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Abstract

Parallel computation in a high performance computing environment can be characterized by

the distributed memory access patterns of the underlying algorithm. During execution, networks

of compute nodes exchange messages that indirectly exhibit these access patterns. Identifying

the algorithm underlying these observable messages is the problem of latent class analysis over

information flows in a computational network. Towards this end, our work applies methods from

graph and network theory to classify parallel computations solely from network communication

patterns. Pattern classification has applications to several areas including anomaly detection,

performance analysis, and automated algorithm replacement. We discuss the di�culties encoun-

tered by previous e↵orts, introduce two new approximate matching techniques, and compare

these approaches using massive datasets collected at Lawrence Berkeley National Laboratory.

1 Introduction

The field of High performance computing (HPC) is undergoing dramatic change as researchers plan

for next-generation exascale systems, and distributed computing in general has seen rapid growth

due to the cloud. Understanding the characteristics of distributed computation is essential for

improving the e�ciency and scalability of software in these environments [1] as well as growing

concerns about security. Static analysis of binaries or source is one (costly) approach; another is

to examine computations indirectly by observing their patterns of communication.

Our work uses the characteristics of runtime communication patterns to infer what code or

algorithm is actually executing in a distributed environment. Towards this end, we build classifiers
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Figure 1: Adjacency matrices for individual runs of performance benchmark madbench (256
nodes), atmospheric dynamics simulator fvcam (64 nodes), and linear equation solver superlu

(64 nodes). The number of bytes sent between ranks is linearly mapped from dark blue (lowest) to
red (highest), with white indicating an absence of communication.

using a combination of methods from graph theory, network theory, and hypothesis testing. Classi-

fication in this setting is the problem of structural pattern recognition applied to unknown parallel

computations that reveal themselves indirectly via messages exchanged by a network of compute

nodes. Identifying the underlying algorithm is thus a type of latent class analysis where a “hid-

den” algorithm must be identified only from observable information flows. This task is non-trivial:

compilers, architectures, libraries, datasets, parameters, and software flaws can each potentially

influence communication patterns. Additionally, di↵erent algorithms can express similar patterns,

and di↵erent implementations of the same algorithm can express di↵erent patterns.

In this paper we first describe how communication patterns are dynamically captured from

running applications and the relation of these patterns to abstract computational classes called

dwarfs. Methods from graph and network theory are introduced and their shortcomings discussed.

We then demonstrate multiple approaches to achieve e�cient, approximate matching of communi-

cation patterns that avoid the computational costs of static analysis.

2 Background

2.1 Communication Logging

Message Passing Interface (MPI) is a communications protocol standard used by many parallel

programs to exchange data using a distributed memory model. There are several implementations

such as OpenMPI and MPICH, each based on the idea of logical processors with unique labels
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called ranks placed in groups called communicators. MPI programs have an initialization phase

where each processor joins a communicator and is assigned a rank, and a finalization phase to

gracefully terminate after computation.

The Integrated Performance Monitoring (IPM) library [2] provides low-overhead performance

and resource profiling for parallel programs. It logs features of MPI calls such as the call name, the

source and destination rank, the number of bytes sent, and aggregate performance counters such

as the number of integer and floating point operations. The library is enabled either at compile

time or runtime and uses library interposition to intercept MPI calls at runtime.

Consider the following abbreviated IPM log entry:

<hent call=“MPI Isend” bytes=“599136” orank=“1” count=“26” />

These entries become rows in a two dimensional feature matrix where rows are individual calls and

columns are call features. Call names are mapped to unique integers so the contents of the feature

matrix are purely numerical. The above entry then becomes:

✓
int(MPI Isend) 599136 1 26

◆

The result is a matrix of features for each run of a parallel program. By varying datasets, pa-

rameters, the number of compute nodes, and other factors, we obtain multiple matrices for each

program. These matrices are then converted to directed graphs by treating ranks as nodes and

calls between ranks as edges. The task at hand, then, is to apply structural and statistical pattern

analysis to di↵erentiate patterns of parallel computation.

