
Security Verification Techniques Applied to PatchLink COTS Software

David P. Gilliam1, John D. Powell1, Matt Bishop2, Chris Andrew3, and Sameer Jog3

1Jet Propulsion Laboratory, California Institute of Technology
2University of California at Davis, 3PatchLink Corporation

{dpg, john.d.powell}@jpl.nasa.gov, bishop@cs.ucdavis.edu, {chrisa, sjog}@patchlink.com

Abstract

Verification of the security of software artifacts
is a challenging task. An integrated approach that
combines verification techniques can increase the
confidence in the security of software artifacts. Such
an approach has been developed by the Jet
Propulsion Laboratory (JPL) and the University of
California at Davis (UC Davis). Two security
verification instruments were developed and then
piloted on PatchLink’s UNIX Agent, a Commercial-
Off-The-Shelf (COTS) software product, to assess the
value of the instruments and the approach. The two
instruments are the Flexible Modeling Framework
(FMF) — a model-based verification instrument
(JPL), and a Property-Based Tester (UC Davis).
Security properties were formally specified for the
COTS artifact and then verified using these
instruments. The results were then reviewed to
determine the effectiveness of the approach and the
security of the COTS product.

1. Introduction

Specifying software properties is a challenging
task because of the imprecision of natural language
and the difficulty of ensuring that the specifications
are correct. [1] Better specification and verification
of security properties will lead to more secure and
dependable software artifacts. [2,3] JPL and UC
Davis, in cooperation with PatchLink Corporation,
took informal specifications, formalized them, and
used model checking and property-based testing to
verify the security of PatchLink’s UNIX agent
software.

We focus on the use of the Model-Based
Verification (MBV) Flexible Modeling Framework
(FMF) developed at JPL and the Property-Based
Tester (PBT) developed by UC Davis to verify the
security of the Commercial-Off-The Shelf (COTS)
PatchLink UNIX Agent software. [4] We begin with
a short discussion of the Flexible Modeling

Framework and the Property-Based Tester. Next we
describe the use of these two instruments with the
PatchLink UNIX Agent. We present the security
properties that the agent needs to satisfy, and which
properties were able to be used with each instrument.
We evaluate how well the instruments performed.
Lastly, we summarize the results of the verification.

2. Flexible Modeling Framework (FMF) Model
Checking and Property-Based Testing (PBT)

Model checkers and testers automate verification
of specifications for efficiency and cost effectiveness,
as well as to assure that the model of the software
artifacts is free from potential conflicts and violations
of the specifications. [5]

Previous publications described how the FMF
and PBT instruments could be used together or
independently. Used together, the instruments would
confirm that security property verification results in
the requirements and design phases are consistent
with testing results in the coding phase of the life
cycle. Used independently, the FMF and PBT can
verify security properties that cannot easily be
verified by the other instrument—as will be
discussed below in Section 3.

2.1. Flexible Modeling Framework

Model checking involves:
Building a state-based model of the system
Identifying properties to be verified
Checking the model for violations of the
specified properties.

Model checkers such as SPIN, SMV and SAL
automate the process of verifying a property over its
corresponding model. They require domain experts to
specify the properties mathematically and then
program the properties into the modeling language
such as Promela for SPIN.

The FMF instrument developed at JPL uses
model-based verification techniques with the SPIN

Proceedings of the 15th IEEE International Workshops on Enabling
Technologies:Infrastructure for Collaborative Enterprises (WETICE'06)
0-7695-2623-3/06 $20.00 © 2006

model checker [6] to verify properties over a
corresponding model—here security properties. As
presented in a previous WETICE ST Workshop
paper [7], the FMF uses a compositional approach
that models interacting components and verifies
security properties in each of the components and in
their interactions. [Figure 1] The objective is to
verify security properties for systems that are
otherwise too large and complex by checking
strategic components and building up a model that
still maintains fidelity to the artifacts.

Software Component Relationships

C1 C2 C3 C4

And_1 And_2

Safe Unsafe

Collection
of Model

Components

Component
Combiner

Model Checker

FMF Check

Each Combined

Too Large--
Exit

Figure 1: Flexible Modeling Framework (FMF)

2.2. Property-Based Tester (PBT)

The PBT treats paths of execution as sequences
of states and state transitions. The properties describe
invalid states (in which security properties are
violated). The goal of the PBT is to test as many
paths of execution as possible, to verify none enter an
invalid state [8].

Properties are written in a low-level specification
language, TASpec, that relates the property to
specific code in the program.

