
Multiprocess Malware

Marco Ramilli
DEIS, Univ. of Bologna
Via Venezia, 52 - 47023

Cesena, ITALY
marco.ramilli@unibo.it

Matt Bishop
Department of Computer Science

Univ. of California, Davis
Davis, CA 95616-8562, USA

bishop@cs.ucdavis.edu

Shining Sun
Computer Science

Univ. of Hong Kong
Hong Kong

snsun@cs.hku.hk

Abstract

Malware behavior detectors observe the behavior of
suspected malware by emulating its execution or exe-
cuting it in a sandbox or other restrictive, instrumented
environment. This assumes that the process, or process
family, being monitored will exhibit the targeted behav-
ior if it contains malware. We describe a technique for
evading such detection by distributing the malware over
multiple processes. We then present a method for coun-
tering this technique, and present results of tests that
validate our claims.

1 Introduction

Today selling malware defenses (called “anti-virus”
even though they deal with malware in general) is
a multi-billion dollar business. As the anti-virus re-
searchers and industry develop new defenses, new mal-
ware evades them. Defense mechanisms have grown in
complexity from simple signature scanning to a combi-
nation of signature scanning, behavior analysis, and em-
ulation. The suspect data is either scanned looking for
suspicious patterns of bits (static signature scanning) or
is run in a restricted environment and its behavior ana-
lyzed for suspicious patterns of actions (dynamic behav-
ior analysis). This type of analysis makes two critical
assumptions. First, all signature-based anti-virus mech-
anisms assume that malware exhibits the signature in a
form that the anti-virus mechanism can detect.

Second, anti-virus mechanisms assume that signa-
tures are valid representations of malware. This is nec-
essary to reduce the number of false positives.

Consider what happens when the first assumption is
incorrect. In a system that uses static signatures, break
the data object into parts such that the signature is also

broken into components, each part of the data object
having a different component of the signature. The indi-
vidual parts can be sent onto the target system, reassem-
bled, and executed. As signature scanners scan data ob-
jects entering the system or being loaded into memory,
and the complete malware only exists as a result of the
components being assembled in memory, the anti-virus
engine will never scan an entity containing the complete
signature. This approach evades static signature detec-
tion [13]. The program to assemble the components
looks like a standard Windows .NET engine, and so flag-
ging it as malware would cause many standard Windows
programs to be flagged as malware also.

Now look at the first assumption in light of behavioral
analysis, which typically involves examining patterns of
application programmer interface (API) calls. A signa-
ture exploits two relationships among these calls. The
temporal relationship reflects the temporal ordering of
the events The spatial relationship is that the signature
occurs in the “view” of the anti-virus mechanism. In
practice, this means they occur in a single process, or a
related family of processes, usually started from a down-
loaded data object. Breaking either of these relation-
ships inhibits detection. For example, if the API calls
occur in a different order, the anti-virus mechanism will
not recognize the signature. In this case, the different
temporal ordering will probably render the “malware”
harmless.

But the spatial relationship is a different matter. An
attacker divides the malware into multiple coordinated
processes such that no sequence of API calls executed
by one process matches any of the behavioral signatures.
The entities that will be executed to create the processes
do not match any of the static signatures, and none of the
resulting processes performs any actions that the anti-
virus tool will flag as suspicious. This negates the spa-
tial assumption because no signature occurs in any one



“view,” or process. Then the anti-virus tools would not
detect that malware has been injected onto the system.

Such an attack requires two steps. The first step is
to place the malware components onto the system in
such a way that each component can be executed to cre-
ate a process that co-ordinates with one or more of the
other component processes. The second step is to run
each component individually. They must co-ordinate in
such a way that their combined actions are equivalent
to the single malware. This requires that we partition
our malware into components none of which contains a
static signature that causes an anti-virus tool to raise an
alert. The efficacy of this approach was discussed else-
where [13]; suffice it to say that the components need
only avoid detection by the active anti-virus tools on
the system (which may use static signatures, behavioral
analysis, or a combination of the two). The components
are then placed onto the system individually, and in such
a way that they will be executed either immediately or
in the future. Because many anti-virus tools look for
patterns of behavior among processes and their descen-
dants, we must ensure each of the components starts as
a sibling process of the other components rather than as
a descendant. Note that, in many cases, they may be ex-
ecuted sequentially, and over a period of time—that is,
temporally far apart.