2.2 Computational Dwarfs

A computational dwarf is “a pattern of communication and computation common across a set of

applications” [3]. Each dwarf is an equivalence class of computation independent of the program-

ming language or numerical methods used for a particular implementation. The common use of

shared libraries such as BLAS and LAPACK provides some evidence of these equivalence classes,

though dwarfs imply a level of algorithmic equivalence beyond code reuse.

Colella et al. identified seven dwarfs in HPC applications [4]: dense linear algebra, sparse

linear algebra, spectral methods, n-body methods, structured grids, unstructured grids, and monte
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Figure 2: Adjacency matrix of general relativity simulator cactus augmented by MPI call (top)
and message size (bottom). For purposes of display, MPI call names are mapped to integers;
identical MPI calls receive the same color. In the bottom figure, color is a linear mapping of the
number of repeats from dark blue (lowest) to red (highest). Such plots show the structure seen
in adjacency matrices extends to features other than the source and destination ranks of MPI
communications.
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carlo methods. Asanovich et al. asked if these seven also captured patterns from areas outside

of HPC [3]. They found six additional dwarfs were needed to capture the distinct patterns of

computation outside HPC including combinational logic, graph traversal, dynamic programming,

backtrack and branch/bound, graphical models, and finite state machines. Originally named in

reference to the seven dwarfs of Snow White, they are now commonly called computational motifs

due to these additional patterns. However, we use the original term to prevent confusion with the

network motifs presented in this paper.

Distributed memory parallel programs, then, will fall into one or more of these 13 dwarf classes.

If the variance of the expressed patterns is bounded, identification of the dwarf class should be

possible solely from observed communications.

2.3 Visualization

Consider a three node communicator where rank 0 sends messages to ranks 1 and 2, rank 1 sends a

message to rank 2, and ranks 1 and 2 send messages back to 0. These messages have the following

adjacency matrix representation:

0

BBBB@

0 1 1

1 0 1

1 0 0

1

CCCCA

Adjacency matrices are commonly visualized as a grid where the axes are rank numbers and filled

pixels denote ranks that exchanged one or more messages. Di↵erent communication features such as

the number of messages exchanged or their total size can be stored in the matrix and color-mapped

to provide additional insight. Such visualizations are commonly used to examine communication

patterns and have been o↵ered as evidence for the existence of computational dwarves.

The adjacency matrices for single runs of three di↵erent parallel programs are shown in Figure 1.

Another layer of structure can be seen by extending the adjacency matrix into a third dimension,

mapping an additional communication feature onto the z-axis. Figure 2 shows such mappings for

MPI messages and their counts using general relativity simulator cactus.

Communication patterns are strongly tied to distributed memory access within a parallel pro-
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gram. To see this, examine the diagonal of Figure 1’s center panel and note the communication

between a rank and its immediate neighbors. Such a pattern is generated by finite di↵erence equa-

tions and is found across many HPC applications. Another type of equation will have a di↵erent

visual signature unless its pattern of distributed memory access is similar.

The structure seen in Figures 1 and 2 is typical of the applications we examined and suggests

that classification is possible. By the same argument, however, distinguishing applications within

the same dwarf class may be di�cult due to their topological similarity. Complicating matters,

the same program may alter its communications given di↵erent parameter values, datasets, or

communicator sizes (see Figure 3). As a result, we cannot simply compare adjacency matrices to

classify the underlying computation.

3 Classification

This section presents both structural (topological) and statistical approaches to recognizing pat-

terns in communication graphs constructed from IPM logs. These patterns are used to predict the

unknown computation underlying the observed communications; this is the process of classifica-

tion. We first introduce several approaches that failed to accurately classify our datasets. Their

shortcomings motivate our later approaches.

Communications are represented as directed graphs with ranks as nodes and MPI calls as edges.