The first step of the PBT is to analyze the
software. The PBT instrumenter inserts code to print
state information at locations where relevant changes
of state may occur. The instrumented program is
executed, and the messages emitted (called “traces”)
are passed to an execution monitor (TEM). The TEM
also loads the specified properties, and then verifies
that the properties were not violated when the

program ran. If any properties are violated, the TEM
identifies the violation and where in the program the
violation occurred (See Figure 2). [8]

Figure 2: Property-Based Testing (PBT)

3. Related Work

There have been other efforts in both modeling
and testing. The Symbolic Analysis Laboratory
(SAL) from SRI International is an environment for
the exploration and analysis of concurrent systems
specified as transition relations [9]. The SAL toolkit
provides several tools for examining SAL
specifications, including three different high-
performance model checkers for LTL: symbolic,
bounded, and infinite-bounded. FMF allows for
smaller set of interacting components to be modeled
rather than the whole system, as other model
checkers require. This capability helps address state-
space explosion in the model while maintaining a
degree of fidelity to the actual software artifacts.

Many code analyzers, such as Klocworks [10]
and CodeAssure, [11] are static analysis tools that
look for known vulnerabilities. In contrast, the PBT
is dynamic and looks for violations of specified
security properties. It can find property violations
that are peculiar to the program, as well as more
common vulnerabilities such as a static analyzer
might uncover.

4. Verification of Security Properties

The MBF FMF and the PBT were tested on the
PatchLink UNIX agent software written in Java. The
goals for the test were two-fold: 1) Verify the
viability of performing model checking on the design
and then performing testing on the code, working
from the property specifications of the model for the
Model-Based Verification (MBV) instrument and the
property specifications for the PBT instrument. 2)
Verify the PatchLink UNIX agent for the security
properties shown in Table 1. The end objective was
to provide a higher level of assurance of the security

Proceedings of the 15th IEEE International Workshops on Enabling
Technologies:Infrastructure for Collaborative Enterprises (WETICE'06)
0-7695-2623-3/06 $20.00 © 2006

of the UNIX agent running on the OS through the
combined application of the MBV and PBT
instruments to the design specifications and code.

We distinguish between modeling, which is the
analysis of the design of the program, and testing,
which deals with the actual software. The desired
properties are the same, but modeling checks an
abstraction of the actual software, whereas testing
checks to validate the implementation.

The key security properties for the UNIX agent
are shown in Table 1.

Table 1: Security Properties for Verification
UNIX Agent Security Properties

1. The agent and server shall be capable of
secure communication

2. The agent and server shall have an
identification that uniquely mutually
associates them

3. The agent and server shall authenticate to each
other using their unique identification

4. The agent shall validate all packages that they
are from its associated server

5. The agent shall validate that the package is un-
tampered (like using an MD5 checksum)

6. The agent shall recognize packages that do not
complete their installation

7. The agent shall have a recovery process for
packages that have partial installation or
otherwise fail during installation

8. The agent shall run at low priority
9. The agent shall recognize conflicts with other

processes that generate high CPU utilization
10. The agent shall go to sleep when CPU

utilization is high
11. The agent shall monitor activity for system

resources
12. The agent shall recognize conflicts with use of

Java resources
13. The agent shall go to sleep when it detects

conflicts with Java resources
14. The agent shall only accept connections that it

has initiated
15. The agent shall have a network session time-

out
16. The agent shall have a package installation

time-out
17. The agent shall provide logging of all its

events
18. The agent shall be capable of running as non-

root and maintain reporting capabilities

4.1. Verification Activity

The security properties that were modeled were
properties 1-7 and 14-16. The properties that were
tested with the PBT were 5, 8, and 14. Properties 1-
4, 6-7, and 15-16 were not tested for reasons
provided below. Properties 9-13 depend on the
system kernel to ensure that the priorities of the
services are correctly handled. The agent runs at the
lowest priority, and the agent lets the system
determine which process is run depending on the
priority level of the service request. Property 17 was
observed but it is not possible to ensure that all
events are logged as that would require an n complete
path for testing. For property 18, at the time of
testing, a non-root UNIX agent was not available so
this could not be tested.

4.2. Model-Based Verification Summary

The results of MBV FMF prototyping activity on
the PatchLink UNIX agent were previously reported
at the 2005 WETICE ST Workshop [7]. Only the
current effort that led to the follow-on property-based
testing verification activity will be described.

The verification process required working with
the developers of the UNIX agent to extrapolate
properties for the MBV and PBT. From the software
artifacts and design documents, a model of the
software was developed and coded into Promela the
language of SPIN. SPIN was then run to look for
violations of the specified security properties.

