role they play in secure software
design and architectures.

One important step for the SwACBK would be to separate
functionality from assurance. This would enable the
reader to understand what portions of the SwACBK speak
to what security services should be provided and how, and
what parts of the SwACBK speak to demonstrating that
the software meets its requirements, under the
assumptions it makes.

B. Organization

The overall organization of the SwACBK is similar to
that of the Software Engineering Common Body of
Knowledge (SWEBOK). Both are organized around a
model of the software development life cycle, with the
SwACBK containing several sections particular to

assurance. This organization is well suited to both bodies
of knowledge.

Within individual chapters, the SwACBK can use
principles to organize materials. Consider chapter 3,
“Fundamental Concepts and Principles.” This chapter’s
goal is to set forth the terms, concepts, and principles
needed to develop, write, and deploy secure software.
Such a chapter could be organized around “functionality”
and “assurance.” Falling into the first topic is
confidentiality, integrity, and availability; falling into the
second is dependability, accreditation, and certification.
Functionality leads to a discussion of assets (what do you
want to protect), risk (what are the risks if you do not
protect your assets), and stakeholders (who decides what
the assets and risks are). Assurance leads to discussions
about what should be accredited, how does one gather
evidence for assurance (and what evidence should be
gathered), and what certifications are available and why
are they important.

Secure software terminology can fit into the above
discussion. For example, policies, cryptography, and
architectural concepts fall under functionality;
architectural concepts falls under assurance, because
proper organization adds weight to assurance evidence.
Similarly, software development processes may provide
additional assurance evidence (either in favor of, or
against, assurance claims).

Next come design principles; the SwACBK’s selection of
Saltzer and Schroeder is praiseworthy.

A brief history would round out this section nicely. The
history should focus on the documents describing seminal
work in the area, with a sentence or two describing the
main ideas of each. Obvious choices for this section
include the Ware report [16] and the Anderson report [8],
among others (see section 4.3, “References,” below.)

This organization would provide needed structure for the
concepts, terms, and principles. Further, a curriculum
developer could immediately focus on the main concepts
of functionality and assurance, and structure the
curriculum appropriately. The relevance of Saltzer’s and
Schroeder’s principles would be apparent.

This point is central to our thesis: all classifications
require some derivation, and cannot be laid out without
justification. In some cases, a reference to an accepted
organizational scheme is sufficient (such as one of the
myriad of vulnerability or attack classifications), because
the authors of that scheme have presented their rationale
elsewhere. But the structure must be well-founded and
sound, or the list becomes simply a collection of thoughts
that may, or may not, be complete. Justifying such a

Proceedings of the 10th Colloquium for Information Systems Security Education
University of Maryland, University College

Adelphi, MD June 5-8, 2006

ISBN 1-933510-98-6/$15.00 © 2006 CISSE 19

classification scheme is difficult at best, and at the worst
overlooks relevant and important material.

Lists should be derived similarly. For example,
consider §6.7, discussed above. The architectures in the
itemized list should clearly indicate the relationships
among the different styles. Reference monitors could be
discussed first, and then the list broken into three lists.
The first list covers supporting architectures
(compartmentalization, layering, tolerant) built upon
reference monitors, and should note these architectures
overlap. The second list covers styles of architectures
built upon elements of the first list (tolerant, adaptive,
distributed). The third list describes the abstractions that
can be built on the styles (MILS, MSLS, and so forth).
Access control issues can follow, and the discussion can
be framed in terms of the elements of the second and third
lists supporting particular policies. A discussion of cross-
domain control can use the problem of two different high-
level policies to illustrate the need for specific
mechanisms.

The key observation here is that the list of
architectures must be more than a checklist—it must be
organized to convey information about the relationships
among the entities in the list. May organizations are
possible. Whichever is chosen must be meaningful, and
the reasons for its selection clear. In this way, the
SwACBK can systematize the knowledge it contains.

C. Industry and Academic Examples

The authors of the SwACBK should draw on examples
and problems from all spectra of society, not primarily
government. In industry, motivation arises from sources
such as the financial community, which must protect
electronic representations of financial assets lest attackers
steal money; from the legal community, which handles
confidential information on a daily basis; and from the
medical community, which deals with personal records
that must not simply be kept secret, but also be protected
from unauthorized change and be available in
emergencies. In academia, financial aid offices must
protect sensitive financial information, but must also
make it available to potential funders; research labs need
to protect data from alteration, falsification, and
premature disclosure; and faculty and the administration
must protect the integrity of grades recorded on
computers. Any of these examples will motivate the need
for software security in a wide variety of environments.

One overlooked aspect of security is personal security.
Examples include protection of individual home
computers from malware, or from trap doors in programs
that transmit information illicitly. A classic case is a
budgeting program that sends account information to an

attacker. These examples would emphasize the personal
nature of secure software.

D. References

The organization and selection of references is critical for
the success of a common body of knowledge to be useful
as a curriculum guide. The presence of references
indicates either their importance (as a source document)
or their clarity of exposition (as a teaching document).
The SwACBK should indicate what each reference
contributes, and why that reference is important.

An example of such a reference might be the Ware report,
which first identified computer security as an important
problem. In the history section of the SwACBK, an
appropriate reference is:

The Ware Report [Ware 1970] first discussed the
importance of computer security as a policy,
technical, and management problem.