This paper reports on our design and experiments
with one piece of malware rewritten as separate com-
ponents. First, we examine related work. Then, we dis-
cuss our design of this multi-process malware. We ex-
periment with one particular instance to demonstrate the
results of this design. We conclude with a discussion
of future directions and consider ways to ameliorate this
threat.

2 Related Work

Tasks are often distributed across multiple processes
that co-operate to achieve a common goal. In com-
puter security, many previous attacks have done this.
For example, the Internet worm [6] placed an executable
“grappling hook” on the target system. The hook pulled
over the rest of the worm from the other system. This is
similar in concept to the way the computer viruses Di-
chotomy [7] and RMNS [8] worked. They had two sep-
arate parts, one of which intercepted the relevant calls,
and invoked the second part that performed the mali-
cious action. However, the Internet worm was two dif-
ferent processes, and the second (the worm proper) was
constructed by linking an object file with libraries al-
ready resident on the target.

Other attacks, often in the guise of malware [1,2,4,9]
are “multi-stage” in their activation or execution. Mod-
els [5, 12, 15] and interpretative methods such as visu-
alization [10] help analysts understand how multi-stage
attacks work and how they spread. Many existing worms
work this way, exchanging messages and copies of the
worm with other hosts to propagate and to control their
spread.

Unlike these attack methods, we construct multiple
co-ordinated processes that perform the same actions as
malware. Thus, there is no single process that performs
the malicious actions, so any attempt to monitor indi-
vidual processes for malicious behavior will fail. Each
process is independent of the others, save for the need
to co-ordinate their actions (which may involve the use
of, for example, covert channels rather than conven-
tional interprocess communication calls). Further, the
processes begin independently; they need not pull over
programs from other systems. Indeed, some of our pro-
cesses may be implemented using gadgets [11, 14] to
reduce the amount of data that must be placed on the
system.

3 Design of Multi-Process Malware

We define spatial locality to be the view of the sys-
tem over which anti-virus software looks for known or
anomalous patterns of behavior in the suspected pro-
grams. For example, most existing anti-virus systems
look at events either in the same process or in descen-
dants of processes executed by the same user. So, let
events a and b occur in processes pa and pb, respec-
tively. We define user(P ) as the user/owner of pro-
cess P . Then a and b are in the same spatial locality
if user(pa) == user(pb) and any of pa == pb, pa is
an ancestor of pb, or pb is an ancestor of pa, is true.

To inhibit detection, we simply disrupt the spatial
locality of events, so the events matching the patterns
are spread over multiple localities. Consider a piece of
malware M implementing a sequence of events R =
[a1, . . . , an], where [. . .] indicates a partial ordering of
a1, . . . , an, and producing a resulting action R. In the
usual case, the spatial relationship of all n events is
within the same process. They are in the same spatial
locality as defined by most current anti-virus software.
So, we distribute the events across multiple processes in
such a way that the events are in different spatial locali-
ties. Given our definition, the simplest way to do this is
to put each events ai into a separate process that is unre-
lated by ancestry to the processes aj , j 6= i, performing
the other actions. Then, the events are in the different



Figure 1. Multi-processes Malware.

spatial localities of most current anti-virus software, and
so they will not detect that the events are co-ordinated.

In other words, we spread the events that the mal-
ware exhibits over several processes, turning the single
malware process into a set of processes that, individu-
ally, do not exhibit the events of the malware but, taken
as a whole, do. As a spatial locality defines a particu-
lar memory context, the multi-process malware must be
able to run different actions from different memory con-
texts. Let f(M) = R be a function that produces the re-
sult R given executing process M (the process contain-
ing the malware). We then define processes p1, . . . , pn
such that pi executes ai. Then, as expected:

R = f(M) = f([p1, . . . , pn])

= [f(p1), . . . , f(pn)] = [a1, . . . , an]

M consists of a partial ordering of processes producing
in turn a partial ordering of events. The processes must
co-ordinate with each other to ensure the required tem-
poral relationships of the events are preserved. This can
be done through IPC among the processes themselves,
or by communicating with a co-ordinating process A
that performs none of the events ai itself. Figure 1 de-
picts this process pictorially.