Call names are stored as edge labels (colors) and multiple edges exist between nodes if more than

one type of MPI message is exchanged. Graphs with labeled nodes and/or edges are called attributed
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Figure 3: Data dependent topology demonstrated by molecular dynamics simulator namd under
di↵erent molecular arrangements. The number of bytes sent between ranks is linearly mapped from
dark blue (lowest) to red (highest), with white indicating an absence of communication.
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Figure 4: Node degree and betweenness centrality distribution for two runs of performance bench-
mark madbench. These runs exhibit similar degree distributions but di↵erent centrality distribu-
tions. Classification using these statistics is error prone due to their variance over di↵erent runs of
the same program.

relational graphs (ARGs) [5] and this data reduces the search space of some algorithms such as the

subgraph isomorphism test introduced in Section 3.2. The full details of our datasets and evaluation

are presented in Section 3.6.

3.1 Node Distributions

The first statistical graph measure, the node degree distribution, counts the total number of nodes

having a particular number of edges (degree). This analysis is restricted to the out-degree distri-

bution measuring only outbound edges. For example, the adjacency matrix in Section 2.3 has two

nodes of degree 2 and a single node of degree 1. The node degree distribution for two individual

runs of the madbench performance benchmark are shown in Figures 4a and 4b.

Node degree distributions are a summary statistic over the adjacency matrix and the types of

messages exchanged, reflecting the layered per-call adjacency matrices in the left panel of Figure 2.

7



Though o↵ering additional insight, they summarize a single aspect of the graph that may fail to

distinguish di↵erent patterns. In these cases, the notion of centrality can be helpful.

Centrality measures the importance of a node in the graph, and this importance can be defined

in several ways. We examine the betweenness centrality (CB), measuring the percent of shortest

paths passing through a node v in an undirected graph [6]:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

where �st(v) is the number of shortest paths between nodes s and t that pass through v. This

number is normalized by the total number of shortest paths between s and t. The CB of v, then,

is the sum of these normalized shortest path counts over all node pairs not containing v.

Intuitively, nodes acting as coordinators of computation such as rank 0 have high CB. As

an artifact of IPM, broadcast messages also have high centrality. This can be seen in Figures 4c

and 4d. Note that despite similar degree distributions, the second run has a very di↵erent centrality

distribution.

In this example, relying solely on centrality to classify the computation results in a false negative

(incorrectly predicting the patterns are from di↵erent algorithms). The degree distribution works

for this example but will result in a false positive (incorrectly predicting patterns are from the same

algorithm) for many others. Thus, multiple such measures are important for di↵erentiating parallel

computations.

However, these statistics are based solely on topological properties of the computational network

and do not incorporate other attributes of information flow. They are also sensitive to the number of

compute nodes. It is vital that any classification is independent of the communicator size, whether

the computation is performed with 32, 64, 128, or more nodes.

3.2 Graph Isomorphisms

In our setting, two parallel computations using the same algorithm are often isomorphic: given the

set of vertices V (G) and edges E(G) for some graph G, graph isomorphism is a bijection between
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two graphs G and H:

f : V (G) ! V (H)

This mapping preserves edge structure: uv 2 E(G) if and only if f(u)f(v) 2 E(H) [7]. Isomorphic

communication patterns imply that messages are passed between the same nodes in each graph

regardless of the assigned rank number, akin to scrambling the columns of the adjacency matrix.

As two computations performed on di↵erent numbers of nodes cannot be isomorphic, we are

instead interested in the related problem of subgraph isomorphism. Two graphs are subgraph

isomorphic if some subgraph of G is isomorphic to H: for example, if some subset of the communi-

cation graph for atmospheric dynamics simulator fvcam with 256 nodes is isomorphic to the same

program run with 128 nodes.

Graph isomorphism has not been proven NP -complete or a member of P , while subgraph iso-

morphism is NP -complete via reduction to the maximum clique problem [8]. Runtime complexity

is of serious concern as HPC networks often contain hundreds or thousands of nodes. Our inves-

tigations focus on Ullman’s subgraph isomorphism algorithm [9], the VF2 algorithm [10], and the

NetworkX implementation of VF2 [11]. The Ullman and VF2 algorithms are implemented in the

VFLib library [12] and have worst-case time complexity O(N !N2) and O(N !N), respectively.

