
A Clinic to Teach Good Programming Practices

Abstract – We present an approach to emphasizing good

programming practices and style throughout a curriculum.

This approach draws on a clinic model used by English

programs to reinforce the practice of clear, effective writing,

and law schools to teach students legal writing. We present our

model for a good programming practices clinic, and discuss

our experiences in using it.

Index terms – software assurance, secure programming,
education

I. INTRODUCTION

The problem of non-robust and non-secure programming
practices is pervasive. Academic institutions teach proper
programming in introductory classes, but often by the
time students enter advanced courses, the teachers have
only enough resources to focus on the correctness of code.
Ancillary properties, such as robustness and security, are
overlooked by necessity.

The reasons are complex. One key reason is the amount
of material in the computer science curriculum. A glance
at the ACM Computing Curricula [1] shows how much
material must be compressed into courses for computer
science majors. The focus of courses, naturally enough, is
on the material intrinsic to the course and not to ancillary
issues. Students also reflect this belief. Most teachers who
deduct points for non-robustness or poor commenting
have heard the protest, “But it works!”

Writing programs that work is indeed the point. But what
does “work” mean? The students who raise the objection
noted above mean that it works for a particular set of
inputs, in a particular (or set of particular) environments.
Move the program from a home Linux system to one in a
computer lab, and the program may fail. Type input that is
too long, and it may fail. Modify the program slightly,
and the new program will not work because the earlier
version had a problem that was not apparent until the
change. Whether a program “works” is relative. The goal
of robust programming is to write programs that either
work or fail gracefully.

The focus of this paper is: how can we improve the
quality of programs that students write throughout their

 Author’s affiliation: Department of Computer Science,
University of California at Davis, One Shields Ave., Davis, CA
95616-8562 USA

undergraduate and graduate work? If this is done, the
good habits that the students learn will remain with them
longer, and may help improve the state of software
throughout the industry.

The next section discusses the notion of “secure
programming” and an approach to incorporating it into
classes that requires no additional class time. We then
present a model of this approach, and discuss our
experience in trying it. We emphasize that we are
reporting experience, not a scientific evaluation of the
method, because our data set is too small to extrapolate
from. We close with some suggestions for others who try
this method, and some further work and research that
would either confirm or refute the effectiveness of our
proposed method.

Matt Bishop and B. J. Orvis, University of California at Davis

II. BACKGROUND

We first present a model of “secure programming.” Next,
we discuss an approach to helping students improve
writing that is used by many English and literature
departments and law schools. This approach is the basis
for our model.

A. Secure Programming

The term “secure programming” is bandied about freely,
but it is misleading. A secure program is a program that
satisfies a set of requirements that are labeled “security
requirements.” [2] These requirements may be detailed,
laying out what the program is to do precisely. They may
be vague, describing only a subset of actions, the rest
being irrelevant to the security. For this reason, we avoid
the term “secure programming.”

For each class, and indeed for each assignment, the
requirements given in the assignment state what the
program is to do in general. But other requirements are
implicit. For example, an assignment may not explicitly
state that “if the input is invalid, print an error message
describing the problem and terminate gracefully.” But
programs that crash on invalid input are badly
programmed. We focus on this idea.

First, we define a set of characteristics of a bad program.
These fall into two classes: robustness and security. We
describe each separately.

Proceedings of the 10th Colloquium for Information Systems Security Education
University of Maryland, University College

Adelphi, MD June 5-8, 2006

ISBN 1-933510-98-6/$15.00 © 2006 CISSE 168

Robust programming is “a style of programming that
prevents abnormal termination or unexpected actions” [3].
This style has four central principles that distinguish it
from more conventional programming:

1. Paranoia: the program or function should not trust
anything it does not generate;

2. Stupidity: assume the user or invoker cannot read any
manuals, and be prepared to handle incorrect,
malformed, and invalid inputs;

3. Dangerous implements: keep internal data structures
and functions hidden, so users and callers cannot alter
or invoke them (accidentally or deliberately); and

4. Can’t happen: handle cases you believe are
impossible, because even if they are, someone who
changes the program may make that case possible.