As an example, consider the original (single process)
version of the malware Zeus (M = Zeus), which infects
consumer PCs, waits for a user to log into a financial
institution on the list that Zeus targets, and then steals
the user’s credentials and sends them to a remote server.
Zeus also injects HTML into the browsed page so that
its own content is displayed with (or instead of) the gen-
uine pages from the bank’s web server. In this way, it
is able to ask the user to divulge more information, such
as a payment card number and PIN, one-time password,
and Transaction Authentication Numbers used by some
banking services to authorize financial transactions. For

Zeus, we define R as “providing a user’s credentials to
another user without authorization”. The original Zeus
malware accomplishes this in three steps: (a) It injects
itself onto the system (a1); (b) It steals the credentials
(a2); and (c) It sends them to remote storage (a3). Ap-
plying the above analysis to Zeus, we obtain three single
and coordinated processes p1, p2, and p3, each perform-
ing the actions a1, a2, and a3 respectively, in that order.
This gives us the same result as running M directly.

In our experiments, detailed below, we used a fourth
process A to co-ordinate the other three. Had we cho-
sen, we could have embedded a co-ordination wrapper
into each of the processes pi, as shown in Figure 1.
The lack of ancestor/descendent relationships among the
processes is critical because most anti-virus mechanisms
define spatial locality as that relationship. They look for
for sequences of events in the same process, or they look
at events in process families. This means that if p1 is the
parent of p2 and p3, the anti-virus mechanism would de-
tect the sequential execution of a1, a2, and a3. But if
p1, p2, and p3 are unrelated (for example, each was exe-
cuted by a different user) or are siblings, under the usual
definition of “spatial locality”, the anti-virus mechanism
would not correlate the events as indicating malware.
Thus, the original malware M performs the same ac-
tions in the same sequence as do the distinct processes
[p1, . . . , pk] when executed in a way that satisfies the
constraints of the partial ordering. This does not satisfy
the spatial locality assumption, and hence will evade de-
tection. As the pi processes do not themselves contain
the malware signature, they will not be detected individ-
ually either.

To summarize, the preconditions for this attack to
work are that neither dynamic nor static anti-virus mech-
anisms must flag as suspicious the processes p1, . . . , pn;
processes p1, . . . , pn must be coordinated to guarantee
an execution order of a1, . . . , an that satisfies the partial
order constraints; and each process pi must be executed.

4 Experiments

In order to show that fragmenting malware as de-
scribed above evades anti-virus detectors, we need to
show that partitioning the malware into separate pro-
cesses allows us to put the parts onto the system with-
out the static or behavioral detectors flagging any part
as suspicious. Then, we need to show that the separate
processes can perform the malicious action without a be-
havioral anti-virus detector detecting the attack.

For the first step, we follow Ramilli’s and Bishop’s
approach [13]. Define AV (x) to be an anti-malware de-



tection mechanism that returns true if the input to AV ,
namely x, is malware and false if not. Our anti-virus
function AV for the first stage is the set of anti-virus
detectors at Virus Total, which includes most commer-
cial anti-virus programs as well as open-source ones. In
the second stage, we use behavior-based anti-virus pro-
grams to which we had access as our AV . For ease
of construction, we selected malware for which source
code is available. By monitoring the actions of the mal-
ware, one can partition the malware into a sequence of
actions, and from those derive the component processes.

4.1 First Experimental Stage: Static
Analysis

We assume that Virus Total uses well-configured and
up-to-date anti-virus engines. We also assume the anti-
virus tools there perform a static signature analysis on
the given files. The target malware is BullMoose [3].
From the source code, we see that BullMoose takes 3
actions to compromise the system:
a1 It saves an exploited HTML page onto the local

hard drive.
a2 It changes the Microsoft Windows registry key to

make Internet Explorer the default browser pro-
gram.

a3 It then causes IExplorer.exe (the executable for In-
ternet Explorer) to be opened with the default page
being the exploited HTML page from point 4.1,
above.

Table 1 shows that all but 4 anti-virus tools found
the BullMoose virus. We next apply the transforma-
tion process shown in Figure 1 by building three dif-
ferent executables p1, p2, and p3, each one wrapping
the respective action a1, a2, a3, respectively. The three
processes might be run in different orders and at differ-
ent times, because the coordination framework ensures
the timing and sequence of actions matches those of the
original BullMoose malware. When all three processes
have completed, they have performed the same actions
as BullMoose. Table 2 shows that none of the static
anti-virus tools flagged the three executables as suspi-
cious. The static analysis engines cannot detect the mal-
ware because the malware’s signature, which for Bull-
Moose is the code that performs the sequence of actions
(a1, a2, a3), has been broken into different files so that
each file contains 1

3 of the original signature. Detecting
this attack using static analysis would require the detec-
tors to flag any executable containing any of a1, a2, or
a3 as suspicious. This would cause a large number of
false positives.

