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ABSTRACT
Assistive environments employ multiple types of devices to
monitor human actions and identify critical events for phys-
ical safety. Some of the devices must be wireless in order to
be nonintrusive. This introduces the problem of authenticat-
ing these devices and building secure communication chan-
nels among them. The traditional way is to assign a private
key to a device for digital identification. In this paper, we
present an approach to protect the private key by introduc-
ing a third party and bilaterally and proactively generating
a random number to refresh key shares based on Bellare and
Miner’s forward secure signature scheme. This improves the
resilient mediated RSA solution because the entire private
key is also updated periodically. In this way, if an attacker
steals one key share, he only can use it for a limited period of
time because it will be obsolete immediately after the next
refresh operation. Even if he compromises both key shares
simultaneously, the digital signatures generated by previous
private keys are still secure. Our scheme is proven to be
intrusion resilient based on the CDH assumption in the ran-
dom oracle model. The construction is also quite efficient.

Categories and Subject Descriptors
E.3 [Data Encryption]: Public key cryptosystems; D.4.6
[Security and Protection]: Cryptographic controls; H.3.5
[Online Information Services]: Data Sharing; J.3 [Life

and Medical Sciences]: Medical Information Systems

General Terms
Authentication, Digital Signature

Keywords
Assistive Environment, Mobile Device, Forward Security

1. INTRODUCTION
Much attention in the literature of assistive environments

focuses on building secure communications channels under

the assumption that a cryptographic key is secure. The basis
for using public key cryptography for authentication, for
example, assumes that only the individual being identified
knows, or has access to, her public key. In theory, this is
correct. But in practice, many other entities, including the
system being used, have access. What happens if one of
these other entities steals the key?

This key exposure problem—that, in practice, stealing a
private key is often easier than breaking the cryptosystem
behind it—motivates our work. If the method of attack is
theft, a private key’s safety relies on the security of both the
underlying operating system and the storage of the private
key. For example, in GnuPG and S/MIME, a private key
is encrypted using a user password and stored as a file in a
hard drive. Berger et al. demonstrated an efficient password
attack based on keyboard acoustic emanations in their paper
[5]. In addition, the insider threat has attracted increased
attention [6]; many of these attacks take aim at trusted users
and steal their private keys.

Existing approaches to protecting these secrets are (1) us-
ing physically secure devices for storage and computation,
such as the secure coprocessor, and other chips like IBM
TCPA, (2) splitting a secret, e.g., by using threshold cryp-
tography, and distributing the parts throughout one or more
systems, (3) updating secrets periodically through proactive
cryptography or forward security, and (4) some hybrid tech-
niques. Our scheme falls into the hybrid category and uses
secret sharing and refreshing to solve this problem.

The Forward Secure signature scheme (FS) by Bellare and
Miner [3] is the basis for our scheme. They divide time into
periods: 0, 1, 2, . . . , T . The public key PK is fixed, and the
corresponding private key is changed every period by apply-
ing a one-way function: SK0, SK1, SK2,..., SKT . In period
i (0 ≤ i ≤ T ), a message m is signed by the current private
key SKi and the current time period index i. To verify the
signature σ of m, a receiver must use the fixed PK and the
time period index i with which the message was signed. If
a private key SKi is compromised, the previous signatures
signed by SKj (0 ≤ j < i) are still valid. So, this scheme
mitigates the damage caused by private key exposure. How-
ever, because the key changing algorithm is one-way and
public, it is computationally hard to reverse the process to
obtain the previous keys from the compromised key SKi but
it is easy to derive the private keys for future periods. So,
the scheme is compromised and future signatures should be
disabled after the exposure period. The difficulty is how to
identify the exposure period and how to protect messages
signed between exposure and detection. Thus the challenge



is whether there is a method to recover the security in time
when an intrusion succeeds.

This paper suggests a solution, the Intrusion-Resilient
Two-Party Signature scheme (I2S), that protects the FS pri-
vate keys against the above problem. A semi-trusted third
party, called base (possibly a portable physical device or a
server), stores a partial secret and generates partial signa-
tures. This is actually a 2-out-of-2 variant of an existing
threshold forward secure signature scheme [1]. However, in
order to provide the intrusion resilient property, we interac-
tively refresh the key shares with the help of bilateral ran-
dom number generation. This prevents eavesdropping and
spoofing: after refresh, the compromised key share immedi-
ately becomes invalid and the refreshed key share remains
secure. In addition, because we preserve the forward secure
property—each key share is updated periodically, so an at-
tacker cannot derive the previous key shares from the ex-
posed one—exposure of the current key share will not com-
promise past or future secrets. This improves the resilient
mediated RSA solution [22]. If an attacker succeeds in steal-
ing the user’s share, he can impersonate the user only for a
limited time before the next key refresh.