As an example of the application of these principles,
consider a program invoking a system call. The program
must check the return value of the system call, unless the
failure of the system call is irrelevant to the correct
functioning of the program. For example, if one closes a
file before a UNIX program exits, the failure of the
system call is irrelevant because the kernel will close the
file on process exit. But if the program closes the file and
then opens another one, the failure of the close system
call means that one additional file descriptor is in use.
That could result in the process not being able to open
another file (if the file descriptor table were full and could
not be expanded). In that case, the program should report
the failure of the close system call.

These general principles support writing programs with
the requirement that they act correctly when possible, and
exit gracefully and with an appropriate error message
when not. Beginning programming classes teach that
programs should behave in that fashion, regardless of
their intended function.

Secure programming, as indicated above, means different
things in different situations. For the purpose of this
paper, we will use the term “secure” to mean that the
program will not add or delete privileges or information
unless it is specifically required to do so. For example, a
file deletion program may delete user-specified files and
be considered secure; but if it deletes additional files, it is
not. The characteristics of a secure program are that it
handle overflow properly, not have race conditions, and
so forth. We should note that the precise set of
characteristics varies from expert to expert. We will
discuss this further in a later section.

The reader will note that robustness and security, called in
what follows “good programming style,” are simply
aspects of software assurance.

B. Writing Clinics

College students are expected to compose essays and
write understandably. This is critical in majors requiring
communication skills and literary analysis skills, but is
also important in all majors. But institutions also
recognize that many students do not have those skills
when they enter. Even when they do, these skills must be
refreshed continually, or they atrophy. Colleges provide
the needed support in two ways.

The first is to measure competency upon (or before) entry.
If the student’s competence falls below a certain level, he
or she must take a class in remedial English before taking
the basic English classes required to graduate.

The second is to provide support for writing in classes.
Many law schools, for example, offer “legal writing
clinics” to help students improve their legal writing. Some
English, rhetoric, and comparative literature programs
have access to similar clinics to help students improve
their writing. Universities sometimes make available
similar clinics to students for whom English is a second
language, regardless of their major. This method works by
having students bring writings to the clinic. The clinic
member reviews the writing for sound organization and
structure, clarity, and (sometimes) grammar and spelling
errors. The clinic member does not review the material for
accuracy or completeness; the focus of the clinic is simply
on the quality of the writing.

This second method does not add to the material in the
curriculum. It is an adjunct technique for building on an
existing foundation, and emphasizing its importance by
aiding (and requiring) good writing throughout all classes
that the student takes. The instructor(s) of the class(es)
can focus on content rather than on English.

The parallel with computer science classes is
straightforward. We want to support students who already
know how to program, but who may not be adept at good
programming style. We want the manner of support to be
provided independent of the material discussed in class,
so the support can be provided for any class in which
programs are to be written. Finally, we want the instructor
to focus on content and correctness of the program with
respect to the particular requirements of the assignments,
rather than on good programming style.

III. SECURE PROGRAMMING CLINIC

The genesis of the clinic occurred in 2002, when the
author taught an operating systems class. One of his TAs
was a graduate student in computer security, and he was
assigned the task of grading several interactive labs that
required the students to write programs and modify the

Proceedings of the 10th Colloquium for Information Systems Security Education
University of Maryland, University College

Adelphi, MD June 5-8, 2006

ISBN 1-933510-98-6/$15.00 © 2006 CISSE 169

kernel for a small system, MINIX [4]. The TA graded
content for the first lab, and then, with the students
present, critiqued their programs for good programming
style. He informed the students that unless they used good
programming style, he would deduct 20% of their score
next time. The result was that most students dramatically
improved their programming style in later programming
assignments. This demonstrated that students would
respond to a requirement that they use good programming
practices. Here, those factors influenced the grade
directly.