Table 1. Static Analysis Results: Bull-
Moose.

Antivirus Version Last Update Result
AhnLab-V3 2011.01.08.00 2011.01.07 Win-Trojan/[..]
AntiVir 7.11.1.57 2011.01.07 TR/Malex.6656f
Antiy-AVL 2.0.3.7 2011.01.07 Trojan/Win32.[..]
Avast 4.8.1351.0 2011.01.07 Win32:M[..]
Avast5 5.0.677.0 2011.01.07 Win32:M[..]
AVG 9.0.0.851 2011.01.07 Generic15.BZXE
BitDefender 7.2 2011.01.07 Trojan.G[..]
CAT-
QuickHeal

11.00 2011.01.07 Trojan.S[..]

ClamAV 0.96.4.0 2011.01.07 Trojan.A[..]
Command 5.2.11.5 2011.01.07 W32/M[..]
Comodo 7331 2011.01.07 UnclassifiedM[..]
DrWeb 5.0.2.03300 2011.01.07 Trojan.S[..]
Emsisoft 5.1.0.1 2011.01.07 Trojan.W[..]
eSafe 7.0.17.0 2011.01.06 Win32.Agent
eTrust-Vet 36.1.8087 2011.01.07 -
F-Prot 4.6.2.117 2011.01.07 W32/M[..]
F-Secure 9.0.16160.0 2011.01.07 Trojan.G[..]
Fortinet 4.2.254.0 2011.01.07 -
GData 21 2011.01.07 Trojan.G[..]
Ikarus T3.1.1.90.0 2011.01.07 Trojan.Win32.S[..]
Jiangmin 13.0.900 2011.01.07 Trojan/Small.hts
K7AntiVirus 9.75.3472 2011.01.07 Trojan
Kaspersky 7.0.0.125 2011.01.07 Trojan.W[..]
McAfee 5.400.0.1158 2011.01.07 Generic.dx!hyb
McAfee-GW-
Edition

2010.1C 2011.01.07 Generic.dx!hyb

Microsoft 1.6402 2011.01.07 Trojan:Win32/[..]
NOD32 5768 2011.01.07 Win32/Agent.RCX
Norman 6.06.12 2011.01.07 W32/M[..]
nProtect 2011-01-07.01 2011.01.07 Trojan/W[..]
Panda 10.0.2.7 2011.01.07 Trj/CI.A
PCTools 7.0.3.5 2011.01.07 Trojan.Generic
Prevx 3.0 2011.01.08 -
Rising 22.81.04.04 2011.01.07 Trojan.W[..]
Sophos 4.61.0 2011.01.07 Mal/Generic-L
SUPERAnti
Spyware

4.40.0.1006 2011.01.07 -

Symatec 20101.3.0.103 2011.01.07 Trojan Horse
TheHacker 6.7.0.1.112 2011.01.07 Trojan/S[..]
TrendMicro 9.120.0.1004 2011.01.07 TROJ-G[..]
TrendMicro-
HouseCall

9.120.0.1004 2011.01.07 TOJ-G[..]

VBA32 3.12.14.2 2011.01.06 Trojan.W[..]
VIPRE 7991 2011.01.07 Behaves[..]
ViRobot 2011.1.7.4242 2011.01.07 -
VirusBuster 13.6.134.0 2011.01.07 Trojan.S[..]



Table 2. Static Analysis Results: Multi-
Process BullMoose.