IPM logs are converted to directed graphs with MPI calls encoded as edge attributes. As

discussed earlier, these attributed relational graphs prune the state space of the isomorphism test

and reduce false positives [5]. However, the primary problem with isomorphism-based classification

is its exact matching requirements that result in false negatives for all data-dependent topologies

(see Figure 3). Ideally, such topologies will be classified the same if di↵erences are within some

bounded variance. To address this, the next section introduces an approximate matching approach

using statistical hypothesis testing.

3.3 Hypothesis Testing

A graph isomorphism test requires exact node correspondence between two graphs. This require-

ment results in many false negatives when applied to communication patterns whose statistics can

vary with architecture, communicator size, parameters, and datasets. Current approximate graph
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Figure 5: A random sample of common 3-node motifs with di↵erent edge colorings. Black represents
all calls in single color motifs, while collective (black) and point-to-point (red) calls are represented
separately in 2-color motifs. In 3-color motifs, point-to-point calls are further divided into send
(red) and receive (blue) calls.

matching methods such as graph edit distance [5] are often more computationally expensive than

exact graph matching. Instead, we present a matching algorithm based on statistical hypothesis

testing with low computational complexity. First we review the relevant concepts and notation then

discuss our approach in these terms. An exhaustive introduction to hypothesis testing is outside

the scope of this paper and so our discussion makes some simplifications.

A hypothesis test is a statistical method to determine whether a null hypothesis H0 or alternative

hypothesis Ha best explain some data [13]. The null hypothesis commonly theorizes the data is a

result of chance and is accepted or rejected at a significance level ↵ using some statistical test. If

rejected, Ha is accepted as true with ↵ probability of a type-I error (false positive).

A type of hypothesis test called a goodness-of-fit test can be used to determine the equality

of probability distributions. We use the two-sample Kolmogorov-Smirnov (KS) test [14], first

computing the D-statistic for two empirical cumulative distribution functions Ŝm(x) and Ŝn(x):

Dm,n = max
x

|Ŝm(x)� Ŝn(x)|

where m and n are the total event counts of their respective distributions. We then compute the

probability that di↵erences in the distributions are due to chance (the p-value) and reject H0 if this

value is less than our threshold ↵:

P (Dm,n � DO|H0) < ↵
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for the observed statistic DO [13]. Though defined theoretically for continuous distributions, a

modified KS test can be used with discrete distributions [15] or an unmodified test can simply

provide conservative p-values.

We present two applications of the KS test for pattern classification in the following sections.

3.4 Network Motifs

One approach to characterizing communication topologies is to describe global communication

patterns in terms of their localized subgraphs. Those subgraphs that occur more often than would

be expected in randomized networks are called motifs. Network theorists have studied motifs in

a wide range of fields including biology [16], ecology [17], chemistry [18], and neuroscience [19].

Motifs in such real world networks are often described as building blocks with intuitive functional

interpretations, and these networks are commonly characterized by their distribution of n-node

motifs. Such intuitive interpretations may also exist for HPC algorithms, though we leave this to

future work and instead focus on their use as classifiers.

Motif discovery can be divided into three subtasks: 1) counting subgraphs, 2) grouping equiva-

lent subgraphs, and 3) determining which subgraphs are over-represented relative to some random

graph model. Each of these steps is computationally expensive and so the process is often restricted

to 3, 4, or 5 node subgraphs.

We use the fanmod tool [20, 21], which provides an order of magnitude speedup over its pre-

decessors for steps 1 and 3. Input graphs may contain node and/or edge data referred to as colors.

A maximum of 7 edge colors may be used and so the MPI calls stored on the edges of our ARGs

are grouped by di↵erent criteria. Single color graphs assign all MPI calls to the same group, while

2-color graphs distinguish between broadcast and point-to-point calls. Lastly, 3-color graphs divide

point-to-point calls into send and receive groups. The tool is run multiple times to find 1-3 color

motifs of size 3 and 1-2 color motifs of size 4. Intuitively, larger motifs and more colors should help

distinguish di↵erent patterns of communication.