We now change perspective slightly. We consider good
programming practice to be foundational. It is something
all students in computer science classes that involve
programming are expected to know how to do and to
apply in all programming assignments, regardless of the
specific requirements of the class they are coding for. But
institutions must recognize that many students do not
acquire those skills in beginning programming classes,
because they are learning the details of the programming
language. Even when they do, these skills must be
refreshed continually, or they atrophy. This suggests a
programming clinic, analogous to the writing clinics
discussed above.

Some assumptions about a student’s background bear
mentioning. In a writing clinic, the clinic members
assume that the student has some familiarity with English
(although the degree of fluency may vary wildly,
especially if the clinic targets students for whom English
is a second language). They will have writing skills
commensurate with entering an English (or law) program
in college. In the programming clinic, the clinic members
can assume the students are familiar with some elements
of good programming style, because certain basic
elements are taught in all such classes. Students taking
programming classes will have programming skills
commensurate with a basic knowledge of programming.
The parallel holds here.

In the programming clinic, the level of the students may
constrain the security part of the clinic. A student in a
software engineering course may not have taken an
operating systems or programming languages course, and
so may not be familiar with the concept of a race
condition. This means that the people running the clinic
must be sensitive to the background of the students they
are helping, and may have to explain some problems (like
race conditions) in more detail than others (such as buffer
overflows). A similar problem arises in a writing clinic,
because some students may know more about structuring
and organizing an essay than others, so clinic members
may have to explain some aspects and concepts of writing
in more detail for some students.

A programming clinic may function in two different
ways.

The first way is simply to assist students. The clinic
members do not grade or evaluate programs. At student or
faculty request, they examine a program that a student has
written, and meet with the student to suggest
improvements to make the program more robust or handle
potential security problems (as described above). The
student is then expected to take this information and make
the improvements. Ideally, the student will learn from this
interaction. Over a period of time, the student’s style
should improve.

The second way is for the clinic members to provide the
instructors with a grade for the robustness and general
security issues. This may involve no interaction with the
students, for example the class graders checking that the
program meets the specific requirements of the
assignment, and the clinic members checking for non-
robust and other types of problems. This may involve
interaction along the lines of the first method, followed by
grading as above.

Each method has advantages and disadvantages. The first
method is strictly an adjunct to existing classes. The
instructor may only change how assignments are handled,
to provide students enough time to have the clinic check
the assignments. If he or she prefers, the instructor can
take advantage of the clinic by requiring students to have
their programs checked. In this case, more time for the
assignment may be necessary, especially if the clinic is
small and the number of students is large. The
disadvantage of this method lies in how the program is
graded. If the instructor assumes the students will follow
the clinic’s recommendations, the students will have no
external incentive to do so. But if the instructor wishes to
reinforce what the clinic teaches, the instructor and
graders must check for robustness and general security
issues. They should check for this in any case, but in
practice most graders will check simply that the program
meets the specific requirements of the assignment.

The second method has the advantage of reinforcing what
the clinic shows the student. It motivates the student to
apply the lessons of the clinic upon pain of receiving a
lower grade. The disadvantage is that the clinic becomes a
part of the class, and the members of the clinic serve as
graders for the class. Thus, they must take into account
differences among instructors’ grading schemes.

Whichever method is chosen, interaction with the students
is critical. If the students simply submit programs and
receive written comments, the benefits will be far less
than if a clinic member can sit with a student and discuss
problems interactively.

Proceedings of the 10th Colloquium for Information Systems Security Education
University of Maryland, University College

Adelphi, MD June 5-8, 2006

ISBN 1-933510-98-6/$15.00 © 2006 CISSE 170

IV. AN EXPERIENCE

We tested this model in a class on computer security for
undergraduates at UC Davis.

As part of that class, the instructor spends two days
teaching the principles of robust programming, and
applying them to a stack management library to show
both poor programming style and good programming
style. Another two days are spent on common security
problems.