Antivirus Version Last Update Result
AhnLab-V3 2011.01.08.00 2011.01.07 -
AntiVir 7.11.1.57 2011.01.07 -
Antiy-AVL 2.0.3.7 2011.01.07 -
Avast 4.8.1351.0 2011.01.07 -
Avast5 5.0.677.0 2011.01.07 -
AVG 9.0.0.851 2011.01.07 -
BitDefender 7.2 2011.01.07 -
CAT-
QuickHeal

11.00 2011.01.07 -

ClamAV 0.96.4.0 2011.01.07 -
Command 5.2.11.5 2011.01.07 -
Comodo 7331 2011.01.07 -
DrWeb 5.0.2.03300 2011.01.07 -
Emsisoft 5.1.0.1 2011.01.07 -
eSafe 7.0.17.0 2011.01.06 -
eTrust-Vet 36.1.8087 2011.01.07 -
F-Prot 4.6.2.117 2011.01.07 -
F-Secure 9.0.16160.0 2011.01.07 -
Fortinet 4.2.254.0 2011.01.07 -
GData 21 2011.01.07 -
Ikarus T3.1.1.90.0 2011.01.07 -
Jiangmin 13.0.900 2011.01.07 -
K7AntiVirus 9.75.3472 2011.01.07 -
Kaspersky 7.0.0.125 2011.01.07 -
McAfee 5.400.0.1158 2011.01.07 -
McAfee-GW-
Edition

2010.1C 2011.01.07 -

Microsoft 1.6402 2011.01.07 -
NOD32 5768 2011.01.07 -
Norman 6.06.12 2011.01.07 -
nProtect 2011-01-07.01 2011.01.07 -
Panda 10.0.2.7 2011.01.07 -
PCTools 7.0.3.5 2011.01.07 -
Prevx 3.0 2011.01.08 -
Rising 22.81.04.04 2011.01.07 -
Sophos 4.61.0 2011.01.07 -
SUPERAnti
Spyware

4.40.0.1006 2011.01.07 -

Symatec 20101.3.0.103 2011.01.07 -
TheHacker 6.7.0.1.112 2011.01.07 -
TrendMicro 9.120.0.1004 2011.01.07 -
TrendMicro-
HouseCall

9.120.0.1004 2011.01.07 -

VBA32 3.12.14.2 2011.01.06 -
VIPRE 7991 2011.01.07 -
ViRobot 2011.1.7.4242 2011.01.07 -
VirusBuster 13.6.134.0 2011.01.07 -

Figure 2. Dynamic Analysis Results

4.2 Second Experimental Stage: Dy-
namic Analysis

We next considered a set of anti-virus tools that per-
formed behavioral (dynamic) analysis. We put our anti-
virus tools1 on a well-configured and up-to-date version
of Microsoft Windows XP and, for each one, we per-
formed the following tests:

1. We ran the original BullMoose malware to test if
the anti-virus tool gave an alert.

2. We then ran the multi-process version of the mal-
ware to test if the anti-virus tool gave an alert.

3. When no alert occurred, we checked the real exe-
cution of the malware by running Internet Explorer
to see if it opened the crafted HTML page, which
contained a malicious Javascript program.

Figure 2 shows the results of one test using Threat-
Fire. In a previous test, ThreatFire detected the original
malware, blocked it from executing, and moved it into
the designed quarantine folder. The figure presents the
output, viewed using Process Hacker, showing that the
three processes (highlighted in red) ran without trigger-
ing ThreatFire. The process below, in green, is Internet
Explorer running as a child of the third process, with the
crafted HTML page as the default page.

This demonstrates that preconditions 1 and 3, at the
end of Section 3, hold. The co-ordination framework
that ensures precondition 2 holds is straightforward to
write, and for space reasons we omit the details.

1The specific anti-virus tools we use were Anubis, JoeBox, Nor-
man, Sophos AV, Avira AnntiVir, ThreatFire, and AVG.



5 Conclusion and Future Work

An open question is how to automate the division of
an arbitrary malware so it achieves the same results as
the original, and yet none of the component processes
will be flagged as suspicious. Determining the condi-
tions under which it can be done raises questions about
program analysis.

An obvious counter to the attack methodology de-
scribed here is to broaden the notion of “spatial locality”
to include all events on the system. Then the anti-virus
system can perform the correlation over multiple unre-
lated processes, closing the gap exploited here. This is
similar to how many host-based intrusion detection sys-
tems work, but they are too heavy-weight for many en-
vironments such as home computers because, if the data
is analyzed on the resident system, in addition to secu-
rity considerations, the performance degradation due to
the continuous checking may affect the usability of these
systems.