Over-representation of a subgraph is determined by its z-score:

z =
NO �NR

�
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Figure 6: A random sample of common 4-node motifs with di↵erent edge colorings. Black represents
all calls in single color motifs, while collective (black) and point-to-point (red) calls are represented
separately in 2-color motifs.

where NO is its count in the original network, NR is its mean count in randomized networks, and

� is the standard deviation from NR. For brevity, a random selection of the most common 3 and 4

node motifs are shown in Figures 5 and 6. These figures summarize topologically equivalent motifs

that have the same number of colors but potentially di↵erent colorings. For example, the motif in

the lower right of Figure 5 could represent two isomorphic motifs where red maps to a “send” call

in the first and a “receive” call in the second.

We apply a KS test to compare the distribution over all motifs discovered in two communication

graphs. If the p-value returned by the test is less than the significance level, the graphs and the

parallel programs that generated them are considered distinct. Tests are performed for each pair

of graphs to evaluate the accuracy of this approach and the results are presented in Section 3.6.

3.5 Call Distributions

Hypothesis testing is also used to test the fit of MPI call distributions between each corresponding

rank of two parallel computations. The counts of MPI messages sent by each rank are normalized

to form a probability distribution and the cumulative sum is taken to produce Ŝ. For example:

summed over all destination ranks, source rank 1 of program A may transmit 15 MPI Send, 20

MPI Recv, and 5 MPI Barrier messages. The probability mass function is then 37.5%, 50%, and

12.5% respectively for these calls and 0% for all others. If source rank 1 of program B transmits 18

MPI Send, 19 MPI Recv, and 4 MPI Barrier messages, the probability mass function is 43.9%,

46.3%, and 9.7%.

Taking their respective cumulative sums to obtain Ŝ40 (m = 15+20+5) and Ŝ41 (n = 18+19+4),
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the KS test determines that these distributions are not significantly di↵erent at the ↵ = 0.01 level.

If the probability mass functions remained the same but instead 2000 calls were logged, the test

would determine the distributions are not the same at the ↵ = 0.01 level since there is far more

data and the di↵erences are less likely due to chance.

To determine if two communication patterns are generated by the same program, a KS test

is applied to corresponding ranks in the communicators. For example: rank 1 of program A is

compared to rank 1 of program B, rank 2 compared to rank 2, and so on. If the communicators

are of the same size then all ranks are compared; if they are di↵erent, comparisons are performed

between ranks present only in the smallest communicator. If more than some threshold of ranks are

equivalent at significance level ↵, the programs are deemed equivalent. Both parameters provide an

adjustable tolerance to topological di↵erences. We found half the size of the smallest communicator

to be an e↵ective threshold.

3.6 Evaluation

A total of 328 logs (34 gigabytes) were collected for Lawrence Berkeley National Laboratory by

the National Energy Research Scientific Computing Center (see Figure 7). Multiple logs exist for

each program with varying ranks, parameters, architectures, and datasets when possible. Several

simpler codes were logged by us; codes requiring significant domain knowledge or private datasets

were logged from willing specialists on production systems. As a result, the inputs and parameters

for some codes were not under our control. However, this dataset is several orders of magnitude

larger than related e↵orts and we believe contains a representative sample of the dwarfs found in

scientific computing.