To ensure the students understood the material about
common security programs, the second assignment asked
them to analyze a small program for security problems
and poor programming style, and the third problem had
them apply Fortify’s Source Code Analysis suite [5] to a
larger program. In that exercise, they had to trace what an
attacker would need to do to exploit some of the
vulnerabilities that the SCA reported, and also to
determine whether some of the reports were false
positives.

The fourth assignment asked the students to write a
program that checked a number of attributes of a
particular file. If the attributes had the desired
characteristics, the program changed ownership and
permissions of the file. If not written properly, this
program will contain a classic TOCTTOU file access race
condition [6].

Before the program could be turned in, the students were
required to submit it to the clinic. The graduate student
manning the clinic would go through the program, and
then meet with the undergraduate student and review the
program with him or her for poor programming style.
Once this review was completed, the student would
modify the program as appropriate, and submit it to be
graded.

Students were responsible for making the appointment
with the clinic. The student needed to meet with the clinic
members before the program was due. To do so, the
student needed to complete a first version of the program
that compiled and ran. The student sent the program to the
clinic. The clinic member examined the program before
meeting with the student. This enabled him to examine
the program, and note potential problems that he could
then discuss at length with the student.

Table 1 summarizes the problems with the programs
submitted to the clinic. Seventeen out of 25 students
participated in the clinic, and the number in the right
column of the table indicates how many students had the
programming problem in the left column.

programming problem number

TOCTTOU race condition 100%
Unsafe function calls (strcpy, strcat, etc.) 53%
Format string vulnerability 18%
Unnecessary code 59%
Failure to zero out password 70%
Failure to do sanity check on file mod time 82%
Poor Style 41%

Table 1. Problems with programs mailed to the clinic.

The programs submitted for grading were substantially
better than the ones submitted to the clinic. Most students
attempted to fix the problems found by the clinic.

In the final program, 15 students (out of 17 who had the
problem) fixed the race condition in the program they
submitted.

Out of 10 students with the error initially, 8 fixed the use
of unsafe function calls. Interestingly, 4 who replaced
strcpy with strncpy did not set the last byte of the target to
NUL. This is a problem only when overflow occurs, but it
is a problem the students should have handled.

All 3 students with format string vulnerabilities fixed
them. This was expected, as the fix for these is very easy.

All 10 students with unnecessary code deleted some, but 9
left some unnecessary code in the final program. Two of
these involved unnecessary checking; the rest were either
errors or calling an unnecessary system function.

All 12 students who did not zero out the stored password
added code to do so. The purpose of this action is to
prevent the disclosure of a password should the program
crash and dump core. Solaris 2.6 had exactly this problem
in its FTP server [7]. But 2 students put the code at the
end of the program, rather than right after the password
was validated. Thus, the location of the code defeated its
purpose.

Fourteen students failed to add sanity checking on file
creation/modification time. All 4 students to whom the
problem was pointed out fixed it. Of the other 10 students,
4 found it after the clinic and fixed it. The specific sanity
check required the student to check that the time recorded
in the file’s inode was not greater than the current time.

Many students commented out the original code when
they modified the program as a result of the clinic’s
recommendations. The changes, including comments,
showed the students seemed to absorb the lessons of
programming style covered in the clinic. In this sense, the
students’ awareness of potential problems was
heightened.

Proceedings of the 10th Colloquium for Information Systems Security Education
University of Maryland, University College

Adelphi, MD June 5-8, 2006

ISBN 1-933510-98-6/$15.00 © 2006 CISSE 171

Students were asked to write a brief, anonymous
evaluation of the clinic after they completed their final
exam. All students viewed the clinic favorably. Those
who participated felt that the clinic reinforced good
programming practices, and many felt that the analysis
done with the graduate student made the more abstract
class presentation come alive. They felt more confident in
their ability to write programs without race conditions.
Those who did not participate wrote that they didn’t
check the assignment until too late or did not finish their
program, but thought the clinic was a good idea.
Amusingly enough, only 4 students admitted to not
participating in the clinic; 3 who did not filled in the
evaluations as though the had!