The SwACBK has extensive lists of recommended
references at the end of each chapter. The value of these
references would be enhanced by a short sentence, similar
to the above, for each reference. As an example, the
Orange Book reference might be:

[DoD 5200.28-STD 1985] DOD 5200.28-STD,
Department of Defense Trusted Computer System
Evaluation Criteria, 1985. First major computer
security evaluation methodology, it influenced
current evaluation technologies and criteria.

As an alternative, the references could be put in the
sections for which they provide additional information.
Either approach would place the reference in context, so
the curriculum developer understands the benefits of
using the reference.

E. Principles and Concepts

The SwACBK should include additional principles and
concepts. The design principles of Saltzer and Schroeder
are a good beginning, but these should be expanded to
show how they underlie other concepts such as
confinement, multi-level security, separation of duty, and
the various methods of remediation such as recovery,
tolerance, and interdiction.

Concepts such as reference validation mechanisms and
reference monitors, requirements tracing and
correspondence, and methods of justification are crucial
to understanding how assurance works. The SwACBK
should discuss these thoroughly. They are the foundation
for security mechanisms, and developers who apply these

Proceedings of the 10th Colloquium for Information Systems Security Education
University of Maryland, University College

Adelphi, MD June 5-8, 2006

ISBN 1-933510-98-6/$15.00 © 2006 CISSE 20

techniques to secure software development make a much
stronger assurance case than those who do not.

V. RECOMMENDATIONS AND FUTURE DIRECTION

The SwACBK is an ambitious undertaking. Its attempt to
collect information into a common body of knowledge
that defines what someone should know in order to write
secure software is something that is badly needed.

The SwACBK is a first step, but—unfortunately—its
goals are too lofty. Its authors want to provide a basis for
an academic curriculum, for training, and for practitioners
whose jobs range from developing secure software to
acquiring and operating systems with that software. As
constituted, the SwACBK contains information that each
of these goals requires. But not all those goals require all
the information; for example, the relevance of much of
the information on acquisition is not something that a
graduate curriculum would include, whereas training for
purchasing agents might find that material essential. The
material also lacks cohesiveness, primarily because the
SwACBK treats the process of developing secure
software as a sequence of independent steps. By
considering each step in the process as being built upon a
set of principles and previous steps, and showing how the
process advances the development from requirements to
deployment, validation in the environment, and operation,
the SwACBK would provide a foundation for the
common body of knowledge.

Acknowledgement. We gratefully acknowledge the
support of NSF award CCR-0311723 to the University of
California, Davis.

VI. REFERENCES

[1] S. Redwine (ed), Secure Software Assurance: A Guide
to the Common Body of Knowledge to Produce, Acquire,
and Sustain Secure Software version 0.9 (draft), US Dept.
of Homeland Security (Jan. 9, 2006).

[2] Criteria for Accrediting Computing Programs
Effective for Evaluations During the 2006–2007
Accreditation Cycle, ABET Computing Accreditation
Commission, Baltimore, MD 21202 (Feb. 9, 2006).

[3] Committee on Courses of Instruction Policies and
Procedures, Academic Senate, University of California at
Davis, Davis, CA 95616 (Jan. 2000); available at
http://academicsenate.ucdavis.edu/ra/policy.htm.

[4] M. Bishop and D. Frincke, “Teaching Secure
Programming,” IEEE Sec Priv 3(5) pp. 54–56 (2005).

[5] F. Cohen, “Information Systems Attacks: A
Preliminary Classification Scheme,” Computers and
Security 16(1) pp. 29–46 (1997).

[6] J. Saltzer and M. Schroeder, “The Protection of
Information in Computer Systems,” Proc IEEE 63(9) pp.
1278–1308 (1975).

[7] M. Bishop, Computer Security: Art and Science,
Addison-Wesley Professional, Boston, MA (2003).

[8] J. Anderson, “Computer Security Technology
Planning Study,” ESD-TR-73-51, Electronic Systems
Division, Hanscom Air Force Base, Hanscom, MA
(1974).

[9] P. Szor, The Art of Computer Virus Research and
Defense, Addison-Wesley Professional, Boston, MA
(2005).

[10] R. Abbott, J. Chin, J. Donnelley, W. Konigsford, S.
Tukubo, Shigeru, and D. Webb, “Security Analysis and
Enhancements of Computer Operating Systems,” NBSIR
76-1041, National Bureau of Standards, Washington DC
(Apr. 1976).

[11] M. Vizedom, Rites and Relationships: Rites of
Passage and Contemporary Anthropology, Sage
Publications, Beverly Hills, CA (1976).

[12] E. Bersoff, V. Henderson, and S. Siegel., Software
Configuration Management, Prentice-Hall, Englewood
Falls, NJ (1980).

[13] T. Williams and K. Parker, “Design for Testability—
A Survey,” IEEE Trans Comp C-31(1) pp. 2–15 (1982).

[14] R. Patterson and D. Conner, “Building Commitment
to Organizational Change,” Training and Development
Journal pp. 18–30 (Apr. 13, 1983).

[15] K. Thompson, “Reflections on Trusting Trust,”
CACM 27(8) pp. 761–763 (1984).

[16] W. Ware, Security Controls for Computer Systems:
Report of Defense Science Board Task Force on
Computer Security, Rand Report R609-1, RAND Corp.,
Santa Monica, CA 90407 (Feb. 1970).

Proceedings of the 10th Colloquium for Information Systems Security Education
University of Maryland, University College

Adelphi, MD June 5-8, 2006

ISBN 1-933510-98-6/$15.00 © 2006 CISSE 21

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