Properties 8-13 and 17-18 were not able to be
modeled in this effort due to the type of properties
and time constraints. For instance, on property 8
continuous operations of a state cannot easily be
model-checked. These properties could either best be
verified using the PBT or through other means such
as direct observation.

The only one minor finding was a potential for a
Denial of Service (DoS) attack. Packages could be
sent by a rogue server to an agent, causing it to
review and reject the bad packages. If done rapidly,
this prevents the agent from handling legitimate
packages, and violates property 4. The violation is
mitigated if secure communications are used.

4.3. Property-Based Testing Summary

The PBT tests the implementation of the
software to ensure that the properties verified by the
FMF are correctly implemented. It also verifies
some properties not easily model-checked.

In this test, the PBT was used to verify a subset
of properties due to time constraints. We used
property-based testing to validate three properties for
some test cases. We wrote properties and invariants

Proceedings of the 15th IEEE International Workshops on Enabling
Technologies:Infrastructure for Collaborative Enterprises (WETICE'06)
0-7695-2623-3/06 $20.00 © 2006

for these, and three other properties, and tested them
using various usual, unexpected, correct, and
incorrect inputs. However, the testing suffered from
several problems. The analyst was unfamiliar with
the PatchLink source code, and was further
constrained by time. As a result, some properties and
invariants may be sub-optimal. The implementation
of the PBT tool presented some unexpected limits,
and work-arounds had to be creates. (One such limit
is discussed below.) Finally the TEM is written in
Prolog, and the system on which the testing was
performed did not have a Prolog engine. This meant
the TEM could not be used; fortunately, the traces
generated by the test were simple enough to be
interpreted manually.

The “goal of the PBT is to test as many paths of
control as possible.” [7] The focus is to test the paths
of “execution relevant to the properties rather than on
all possible paths of execution.” The TEM verifies
that the specified properties hold during execution. If
they do not, the TEM announces both the violation
and the location in the program where the violation
occurred.

4.3.1. Property 5. [Verified]

This property requires that updates be verified
by computing a CRC checksum. The checksum is
computed in two places, one for ZIPped files and one
for unzipped files. The following property describes
the check:
(fileok(x,y,z) and cpfile(a,y)) or
(fileok2(x1,y1) and cpfile(a1,x1))
where fileok (fileok2) is true if file x (x1) checksums
correctly, and cpfile is true if the file named in the
first argument is copied into the file named by the
second argument. The trace showed several copies of
updates were not checked. Upon further inspection,
most were internal copies generated by the agent.
Only one was generated when the update was
downloaded, and that was checked. It showed the
invariant was satisfied. Only time constraints
prevented refining the properties to eliminate the
false positives. As a check, the source code was
altered to cause an incorrect checksum to be
computed. The resulting trace file showed that the
invariant was no longer satisfied.

4.3.2. Property 8. [Verified]

Property 8 requires that the agent be run at a
lower priority. This is done in the script “detect”,
which is a shell script. The instrumenter does not
work on shell code. Hence we instrumented the script
manually. The invariant is: nice > 0 where nice

is the priority. Note that on Linux, a priority greater
than 0 is a low priority; most kernel processes run at
priority 0. The script read the priority number from a
configuration file, and stored it in a variable. Just
before the shell code to lower a priority, the line was
added that specified a nice value greater than zero.
The trace file showed that after script execution, the
nice value equaled ten, satisfying the invariant.

4.3.3. Property 14. [Partially Verified]

Property 14 requires that the agent listen for
connections only in response to agent-initiated
connections. To validate this, the code was
instrumented at the places where the agent initiated
communications with the server. There were four
methods: “httpHead”, “httpPost”, “httpGetString”,
and “httpPut”. The trace file output showed
connection requests accepted in several places by the
agent software. The initial entry was an “accept”,
which appears to violate the invariant. After
discussion with the developers, it became clear that
the agent opened a high-numbered port on startup,
and listened for messages. When a message was
received, the agent responded to the server. Thus,
the trace file showed that the agent satisfied the
invariant except for the invocation of the “Listener”.
The invariant needed to be rewritten to take this into
account, but a limit of the TASpec langauge made
this difficult to do in the time allotted (see below).
The limit has since been removed.

However, the “Listener” port was discovered to
be a potential avenue for a DoS attack when the
traces for the beginning of network connections were
reviewed. Network probes to the “Listener” port
cause the agent to “wakeup” and check-in with the
server. The “Listener” port provides the capability to
check on the agent status to see if it is “alive” and
cause it to check with the server for jobs to perform.
Since the server can handle only a small number of
simultaneous connections, agent connections are
rejected when it reaches its connection limit. The
agents will attempt reconnection if the server does
not respond on check-in. Continual network probes
to this port will create a DoS for agents trying to
check for jobs, and for the server trying to respond to
agent requests.