V. RECOMMENDATIONS AND FUTURE DIRECTION

First, we present some observations. Then we discuss
future directions.

A. Observations from the Experiment

What follows are generalizations from the experiences we
had in running the clinic. We must emphasize these are
not scientific observations, bolstered by formal metrics.
These observations are based upon our experience, and
comments from students in the class and the student
manning the clinic.

The assignment in ECS 153 required that students submit
programs to the clinic before grading. Failure to do so
meant the program would not be graded. In retrospect,
this was probably too harsh. Seven students did not do the
program. In a post-course evaluation, they wrote that
requiring the program be done a few days before the
assignment was not feasible because of their schedules.
One student suggested that the assignment should have
two due dates. The first would be for an initial version of
the program (much like a rough draft of an essay). The
second version would be due sometime later, after the
clinic members had reviewed it and the student made
changes. How to grade an assignment done this way is an
issue; perhaps the first program could be marked as
running or not running, and the second graded on meeting
the requirements of the assignment and general
programming style.

A second issue is whether the programming practice help
should come from someone associated with the class, like
a TA, or from someone independent of the class. The
benefit of the former is that the helper would know the
assignment, and could point out places where the student
did not meet the requirements of the assignment. This
approach has the clinic member examining the content of
the program. The benefit of the latter is that the helper
focuses on programming practices common to all

programs, not just those required by the class assignment.
This approach has the clinic examining the structure and
practices of the program. In our first use of the clinic, the
graduate student was not associated with the class. He
focused on the common programming practices, but in a
few cases where he noticed students deviating from the
requirements of the assignment, he pointed that out.

One issue that we encountered was student unfamiliarity
with good programming practice in general. The subject
matter of ECS 153 dealt with this problem because the
first two weeks included lessons on both robust
programming practices and common security problems.
In other classes, this problem would be more severe. One
approach to ameliorate this problem is to provide a
handout describing the recommended practices. This
handout should be succinct and tailored to the level of the
students in the class. The clinic could reinforce the
material in the handout in more depth, or the instructor
could schedule a discussion section to do so.

B. Future Directions

In the short term, we have enough funding to run the
clinic again in the Spring quarter, with one graduate
student manning the clinic. The instructor for a freshman
and sophomore level class, ECS 40 (called “Introduction
to Software Development and Object-Oriented
Programming”) has agreed to have his students use the
programming clinic for an assignment. The students will
write the program in C, working in teams of one or two
members. Students can met with the clinic any time
before the program is due.

Because this class is the second programming class for
computer science majors, the students will be solidifying
the good programming practices they were taught in ECS
30, the first programming class. Further, they will not be
familiar with race conditions and other potential security
problems related to operating systems concepts. We will
prepare a one or two page handout presenting the
problems that the clinic will look for, and build a web
page with additional information for the students to go to.
The handout will provide high-level coverage, and have
pointers to the appropriate web page or pages.

Beyond the Spring quarter, we want to develop and
perform formal experiments to test the effectiveness of
the clinic, and of the different ways the clinic can support
instructors and students. As part of these experiments, we
will need to increase the number of students manning the
clinic, both to acquire more data and to provide better
service. In particular, one person manning the clinic can
only review so many programs. The size of the ECS 153
class was small enough to allow the clinic member to
review all programs in a timely fashion. But ECS 40 will

Proceedings of the 10th Colloquium for Information Systems Security Education
University of Maryland, University College

Adelphi, MD June 5-8, 2006

ISBN 1-933510-98-6/$15.00 © 2006 CISSE 172

have 80 students organized into between 40 and 50
groups. It is unclear how a class of that size will interact
with the clinic member.

We believe the clinic has promise. It appeared to be a
success with the students in ECS 153. Certainly the
results of that experience warrant further testing. The
advantages of the clinic, especially that it can work in
parallel with classes to avoid the use of class time to teach
robust and secure programming, may be enough to
encourage its use to augment existing curricula.