The next section, section 2 presents related work. The
function definitions and the security models for our I2S scheme
are described in Section 3. Section 4 gives the I2S algo-
rithms. In Section 5 we prove that I2S is forward secure and
intrusion resilient. Section 6 discuss other benefits, such as
fast revocation and server witness, the selection of refresh
frequency, and promising applications.

2. RELATED WORK
Forward security (FS) means that a compromise of the

current private key does not enable an attacker to forge sig-
natures pertaining to the past. The goal of forward security
is to mitigate the damage caused by the exposure of a se-
cret. After the first practical scheme was introduced [3],
many improvements and derivative FS schemes have been
published (e.g., [2, 17, 19, 20, 10, 4, 8]). The problem
is that a user controls the entire private key, so the com-
promise of the current secret will disable the future use of
the system. Furthermore, the revocation mechanism is still
necessary for the FS schemes when exposure happens. So,
this approach does not alleviate the burden of public key
management.

A desired property might be to provide both forward secu-
rity and backward security. Burmester first formally called
this property Strong Forward Security (SFS) [9]. One cur-
rent approach to providing SFS is to use a new public/private
key pair for each period [9]. In this method, the public key
also needs to be updated. This introduces an additional cost
of issuing and revoking public keys that grows with the up-
date frequency. In order to guarantee security, the key pairs
must be updated frequently, which makes the cost prob-
lematic. Another approach is to use threshold cryptography,
and distribute the secret among multiple trusted agents or
servers. Updating the private key is then a distributed pro-
cess that requires collaboration from all existing participants
[28, 1]. However, once an attacker compromises a key share,
he can impersonate that share holder until the public key
expires or this intrusion is detected. A third approach to
SFS is key insulation, which uses a physically secure device
to store a master key. In this method, a private key update
cannot be performed without the help of the master key

[12, 13]. This technology is not likely to be adopted soon in
practical settings due to concerns about efficiency.

Proactive cryptography is another approach to protecting
secrets. Key shares in each party are refreshed periodically,
but the entire private key is unchanged during the life time of
the public key, as for example in [15], [26], and [24]. A proac-
tive cryptosystem remains secure as long as the adversary
does not corrupt more than t parties in each time period.
The shares of corrupted parties become useless when time
enters the next time period. The advantage of this method
is that an adversary has only a short period of time to break
into any t out of the n servers, while in the long-lived thresh-
old systems the adversary has a long time to break into any t
servers. This is the case even if the adversary obtained any
t′(t′ < t) shares in the past time periods that are invalid
in the new time periods. Thus, the proactive mechanism
enhances the security of the threshold scheme.

The notion of intrusion resilient security combines the fea-
tures of forward, key-insulated and proactive security paradigms.
Ikis and Reyzin proposed the first intrusion resilient signa-
ture in [18]. Soon after, Itkis gave a generic construction of
intrusion signatures without random oracles [16]. Like key-
insulated schemes, they involve a device to store a master
secret. This device, called a base, is assumed to be physically
secure. A user holds the entire private key and is able to
update it independently, whereas the key refresh operation
needs the base to send the user a partial secret. Libert et.
al. [23] proposed another signature construction based on
Water’s signature scheme [27], a hierarchical key derivation
technique [7], and a generic conversion method [11].

3. SECURITY MODEL
Our definitions are based on forward security [3] and its

signer-base follow-up [18]. Its differences from the previous
related work are as follows. First, this is a two-party signa-
ture scheme, so signing a message needs the collaboration of
both parties; in [3] and [18], a user holds the entire private
key so he can sign by himself. Secondly, a user or the base
can perform periodic key share updates independently but
synchronously ; but in [18], the user needs a secret update
message from the base. Third, our new method allows key
share refreshes to be performed during an arbitrary period.
A compromised secret will become useless after a refresh and
the system remains safe. This is a desirable feature that [3]
cannot provide.