4.3.4. Properties 1-3. [Not Tested]

These properties require the use of SSL and the
method “PlUtil::setSecurityProvidedIfRequired” be
called whenever a URL beginning with “https://” is
requested. If any initiation occurs without SSL being
set, the invariant will fail. In fact, if one desires to

Proceedings of the 15th IEEE International Workshops on Enabling
Technologies:Infrastructure for Collaborative Enterprises (WETICE'06)
0-7695-2623-3/06 $20.00 © 2006

require the url to begin with “https://”, then the
constraints of the TASPEC language require post-
processing of the trace file to eliminate all initiate
lines without “https://” at the beginning of the URL.
The modification below eliminates the need for this
post-processing.

4.3.5. Property 14. [Not Tested]

The testing for property 14 would ideally match
the hosts referred to in the initiate predicates
with the hosts from which connections were
accepted. However, the TASPEC language did not
support embedding Java code in the location
specifications. Extraction of host names from the
parameters could not be put into the predicates in
Java code. Instead, one must put the full URLs into
the initiate predicate, for post-processing to
extract the host names. For the same reason, one
cannot extract the host name from the socket name to
put into the accept predicate. The modification
described below eliminates the need for this post-
processing.

4.3.6. Property 15-16. [Not Tested]

These properties deal with timeouts. In order for
a timeout to be tested, one is looking for the property
that the agent waits for an event, and the event either
occurs or the timeout occurs. Thus, the properties
would require that an event beginning and end be
identified. For test purposes, the beginning of the
event is indicated by the invocation of the method
“xyzzy::event_begin()” and the end is indicated by
the invocation of the method “xyzzy::event_end()”.
A timeout will cause an exception that invokes the
method “xyzzy::timeout()”.

5. Summary and PatchLink Response

The piloting of the MBV FMF and the PBT
instruments on the PatchLink UNIX agent provided
value to both the customer of the product and the
vendor. The verification activities provided a higher
level of assurance of the security of the agent for
those security properties checked and tested, and
subsequently verified.

The MBV FMF activity took a week of
preparation to specify the properties in Linear
Temporal Logic (LTL) and then program them into
Promela language. Two days were spent on-site with
the developers to clarify the specifications and to
review potential violations of properties. The PBT
activity took another week for preparation after
providing properties and LTL. Also, two days were

spent on-site with the developers to ensure that the
properties were translated correctly into TASPEC.

5.1. PBT Issues

An issue uncovered with the PBT was that there
needed to be refinements to the properties passed on
to the PBT from the modeling activity. This issue
was previously noted [7]. As a result of the Property
14 issue, a change to TASPEC allowed Java code to
be put into the bodies of the specifications. Several
other minor changes were made as a result of other
inconveniences found during the PBT testing. Other
issues uncovered showed that not all Java
instantiations are the same on all operating system
platforms. This issue impacted the testing activities.
Enhancements to the PBT tool were made based on
the pilot study to reduce these inconsistencies.

The PBT instrumenter was extended and updated
as a result of the prototype activities. This eliminates
the time-consuming work-arounds that had to be used
during this testing. Between the familiarity gained
from the source code, knowing what questions to ask,
and the removal of some limits, it would be possible
to test more invariants than was done during this test.

5.2. Verification Results

The results of the verification activity using the
MBV FMF and the PBT, together and individually,
indicate that the instruments may provide a higher
level of confidence that the software artifacts meet
specified properties, including security properties,
when model-checked and tested.

The security properties that were modeled were
properties 1-7, 14-16. The properties that were tested
with the PBT were 5, 8, and 14. Properties 1-4, 6-7,
and 15-16 were not tested for the reasons provided
above. Properties 9-13 are dependent on the system
kernel to ensure that the priorities of the services are
correctly handled. Process 17 was observed but it is
not possible to ensure that all events are logged as
would require an n complete path for testing.

The verification results show that the security
properties specified for the PatchLink UNIX agent
that were modeled checked and tested were verified
as holding and that the agent did not violate these
properties. The PBT findings were due to
imprecisions in the invariants or external factors. If
these are eliminated, then the invariants will be
satisfied and the properties will hold. While the
verification does not prove that the agent is secure, it
does provide a greater degree of confidence in its
security if the environment is itself otherwise secure.