Acknowledgement. The author gratefully acknowledges
the support of grant H98230-05-1-0104 from the National
Security Agency to the University of California, Davis.
Thanks also to Fortify Software for making available a
copy of its Source Code Analysis suite for the
undergraduate class in computer security.

VI. REFERENCES

[1] ACM Computing Curricula 2001: Computer Science
(Dec. 15, 2001).

[2] M. Bishop, Computer Security: Art and Science,
Addison Wesley Professional, Boston, MA (2003).

[3] M. Bishop, Robust Programming, handout for ECS
153, Computer Security (Jan. 2006); available at
http://nob.cs.ucdavis.edu/classes/ecs153-2006-
01/handouts/robust.pdf.

[4] A. Tanenbaum and A. Woodhull, Operating Systems:
Design and Implementation, Second Edition, Prentice-
Hall, Inc., Upper Saddle River, NJ 07458 (1997).

[5] Source Code Analysis Suite, Fortify Software, 2300
Geng Road, Palo Alto, CA; see
http://www.fortifysoftware.com/products/sca.jsp.

[6] M. Bishop and M. Dilger, “Checking for Race
Conditions in File Accesses,” Computing Systems 9(2) pp.
131-152 (Spring 1996).

[7] “Solaris FTP Core Dump Shadow Password
Recovery Vulnerability,” Bugtraq ID 2601 (CAN-2001-
0421); available at
http://www.securityfocus.com/bid/2601.

VII. APPENDIX: CLINIC GUIDELINES

The following are a set of guidelines based on our
experience with the programming clinic. We plan to use
these for the Spring quarter. The term “clinicians” refers o
the graduate students manning the clinic.

Decide how much help the clinic will provide.
Should clinicians verify that the assignment
appears to be completed? Should they compile
and run the program? Compiling the program
ensures that the code is syntactically and
grammatically valid.
The clinic should set clear submission
guidelines, such as requiring an archive or all the
files needed to make the program run. This
should include directions on building, installing
(if necessary), and using the program.
The clinicians should set a range of times to meet
with students. Students should be required to
meet with clinicians several days before the due
date. Otherwise, they may want to meet a couple
of hours before the assignment is due, possibly
late at night.
If part of a code is difficult for the clinician to
understand, then it probably needs to be
rewritten and properly commented. The clinician
is a third party reviewer of the person's code, and
one of the goals of robust and secure
programming is to ensure that the code is safe
and understandable. If obscurity in the code is
necessary, the reason should be documented.
When checking programs for a common
assignment, the clinicians should keep records of
problems they see (although not whose code they
see it in). This will allow them to point out
common gaps in students’ backgrounds. This
information can be given to the instructors of
beginning programming classes (and other
classes as appropriate) to strengthen the teaching.
On assignments that have significant security
concerns (such as the possibility of a TOCTTOU
race condition), clinicians are likely to see the
same problem recur in different students'
submissions.
The goal of the clinic is to improve general
programming practices. Therefore, clinicians
should recommend specific good programming
practices such as using the safer string functions
strncpy, strncat, snprintf, and others even if the
student uses strcpy, strcat, and sprintf safely.
This will ensure the student is aware of the
potential problems should he or she use those
functions in other ways. Similarly, they should
point out standard library or system calls that
simplify the program, and discuss any portions
of the code that appear to be unnecessarily
complicated. But they must also realize that
some programming assignments will require
students to do something in a complicated way.
Clinicians will probably not catch all problems
with student programs. But our goal is to
promote good programming practices so that the

Proceedings of the 10th Colloquium for Information Systems Security Education
University of Maryland, University College

Adelphi, MD June 5-8, 2006

ISBN 1-933510-98-6/$15.00 © 2006 CISSE 173

students will minimize security (and even non-
security) problems by writing robust code.

Ultimately, it is up to the student to take, or
reject, the advice clinicians give.

Proceedings of the 10th Colloquium for Information Systems Security Education
University of Maryland, University College

Adelphi, MD June 5-8, 2006

ISBN 1-933510-98-6/$15.00 © 2006 CISSE 174

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