3.1 Functional Definition
Here we give the functional definition of the components

of the systems. A public key, denoted PK , remains the same
during the lifetime of its certificate. The corresponding pri-
vate key is composed of two shares, SKB0,0 and SKU0,0,
held by the base and the user respectively. The life time
is divided into T periods. At the end of each period, e.g.,
t where 0 ≤ t < T , the base and the user independently
update their shares, SKBt,r to SKBt+1,0 and SKUt,r to
SKUt+1,0, where r is the number of times the share has
been refreshed since the last update. After every signing op-
eration (which could happen at any time), the user and the
base interactively refresh both shares, so SKBt,r is changed
to SKBt,r+1 and SKUt,r to SKUt,r+1.

Definition 3.1.1. An intrusion-resilient two-party signa-
ture scheme is an octuple of probabilistic polynomial-time



(PPT ) algorithms (Gen, BS.Sgn, UR.Sgn, V rf , BS.Upd,
UR.Upd, BS.Rfs, UR.Rfs):

1. Gen, the key generation algorithm.

In: security parameters and the total number T of
time periods

Out: the public key PK, the initial user private key
SKU0,0, and the initial base private key SKB0,0

2. BS.Sgn, the base signing algorithm.

In: current base key SKBt,r, and message m

Out: partial signature 〈t, z1〉 on message m for time
period t

3. UR.Sgn, the user signing algorithm.

In: current user key SKUt,r, and message m

Out: entire signature 〈t, σ〉 on m for time period t

4. V rf , the verifying algorithm.

In: message m, signature 〈t, σ〉, and the public key
PK

Out: “valid” or “invalid”

5. BS.Upd, the base update algorithm.

In: current base key SKBt,r

Out: new base key SKBt+1,0

6. UR.Upd, the user update algorithm.

In: current user key SKUt,r

Out: new user key SKUt+1,0

7. BS.Rfs, the base refresh algorithm.

In: current base key SKBt,r, 〈h2, v2〉 and later gb

from the user

Out: new base key SKBt,r+1

8. UR.Rfs, the user refresh algorithm.

In: current user key SKUt,r, 〈h1, v1〉, and later ga

from the base

Out: new user key SKUt,r+1

Note that when a message m needs a signature, both par-
ties generate partial signatures z1 and z2 and then the user
combines them together to make a complete signature, σ.
Signature verifiers must be aware of the updates because
they need the correct period index i as input to verify a
signature while the refreshes are transparent to them.

3.2 Security Definition
We assume the number of times the key shares are re-

freshed in period t is R. Actually, R need be neither given
or fixed; it is used only for notational convenience. We fol-
low the notations in [18] and [3] to define security. Let F ,
the adversary, be a PPT oracle Turing machine with the
following oracles:

• Osig, the signing oracle, which

1. on input (m, t) for 0 ≤ t ≤ T outputs σ.

2. on input (“b”, m, t.r) for 0 ≤ t ≤ T, 1 ≤ r ≤ R
outputs z1;

3. on input (“u”, m, t.r) for 0 ≤ t ≤ T, 1 ≤ r ≤ R
outputs z2.

• Osec, the secret exposure oracle, which

1. on input (“b”, t.r) for 1 ≤ t ≤ T, 1 ≤ r ≤ R
outputs SKBt,r;

2. on input (“u”, t.r) for 1 ≤ t ≤ T, 1 ≤ r ≤ R
outputs SKUt,r;

3. on input (“rfs”, t.r) for 1 ≤ t ≤ T, 1 ≤ r ≤ R
output γ.

First, a restricted adversary F1 is defined. She asks only
legal queries of Osig for the current period and she is able
to choose a point of time j, r to break the key share of one
party. Then she will try to forge signatures using SKUj,a

for some a > r, and succeed if the signature is valid and
the message is new. The following experiment captures the
adversary’s functionality.

Experiment Run-Intrusion(F1, k, l, T )
Select H : {0, 1}∗ → {0, 1}l at random;
Gen(k, l, T );
Choose an exposure point j.r by F1 to Osec;
(m, j, σ)← FH,Osec

1 (forge);
If V rf(m, j, σ) = valid and j.a > j.r

and (m, j.a) was not queried by F1 to Osig
then return 1
else return 0

In order to define the security against the above adver-
sary, a security function called Succir was introduced in [3].
The Succir(I2S [k, l, T ] ,F1) is defined the probability that
the above adversary who knows one key share succeeds in
forging signatures belonging to other periods. Then, the
value of the insecurity function is defined to be the maxi-
mum probability of success over all PPT adversaries. We
say that our scheme is secure if the success probability of
any PPT adversary is negligible.