Proceedings of the 15th IEEE International Workshops on Enabling
Technologies:Infrastructure for Collaborative Enterprises (WETICE'06)
0-7695-2623-3/06 $20.00 © 2006

5.3. PatchLink Response
.
PatchLink Corporation provided assistance to

the verification team by assisting them as needed in
their activities, and providing input and clarification
to specifications and program code. As a result of
the verification activity and the findings, PatchLink
has implemented the following changes and
measures:

1) PatchLink has always recommended that SSL
be used on the PLUS web servers for
communications. This can be configured by
obtaining a valid, trusted website certificate from a
certificate authority such as Verisign or Entrust or
through the use of an internal PKI infrastructure.

2) The “Listener” port violates in part property
14. PatchLink has provided an option for this port to
be turned off from the server or to have it off during
installation of the UNIX agent. The agent now
implements “safe defaults” by ensuring that this
listen port functionality is disabled by default.

3) For property 18, a UNIX agent that runs as
non-root has been released by PatchLink. JPL
developed pre- and post-installation scripts that
configure the agent to report into the server
periodically and run at low priority.

5. Conclusion

The MBV and PBT verification of the UNIX
user agent shows that the agent satisfies the
properties model-checked and tested. In some cases
the invariants in the PBT were violated, but these
were due to imprecisions in the invariants or external
factors. Once those causes were eliminated, the
invariants were satisfied.

As with dynamic testing in general, the results of
the PBT are valid only for the environment and test
cases used in the experiments. In particular, no
testing metrics or code coverage metrics were used to
measure coverage. That said, Patchlink provided a
quality verification environment that was similar to
their own assurance facilities. It seems reasonable to
assert that this environment is typical of their
customers. The test cases involved an agent
downloading and installing a patch in a manner that
Patchlink believes is typical.

Both the MBV and PBT instruments were used
together on the same properties. They were also used
separately because some properties were more easily
verified with only one of the instruments. This result
bears out the earlier assessment that the instruments
can be used in concert or separately for verification.

Both instruments require domain expertise to
use. They were resource intensive to use at first.

Once we built the model wrote the PBT properties,
maintenance activities were more quickly addressed
and required less time to complete.

7. Acknowledgements

The research described in this paper is being carried
out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

7. References

[1] H. Hussmann, Formal Foundations for
Software Engineering Methods. Goos, G., Hartmanis,
J., and van Leeuwen, J. (eds.), Lecture Notes in
Computer Science, 1322. Berlin: Springer, 1997.

[2] S. M. Easterbrook and J. R. Callahan, Formal
Methods for Verification and Validation of Partial
Specifications: A Case Study. Report to NASA
Independent Verification and Validation Facility,
Fairmont, WV, 1996. Retrieved November 14, 2004,
from www.cs.toronto.edu/~sme/papers/1998/NASA-
IVV-97-010.pdf

[3] D.M. Nicol, W.H., Sandera, and S.T. Kishor,
Model-Based Evaluation: from Dependability to
Security, IEEE Transactions on Dependable and
Secure Computing. Vol. 1, No. 1, 2004, pp. 48 – 65.

[4] PatchLink Corporation, www.patchlink.com.
[5] G. Harmon, L. de Moura, and J. Rushby,

Generating Efficient Test Sets with a Model Checker,
Computer Science laboratory (CSL) Technical Note.
SRI International, May 2004. Retrieved November

14, 2004, from
http://www.csl.sri.com/users/rushby/biblio.html.

[6] Holzmann, G. J., The SPIN Model Checker:
Primer and Reference Manual. Boston, MA:
Addison-Wesley.

[7] D.P. Gilliam, J.D. Powell, M. Bishop,
Application of Lightweight Formal Methods to
Software Security, Proceedings of the 14th IEEE
International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises.
WETICE 2005, pp. 160-165.

[8] D.P. Gilliam, J.D. Powell, E. Haugh, M.
Bishop, Addressing Software Security and
Mitigations in the Life Cycle. Proceedings of the
28th Annual NASA Goddard IEEE Software
Engineering Workshop (SEW), pp. 201 – 206.

[9] J. Rushby, Using Model Checking to Help
Discover Mode Confusions and Other Automation
Surprises, Reliability and System Safety. Vol. 75,
No. 2, Feb. 2002, pp. 167-177.

[10] Klocwork, http://www.klocwork.com.

Proceedings of the 15th IEEE International Workshops on Enabling
Technologies:Infrastructure for Collaborative Enterprises (WETICE'06)
0-7695-2623-3/06 $20.00 © 2006

[11] Secure Software, CodeAssure,
http://www.securesoftware.com.

Proceedings of the 15th IEEE International Workshops on Enabling
Technologies:Infrastructure for Collaborative Enterprises (WETICE'06)
0-7695-2623-3/06 $20.00 © 2006