Classifiers are evaluated by their true positive and false positive rates. A true positive (TP)

denotes matching patterns generated by di↵erent runs of the same program; a false negative (FN)

occurs when these patterns do not match. Similarly, a true negative (TN) occurs when patterns

generated by di↵erent programs do not match; a false positive (FP) occurs when they do. The true

positive rate (TPR) is defined as:

tpr =
tp

tp+ fn
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Code Area Computational Dwarf Communicator Size(s)

cactus Astrophysics Structured Grids 64, 256
fvcam Atmospheric Dynamics Structured Grids 64
gtc Magnetic Fusion Unstructured Grids 64, 256
hyperclaw Gas Dynamics Structured Grids 256
lbmhd Fluid Dynamics Structured Grids 64, 256
madbench Benchmark Dense Linear Algebra 256
maestro Hydrodynamics Structured Grids 8, 512, 2048
mhd Plasma Physics Structured Grids 256, 512, 1024
milc Lattice Gauge Theory Structured Grids 64, 256
namd Molecular Dynamics n-Body Methods 32, 64, 128
npb Benchmark Multiple 64
paratec Materials Science Spectral Methods 64, 256
pdgemm Linear Algebra Dense Linear Algebra 64
pdsyev Linear Algebra Dense Linear Algebra 64
pf2 Plasma Physics Dense Linear Algebra 64, 256, 1024
pmemd Molecular Dynamics n-Body Methods 64, 256
pstg3r Atomic Physics Dense Linear Algebra 48, 196, 432, 768
superlu Linear Algebra Sparse Linear Algebra 64, 256
sweep3d Neutron Transport Structured Grids 8

Figure 7: Summary of MPI codes used to generate IPM logs. Some codes may fall under multiple
dwarf classes. Monte Carlo dwarfs are not represented as they are embarrassingly parallel and thus
require minimal communication.

Similarly, true negatives (tn) and false positives (fp) define the false positive rate (FPR):

fpr =
fp

fp+ tn

The TPR and FPR for classifiers using subgraph isomorphism testing, motif distributions, and call

distributions are shown in Figure 8.

Several results are of note. First, as mentioned, isomorphism testing is ine↵ective due to variance

across multiple runs of the same program. However, hypothesis testing is e↵ective both for 4-node

motifs as well as call distributions. Given the increase in true positives moving from 3 to 4 nodes,

a similar increase may be possible with 5 node motifs. Unfortunately, mining motifs of this size

was computationally prohibitive.

Grouping related calls using finer-grained edge coloring appears to be beneficial. Additional

colors could distinguish synchronous and asynchronous calls, or instead assign unique colors to

each call. The latter case risks over-fitting the data: algorithms using slightly di↵erent calls for the
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Classifier TPR FPR Runtime

Subgraph Isomorphism 26.6 0.0 17m40s
Motif, 3 node, 1 color 56.9 8.3 Hours
Motif, 3 node, 2 color 52.5 4.2 Hours
Motif, 3 node, 3 color 51.3 3.9 Hours
Motif, 4 node, 1 color 77.6 2.2 Days
Motif, 4 node, 2 color 79.0 2.3 Days
Call Distribution 92.3 0.5 1m37s

Figure 8: Comparison of true positive rate (TPR) and false positive rate (FPR) for multiple
communication pattern classifiers.

same computation would no longer have the same motif, and Figure 8 demonstrates that additional

colors do not always improve accuracy. The number of colors required for such an evaluation is not

currently supported by fanmod.

Finally, while motifs are nearly as e↵ective as call distributions, the time required for motif

discovery is prohibitive for many applications, taking days or even weeks as opposed to minutes.

As a result, some graphs (in particular those with 512 or more ranks) were excluded from the motif

analysis.

Given its superior true and false positive rates and orders of magnitude less computation time

(see Figure 8), hypothesis testing of MPI call distributions is our preferred method of classifying

the communication patterns of distributed memory parallel programs. It is worth emphasizing the

accuracy of the call distribution approach despite its time-independence; the overhead required to

collect time-ordered data was prohibitive for our production systems.

It should be noted that these results occur in a more di�cult multi-class classification setting:

the chance of randomly guessing the correct class is only 7% here as opposed to 50% in a binary

setting. Classification di�culty is also increased by the topological variance induced by changes

in parameters, datasets, communicator size, and other factors. In particular, many programs

exhibit all-to-all communication at some phase of execution, and this rules out the use of simpler

classification methods based solely on topology with no notion of call names or other attributes.
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4 Related Work

IPM logs have previously been used to study the performance of MPI applications. Fürlinger et

al. [22] provide a general introduction to the IPM package and discuss several concepts related to

this work including visualization of adjacency matrices and examining the distribution of aggregate

MPI calls. Shalf et al. [23] perform similar analysis to evaluate the communication requirements of

parallel programs for improving processor interconnect designs. The adjacency matrices of several

NAS parallel benchmarks, augmented by number of messages and message size, are presented by

Riesen [24].