Definition 3.2.1. Let I2S [k, l, T ] be our intrusion-resilient
two-party signature scheme with security parameter k, hash
function output length l, and number of time periods T . For
adversary F1, define the adversary success function as

Succir(I2S [k, l, T ] ,F1)
def
= Pr [Run− Intrusion(F1, k, l, T ) = 1] .

(1)

Then, the insecurity function InSecir(I2S [k, l, T ] ; τ, qsig , qhash)
was the maximum of Succir(F1, I2S [k, l, T ]) over all adap-
tive adversaries F1 that run in time at most τ and ask at
most qsig queries.

InSecir(I2S [k, l, T ] ; τ, qsig , qhash)
= maxF1{Succir(F1, I2S [k, l, T ]).

(2)

Finally, I2S [k, l, T ] is intrusion resilient if

InSec
ir(I2S [k, l, T ] ; τ, qsig , qhash) < ǫ1. (3)

where ǫ1 is negligible.



Next, a stronger adversary F2 was defined and it also fol-
lows the definition in [3]. The adversary is allowed a chosen-
message attack (cma) before she breaks into both parties
simultaneously. After the break-in, she cannot access Osig
again and will try to forge a signature belonging to a previ-
ous time period. The adversary’s functionality is described
by the following experiment.

Experiment Run-Forge(F2, k, l, T )
Select H : {0, 1}∗ → {0, 1}l at random;
Gen(k, l, T );
Repeat

mount attacks by FH,Osig
2 (cma);

Until the exposure time point j, r;
(m, b, σ)← FH,Osec

2 (forge);
If V rf(m, b, σ) = valid and b < j

and (m, b) was not queried by F2 to Osig
then return 1
else return 0

The corresponding adversary success function and system
insecurity function are as follows:

Definition 3.2.2. The adversary success function is

Succfs(I2S [k, l, T ] ,F2)
def
= Pr [Run− Forge(F2, k, l, T ) = 1] .

(4)

and the insecurity function is

InSecfs(I2S [k, l, T ] ; τ, qsig , qhash)
= maxF2{Succfs(F2, I2S [k, l, T ]).

(5)

Finally, I2S [k, l, T ] is forward secure if

InSec
fs(I2S [k, l, T ] ; τ, qsig , qhash) < ǫ2. (6)

where ǫ2 is negligible.

4. INTRUSION-RESILIENT TWO-
PARTY SIGNATURE SCHEME

This section first describes our main scheme I2S and then
specifies its basic property: validity. Its security will be
analyzed in the next section.

I2S is based on the first practical forward secure signa-
ture scheme [3] (which we refer to as FSS), which in turn
is based on the Fiat-Shamir [14] and Ong-Schnorr [25] iden-
tification and signature schemes. Intuitively, I2S first uses
multiplicative secret sharing to extend FSS to a two-party
paradigm, then a random number negotiation is introduced
to refresh the key shares. In order to protect our system
against random number spoofing, the user and the base use
the Diffie-Hellman (DH) algorithm with bit commitment to
collaboratively determine a new secret.

In the system setup phase (Algorithm 1) two distinct
primes p and q that are congruent to 3 mod 4 are chosen at
random. Their product N , called the Blum-Williams inte-
ger, serves as the modulus. A user’s key share is a random
series x1,0.0, x2,0.0..., xl,0.0 in Z

∗

N , and likewise for a base’s
key share y1,0.0, y2,0.0, ..., yl,0.0. The public key contains the
modulus N , the total number of time periods T , and a series

u1, u2..., ul. Each ui is generated by raising the product of
xi,0 and yi,0 to the power of 2T+1.

When there is a request to sign a message in time period
j, the user and the base each generate a random number,
r1 and r2 respectively, in Z

∗

N , raise them to the power of
2T+1−j , and then exchange the results. The user multiplies
the two values to get w and inserts w as a component of
the final signature to commit it. H : {0, 1}∗ → {0, 1}l is a
public hash function that generates the l-bit series c1c2...cl

from inputs j, w and m. The user raises every unit of his
key share xi,j.r to the power of ci and multiplies all of them
with the r1 value she previously committed in w to get a
partial signature z1. The base does the same. Then the
two parties exchange their results and the user generates z
by multiplying z1 and z2 as another component of the final
signature σ. Refer to Algorithm 2.1 and 2.2 for details.

