
Learning and Experience in
Computer Security Education

(Invited Paper)

Matt Bishop
Department of Computer Science, University of California at Davis

Davis, CA 95616-8562
Email: mabishop@ucdavis.edu

Abstract—Computer security is a discipline highly dependent
on the environment in which systems and sites are to be secured.
But the practical experience needed to understand the limits of
abstract knowledge in the field, and to mould that knowledge
in a way that can be applied to specific situations arising
in practice, is often not taught in academia. Non-academic
institutions, including sites that use security to protect themselves
and organizations and companies that develop security tools,
technologies, and practices, can help close this gap in a way
that benefits the organizations, the academic institutions, and
the students. An example using the current lack of security and
robustness in software shows how this might be done.

I. INTRODUCTION

Computer security draws many of its most difficult problems
from the realm of practice. The details of the practice create
the problems, and they often arise from non-technical consid-
erations. Perhaps the best example of this is the hierarchical
public key infrastructure (PKI). Initially, a proposed hierarchy
had a single root node. Conceptually, this makes the hierarchy
a tree, and therefore (relatively) simple and clean. It also
requires all certification authorities to be certified by that
root, either directly or indirectly. This implies that all those
CAs trust the root to some extent. But in reality, such an
assumption is untenable. One need only look at the politics of
the world to understand that some nation-states will never trust
an entity not under their control. This led to the “forest” notion
that currently predominates, with several root CAs. When
appropriate, the root nodes certify one another (called “cross-
certification”). Technically, a single trusted root CA suffices;
in practice, no such root exists, requiring the development of
alternate mechanisms.

Academic education focuses on principles, which by their
nature are abstract. For example, the “principle of least priv-
ilege” says that a process should have the minimal set of
privileges needed to carry out its tasks [12]. In a formal model,
this is straightforward. Simply define rights that enable the
subject to access the object as needed, and provide those rights
to the subject (in an access control list or capability list). But
in a real system, the architecture becomes critical. First, what
is the granularity of the subject with respect to the resource?
In a UNIX-like system, if the subject is not the owner of
the object, it shares permissions with other subjects, so the
permissions assigned would be the union of the permissions
that each subject needed. This may be considerably more than

what the subject in question needs. Second, how are the rights
constrained by environmental considerations? In that same
system, if the subject has (say) read rights over the object,
it will not be able to exercise those rights unless that subject
has search (execute) permission on the containing directory.
Thus, the “clean” model in which least privilege can be applied
exactly fails in this situation.

The result is a need to understand how security works in
practice, so that we know how to apply existing models to
improve security, and to improve the models to reflect practice
better. In the PKI example, cross-certification fits naturally into
existing models: the cross-certified root CA becomes a node in
the hierarchy directly under the cross-certifying root CA. In the
access example, the access control model must be augmented
to take “groups” of subjects into account, as well as cascading
permissions; or, the UNIX-like system must be augmented to
handle rights on a per-object basis, and the incorporation of
ACLs into most existing UNIX-like systems enables exactly
that.

Incorporating practice into education helps bridge this gap
between theory and practice. Giving students practical experi-
ence in which they can apply the abstract theories, principles,
and analyses they learn in class brings those theories to life.
In reverse, the students can take what they have done or are
doing in practice, and incorporate them into new theories and
models, or modify existing ones to reflect the practice better.

Working together, academic institutions and non-academic
organizations can provide this combination of theory and
practice. Further, working together may help compensate
somewhat for the damage caused by the pervasive lack of
resources in both non-academic organizations and academic
institutions damages both. Indeed, such joint work may even
provide a basis for seeking additional resources.

The goal of this paper is to examine ways that universities
may interact with non-academic organizations to support ed-
ucation. First, we describe the goals of this interaction based
upon the nature of the non-academic institutions; then we
discuss the methods of interaction. We next use the notion of
“secure programming” as an example of how this co-operation
might work. We conclude with some thoughts on the benefits
of academic institutions working with other organizations to
enhance their educational programs.

1



II. GOALS OF INTERACTIONS

Academic institutions and other institutions (which we col-
lectively call “organizations”, and includes industrial, commer-
cial, non-profit, governmental, and international organizations)
can interact in several ways, depending on the goals. The
benefits of working with an organization that is a “producer”
of security products or services (for example, a company
that sells anti-virus software or does penetration testing) are
slightly different than those of working with a “consumer” of
those products or services (for example, a company that hires
a security firm to install a firewall, or that has purchased a
firewall and maintains it without outside aid).