This suggests an alternative design for anti-virus sys-
tems. In addition to looking for signatures (whether
static or behavioral), focus upon the effects of the at-
tack. The multi-process version of BullMoose would be
(and, in fact, was) detected by an anti-virus system that
looked for alterations to the Registry that affected In-
ternet Explorer’s start-up page. The essence of this ap-
proach is to look for the effects of compromise and not
for things that may cause compromise. It is the distinc-
tion between misuse-based intrusion detection (which
looks for signatures of known attacks) and specification-
based intrusion detection (which detects programs act-
ing incorrectly). The program may act incorrectly for
a variety of reasons; what matters is it acts incorrectly.
Similarly, here, what matters is that the start-up page
changed. Why it changes is for forensic analysis. That
it did change (or something tried to change it) is what
causes the breach.
Acknowledgements: Thanks to Richard Yeh and Harvey
Chan for hepful discussions.

References

[1] M. Abu Rajab, F. Monrose, and A. Terzis. On the impact
of dynamic addressing on malware propagation. In Pro-
ceedings of the 4th ACM workshop on Recurring mal-
code, pages 51–56, New York, NY, USA, 2006. ACM.

[2] D. Bilar. Noisy defenses: Subverting malware’s OODA
loop [extended abstract]. In Proceedings of the 4th An-
nual Workshop on Cyber Security and Information In-
telligence Research, CSIIRW ’08, pages 9:1–9:3, New
York, NY, USA, May 2008. ACM.

[3] BullMoose. Source code of computer viruses: Bull-
moose, Nov. 2009.

[4] W. Cui, V. Paxson, and N. C. Weaver. GQ: Realizing a
system to catch worms in a quarter million places. Tech-
nical Report TR-06-004, International Computer Sci-
ence Institute, Berkeley, CA, USA, Sep. 2006.

[5] K. Daley, R. Larson, and J. Dawkins. A structural frame-
work for modeling multi-stage network attacks. In Pro-
ceedings of the 2002 International Conference on Paral-
lel Processing Workshops, pages 5–10, 2002.

[6] M. Eichin and J. Rochlis. With microscope and tweez-
ers: An analysis of the internet virus of 1988. In Pro-
ceedings of the 1989 IEEE Symposium on Security and
Privacy, pages 326–343, May 1989.

[7] E. Kaspersky. Dichotomy: Double trouble. Virus Bul-
letin, pages 8–9, May 1994.

[8] E. Kaspersky. RMNS—the perfect couple. Virus Bul-
letin, pages 8–9, May 1995.

[9] R. W. Lo, K. N. Levitt, and R. A. Olsson. MCF: a mali-
cious code filter. Computers & Security, 14(6):541–566,
Nov. 1995.

[10] S. Mathew, R. Giomundo, S. Upadhyaya, M. Sudit,
and A. Stotz. Understanding multistage attacks by
attack-track based visualization of heterogeneous event
streams. In Proceedings of the 3rd international work-
shop on Visualization for computer security, pages 1–6,
New York, NY, USA, 2006. ACM.

[11] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and
E. Kirda. G-free: Defeating return-oriented program-
ming through gadget-less binaries. In Proceedings of
the 26th Annual Computer Security Applications Con-
ference, pages 49–58, New York, NY, USA, Dec. 2010.
ACM.

[12] D. Ourston, S. Matzner, W. Stump, and B. Hopkins. Ap-
plications of hidden markov models to detecting multi-
stage network attacks. In Proceedings of the 36th
Hawaii International Conference on Systems Sciences,
Los Alamitos, CA, USA, 2003 2003. IEEE Comput.
Soc. 36th Hawaii International Conference on Systems
Sciences, 6-9 January 2003, Big Island, HI, USA.

[13] M. Ramilli and M. Bishop. Multi-stage delivery of mal-
ware. In Proceedings of the 5th International Confer-
ence on Malicious and Unwanted Software, MALWARE
2010, pages 91–97, Piscataway, NJ, USA, Oct. 2010.
IEEE.

[14] H. Shacham. The geometry of innocent flesh on the
bone: Return-into-libc without function calls (on the
x86). In Proceedings of the 14th ACM Conference on
Computer and Communications Securityecurity, CCS
’07, pages 552–561, New York, NY, USA, 2007. ACM.

[15] S. J. Templeton and K. Levitt. A requires/provides
model for computer attacks. In Proceedings of the
2000 workshop on New security paradigms, pages 31–
38, New York, NY, USA, 2000. ACM.