When a verifier wants to verify a signature generated in
period j, she re-extracts c1c2...cl from j, w and m, and raises
every unit of the public key ui to the power of ci. Let τ refer
to the product of all of them and w. If z is the 2T+1−j -th
root of τ , it is a valid signature. Algorithm 3 provides the
details.

Fig. 2 gives algorithms for updating and refreshing. Key
updates are executed at the end of every time period. Each
share holder simply squares every unit of its key share and
increases the current period index by one. Key refreshes
are required to be executed immediately following each key
update and signing operation. Note that key updates are
periodic while signing could happen at any time and with
no time limits. Both parties use the DH number gab as the
new secret to refresh two key shares. Prior to this, the base
hashes ga and a random number v1 to get h1, which func-
tions as the commitments for ga; likewise, the user obtains
h2. One party multiplies her share by the new secret number
and the other party multiplies her share by the inverse of
that number in the multiplicative group of integers modulo
p̂. The Extended Euclidean Algorithm can take γ and p̂ as
inputs to calculate γ−1 mod p̂.

The following proposition proves the validity of genuine
signatures.

Proposition 4.0.3. Let PK = (N, T, u1, . . . , ul), SKB0,0

= (N, T, x1,0.0, ..., xl,0.0), and SKU0,0 = (N, T, y1,0.0, ..., yl,0.0)
be keys generated by the key generation algorithm, Gen(k, l, T ).
Let σ = 〈j, (w, z)〉 be an output of signing algorithm
UR.Sgn(m, j, SKUj,r). Then V rf(m, j, σ, PK) = 1.

Proof.

z2T+1−j

(modN)

= (z1z2)
2T +1−j

= (r1Π
l
i=1(xi,j.r)

ci · r2Π
l
i=1(yi,j.r)

ci)2
T+1−j

= r2T+1−j

1 · r2T+1−j

2 ·Πl
i=1(xi,j.r · yi,j.r)

ci·2
T+1−j

= w1w2Π
l
i=1((xi,j−1 · γ · yi,j−1 · γ

−1)2
T+1−j

)ci

= wΠl
i=1((x

2j

i,0.0 · y
2j

i,0.0)
2T+1−j

)ci

= wΠl
i=1u

ci
i

(7)

as desired.



1. Algorithm: Gen(k, l, T )
p, q ← k/2 bit random prime, such that p, q ≡ 3 mod 4;
N ← pq;
for i = 1 to l do

xi,0.0
R
← Z

∗

N ;

yi,0.0
R
← Z

∗

N ;

ui ← (xi,0.0 · yi,0.0)
2T+1

mod N
end for
SKU0,0 ← (N, T, 0, x1,0.0, ..., xl,0.0);
SKB0,0 ← (N, T, 0, y1,0.0, ..., yl,0.0);
PK ← (N, T, u1, ..., ul);
return 〈PK, SKB0,0, SKU0,0〉

2.1 Algorithm: UR.Sgn(m, j, SKUj,r) 2.2 Algorithm: BS.Sgn(m, j, SKBj,r)
r1 ←r Z

∗

N ; r2 ←r Z
∗

N ;

w1 ← r2T+1−j

1 mod N ; w2 ← r2T+1−j

2 mod N ;
send w1; send w2;
receive w2; receive w1;
w← w1w2; w← w1w2;
c1...cl ← H(j, w, m); c1...cl ← H(j, w, m);
z1 ← r1Π

l
i=1x

ci
i,j.r mod N ; z2 ← r2Π

l
i=1y

ci
i,j.r mod N ;

receive z2; send z2;
z ← z1z2; return
σ ← 〈j, (w, z)〉;
return σ

3. Algorithm: V rf(m, j, σ, PK)
c1...cl ← H(j, w, m);
τ = wΠl

i=1u
ci
i mod N ;

if τ = z2T+1−j

then
return valid

else
return invalid

end if

Figure 1: Algorithm 1 - 3 of our I2S scheme

5. SECURITY
In this section, two assumptions are formally described in

order to prove security.

5.1 Complexity Assumption

Assumption 5.1.1. The Computational Diffie-Hellman
(CDH) Assumption. Given a cyclic group G of order p̂ with
a randomly-chosen generator g, on input (g, ga, gb) where a
and b are random numbers chosen from Zp̂, for any PPT al-
gorithm A that runs in time at most t, it is computationally
infeasible for A to computes the value gab.