Ma et al. [25] introduce a communication correlation coe�cient to characterize the similarity of

parallel programs using several metrics. The first compares the average transmission rate, message

size, and unique neighbor count for each rank, while the second computes the maximum common

subgraph. Their evaluation was limited to 4 programs in the NAS parallel benchmark.

In addition to graph and network theory, we have previously used machine learning to classify

parallel computation [26,27] and discuss related machine learning e↵orts elsewhere. This approach

achieves greater accuracy than those found in Section 3.3 but requires substantially more compu-

tation and care to prevent overfit models.

Other parallel programming standards such as OpenMP are based on a shared, as opposed to

distributed, memory model. In an e↵ort to increase the portability of parallel software, recent work

uses compiler techniques to translate OpenMP into MPI source code [28, 29], and our approach

should apply when such techniques are used. While we focus on latent analysis using only runtime

communications, source code translation has also been used to replace ine�cient computations

[30, 31]. The classification of communication patterns thus has strong ties to compilers, static

analysis, and code optimization.

5 Conclusion

This work applies methods from graph and network theory to identify the latent class of a parallel

computation from the observable information passed between nodes in a computational network:

given logs of MPI messages from an unknown program, the task is to infer the program most likely

to have generated those logs. Our original motivation was the detection of anomalous behavior on
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HPC systems, though we present our work in a general context and suggest additional applications

including performance analysis and automated algorithm replacement.

As initially postulated by work on computational dwarfs [3,4], communication patterns tend to

be highly structured and reflect the distributed memory access patterns of the underlying algorithm.

When dealing with algorithm implementations, however, many other factors a↵ect the communi-

cation patterns of theoretical algorithms. Di↵erent implementations of the same algorithm, shared

libraries, compiler optimizations, architecture di↵erences, software flaws, debug flags, and numer-

ous MPI implementations all make this task more di�cult. Further, some parallel programs have

data-dependent communication topologies, varying both slightly (see Figure 3) and greatly as with

multi-use (“swiss-army”) libraries or interpreters such as Matlab.

Using gigabytes of data covering over a dozen parallel programs, we constructed directed com-

munication graphs and found network-theoretic measures such as node degree and centrality dis-

tributions capture insu�cient information on their own to classify parallel computations. We also

examined subgraph isomorphism testing for comparing topologies with di↵erent numbers of com-

pute nodes and found many topologies exhibit the worst-case factorial runtime of the algorithm.

More importantly, isomorphism requires exact matching and thus lacks the error tolerance necessary

to correctly classify data-dependent computation.

To perform approximate matching we evaluate two approaches using goodness-of-fit tests; the

first using the distribution of over-represented subgraphs called motifs and the second using the dis-

tribution of MPI calls relative to each rank. Both approaches succeed in classifying data-dependent

topologies and comparisons are extremely fast excluding the motif discovery phase. A significance

level allows tuning false positive and false negative rates. The best method, comparing per-rank

distributions of MPI calls, achieved a 92% true positive rate in less than 2 minutes. However,

swiss-army programs with extreme pattern variance elude this approach.

Other statistical measures such as Claussen’s o↵diagonal complexity [32] may also be useful

for approximate topology comparison. Graph edit distance [5], Bayesian [33] and spectral [34]

approaches to edit distance, graph kernels [35], and factor graphs [36] o↵er additional approaches

to approximate graph matching.

These directions may provide increased generality for topologies not yet observed or performance

bounds in adversarial environments [37]. However, the results presented in this paper show that
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error-tolerant methods for matching parallel communication patterns are practical for inferring

latent classes of computation.
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