Assumption 5.1.2. The Factoring Assumption. Given
two distinct randomly-chosen primes p and q, each k/2-bits
long and congruent to 3 mod 4, it is computationally infea-
sible for a PPT algorithm to factor the product of p and q
in time at most t.

As far as we know, the running time of the best known

factoring algorithm is about 21.9k1/3 lg(k)2/3

[3].

5.2 Security Of Our Scheme

Theorem 5.2.1. Let I2S [k, l, T ] represent our intrusion-
-resilient two-party signature scheme with parameters a mod-
ulus of size k, a hash function output of length l, and a num-
ber of time periods T . Assuming that an adversary F1 can
break the scheme with probability ǫ1, there is an algorithm F ′

that breaks the CDH assumption with probability ǫ′, where

ǫ′ ≥ ǫ1
l

2l
(8)

Therefore, InSecir(I2S [k, l, T ] ; τ, qsig , qhash) ≤ 2lǫ′/l.

4.1 Algorithm: UR.Upd(SKUj−1,r) 4.2 Algorithm:BS.Upd(SKBj−1,r)
if j < T + 1 then if j < T + 1 then

for i = 1 to l do for i = 1 to l do
xi,j.0 ← x2

i,j−1.r mod N yi,j.0 ← y2
i,j−1.r mod N

end for end for
SKUj.0 ← (N, T, j, x1,j.0, ..., xl,j.0)) SKBj.0 ← (N, T, j, y1,j.0, ..., yl,j.0))

end if end if
return SKUj.0 return SKBj.0

5.1 Algorithm: UR.Rfs(SKUj,r−1) 5.2 Algorithm:BS.Rfs(SKBj,r−1)
if j < T + 1 then if j < T + 1 then

a, υ1 ←r {0, 1}λ; b, υ2 ←r {0, 1}λ;
h1 ← H(ga mod p̂, υ1); h2 ← H(gy mod p̂, υ2);
send 〈h1, υ1〉; send 〈h2, υ2〉;
receive 〈h2, υ2〉; receive 〈h1, υ1〉;
send 〈ga mod p̂〉; send 〈gy mod p̂〉;
receive 〈gb mod p̂〉; receive 〈ga mod p̂〉;
verify H(gb mod p̂, υ2) = h2; verify H(ga mod m, υ1) = h1;
γ ← (gb)a mod p̂; γ ← (ga)b mod p̂;
for i = 1 to l do for i = 1 to l do

xi,j.r ← xi,j.r−1 · γ mod N yi,j.r ← yi,j.r−1 · γ
−1 mod N

end for end for
end if end if
SKUj,r ← (N, T, j, x1,j.r, ..., xl,j.r); SKBj,r ← (N, T, j, y1,j.r, ..., yl,j.r);
return SKUj,r return SKBj,r

Figure 2: Algorithm 4 and 5 of our I2S scheme

Proof. Assume at period t and the r-th refresh, F1 chooses
to access Osec(“u”, t.r), so she has SKUt,r, i.e., x1,t.r, . . . ,
xl,t.r. The goal of F1 is to generate

r1Π
l
i=1(xi,j.rγ)ci mod N, (9)

where c1...cl = H(j, r2T+1−j

1 , m). Since r1 can be decided
by the share holder alone, F1’s goal actually is to generate
Πl

i=1(g
ab)ci . We define a function f : {0, 1}l → Zl+1 that

counts the number of 1’s through every digit for the input
value. So, it suffices to generate gabf(c1...cl).

We assume H : {0, 1}∗ → {0, 1}l is a random oracle, so
its output c1...cl is uniformly distributed in Z2l−1. The out-
put of the composite function f ◦H(·) follows the following
distribution

Pr [f ◦H(·) = i] =

 

l

i

!

.

2l =
l!

i!(l − i)!2l
. (10)

If adversary F1 successfully forges gabf(c1...cl), the proba-
bility that she can have gab is

Pr [f ◦H(·) = 1] =

 

l

1

!

/2l = l/2l. (11)

Since F1 is assumed to be able to forge gabf(c1...cl) with
probability ǫ1 , the overall probability that F1 can have gab

is at least ǫ1
l

2l .

The CDH assumption implies that even when ga and gb

are known, the value gab appears to be a “freshly chosen”
random number for any computationally bounded attacker,
so gab mod p̂ could be considered uniformly distributed in
Zp̂, i.e., ǫ′ ≃ 1/2λ. Generally λ = 1024 is considered se-
cure enough for CDH and l = 160 for a typical hash func-
tion such as SHA-1 and RIPEMD-160. Using these values,
InSecir(I2S [k, l, T ] ; τ, qsig , qhash) ≤ 2l · 2−λ/l = 1

160·2864 .
The I2S is based on FSS, which was proved to have the

upper bound of the insecurity function [3]. Since the I2S



uses multiplicative secret sharing, the difference is that the
base and the user each has its own hash function. So, the
actual total length of the “entire” hash function output is
2·l instead of l. Then for any τ , any qsig , and any qhash ≥ 1,
so the insecurity function for I2S is

InSecfs(I2S [k, l, T ] ; τ, qsig , qhash)

≤ qhash · T ·

»

2−2l +
q

4lT · InSecfac(k, τ ′)

–

+
qsig ·qhash

2k

(12)

where τ ′ = 2τ + O(k3 + 2k2l lg(T )).

6. OTHER BENEFITS AND APPLICATIONS
Fast Certificate Revocation. Certificate revocation is one of
the hardest problems in public key infrastructures (PKI),
and consequently one of the major costs. Furthermore there
is generally a delay between a certification authority (CA)
receiving a revocation request and publishing it through Cer-
tificate Revocation Lists (CRL) or an Online Certificate Sta-
tus Protocol (OCSP). Such a delay could be critical for time-
sensitive applications. However, in I2S, it suffices to notify
a base to cancel its key share. Immediately, signing can no
longer be performed, so the user’s public key is revoked. A
verifier need not validate the signer’s certificate by checking
a CRL or acquiring an OCSP response.
No Authentication. When signing a document, an I2S user
and its base need not authenticate each other, since the cor-
rect key share already identifies its holder. Neither does I2S

require mutual authentication for key refreshes. It is because
any intrusion is assumed to be detectable with minimal de-
lay. If an adversary already obtained one key share, she
cannot extend the validity of her share by initiating a re-
fresh with the other party. If she does, there will be three
parties to refresh two key shares so that the entire private
key is damaged.
Third Party Witness. In I2S, every private key operation
requires the aid of a third party. This allows the third party
to witness the user’s relevant behavior. In some sense it
prevents the user from abusing its private key. By providing
optional security services, the third party can produce a
record of the user’s activity. In contrast, existing intrusion
resilient signature schemes are all aimed at outside attackers
compromising a user’s private key. Users control their own
private keys, computing new keys and deleting old keys. If
a user is malicious, she can forge his old or future signature
and leak her private key in order to repudiate a previously
signed document. Similar situations could happen in other
cryptographic algorithms where the user holds the entire
private key.
Applications. The motivation of I2S is to provide forward
and backward security simultaneously for private keys. How-
ever, the applications of I2S go beyond this. For example, its
fixed public key and fast revocation implies that I2S could be
used for Short-Lived Certificates (SLC). Existing approaches
to SLCs involve traditional pair-wise keys; this requires is-
suing numerous ephemeral public keys, which carries a high
cost. I2S has the potential to reduce these costs and make
SLCs more practical [21]. As another example, I2S could be
used for threshold role-based trust management. Assume a
certain type of document becomes valid only after it is signed
by both role A and role B. If the user of role B resigns or
is removed and there is a new user to replace him, the new

user just holds the refreshed share and no more changes are
needed for the system. The key share of the removed user
automatically becomes invalid while the public key remains
the same, and this change of personnel could be transparent
to verifiers.

7. CONCLUSION AND FUTURE
WORK

In a real-world assistive environment, security depends on
how the private key is stored and how its usage is authenti-
cated. I2S protects private keys and mitigates the damage
of key exposure. It uses random number negotiation to re-
fresh the two key shares, which provides advantages relative
to existing approaches. In this way, the exposure of a user’s
key share cannot break the cryptosystem and the compro-
mised key share will become invalid instantly after the next
refresh. In order to mount a successful attack, an attacker
must break both parties simultaneously—thus it offers both
forward security and intrusion resilience. I2S also provides
fast revocation that existing schemes do not provide.

Since I2S requires additional work to refresh the key shares,
and the private key operation needs another party’s coop-
eration, one area of future work is to adopt an appropriate
portable secure chip to store the other key share. The ben-
efit that I2S brings is that users do not need to worry about
the loss or compromise of the chip because it stores only a
key share tha cannot work independently. Another area is
migrating I2S to other forward secure signature schemes.
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