A. Goals for Consumer Organization

Consumer organizations span many disciplines, ranging
from the simple (such as dentists’ offices or small companies)
to the critical (such as banks, hospitals, and many government
agencies). Almost all these organizations are connected to
the Internet; and like them, even those organizations not
connected are concerned about security. So, one goal for
students working with these industries is to learn about the
environment in which the particular organization functions,
and how that environment affects security.

As an example, a military organization wants control over
the information visitors to its web site can access. So, if the
organization determines that visitors to its web site may access
some sensitive information, the web site can be deactivated
until the nature and seriousness of the damage can be deter-
mined. But if the organization is an Internet vendor such as
Amazon or Ebay, that organization wants visitors to come to
the web site and buy something. The information on the web
site is not sensitive to disclosure, because the business model
of the organization is to disclose (in the hopes that someone
will bid on or buy the product). The threat is not disclosure;
it is integrity, where an adversary might alter the information
about the item being sold. Similarly, the response to an attack
is different because blocking access to the web site will prevent
legitimate purchasers from buying their wares, and hence
impact their revenue stream. So it is simply not acceptable.
This is an example of why the phrase “securing cyberspace”
is glib. What exactly does it mean? The answer depends on
what type of “security” is of concern, and organizations in
“cyberspace” have wildly differing notions of what “secure”
means.

In addition to the context defining security, organizations
may implement the same security goals very differently. Two
sites want to have a web server available for the public, but
also want to protect their internal systems. The traditional
approach is to set up a DMZ. One way to do this is to
have two firewalls, one between the Internet and the DMZ,
and the other between the DMZ and the internal network —
effectively, the DMZ is a buffer between the Internet and the
internal network. A second way is to have a single firewall
connected to the Internet, the DMZ, and the internal network.
The firewall determines whether to route messages to the
DMZ, the Internet, or the internal network based on its rules.

Both designs meet the security requirement of isolating the
web server (which is in the DMZ) from the internal network;
each design has advantages and disadvantages [7].

Affecting all this are the human considerations — personal,
organizational, political, and legal — that are typically men-
tioned but not explored in detail. Organizational structures can
affect the effectiveness of security. The role of policies and
procedures is often overlooked or misunderstood. For exam-
ple, much of the work analyzing electronic voting systems
focuses on the vulnerabilities of the system, without taking
into account procedures that may mitigate or aggravate those
vulnerabilities.

Finally, academic examples focus on parts of the implemen-
tation of systems. Systems change rapidly, relatively speaking,
and students must be prepared to adapt to those changes. Also,
academic education does not cover all systems, so students will
be exposed to systems in the work place that they have not
seen, and yet must manage.

To really understand these aspects of computer security,
students must be placed in an environment where they can
experience their effects. Academic institutions can teach about
the effects, but in general students get this experience by
doing — by actually dealing with these problems in real-
world situations. Interacting with non-academic organizations
provides such experience.

Summarizing, some goals of interacting with consumer
organizations for enhancing education are:

1) To experience how the technical and non-technical con-
siderations affect the security requirements;

2) To learn how those same considerations affect the im-
plementation of those requirements; and

3) To put into practice the theory studied in school, whether
the specifics of the systems being used were discussed
in class.

Ideally, the interactions will provide students with experience
in evaluating and remediating security threats holistically.

B. Goals for Producer Organizations

Producer organizations are also consumers of security, be-
cause they must protect their assets. So the above goals also
apply to them. In addition, producer organizations develop,
deploy, maintain, and retire software, hardware, tests, and
procedures to enhance security. This provides additional op-
portunities for students to enhance their classroom and project
knowledge.

Producer organizations must either identify or develop a
market for their products and services. Market development
relies as much on perception as fact; if something is perceived
to be a threat, then the market for dealing with this threat grows
in proportion to the spread of the perception. Thus, understand-
ing what (current and prospective) customers consider threats
is part of product development. Note that perceptions may or
may not reflect the realistic nature of the threat, but even if
the perception is misplaced, it may speak to the credibility of
the organization’s efforts to protect its assets. Credibility in
public life is sometimes just as important. See for example

2



recent work in electronic voting systems that provides voters
with the opportunity to check that their votes are recorded and
counted correctly.

As part of identifying new threats, producer organizations
must analyze new attacks on systems and client organiza-
tions. For example, anti-virus providers have quickly analyzed
malware such as Stuxnet [8], Duqu [1], and, more recently,
Flame [13]. Forensic groups examine detritus from attacks to
determine how attackers got in, and what they did. Doing these
analyses in an academic setting is excellent experience; doing
it “in the field” adds additional dimensions such as complexity,
time pressure, and the need to explain to non-technical people
what happened. Also, academic exercises usually take place
in a constrained environment, known to the students. Analysts
elsewhere often work with incomplete information, and do not
know specifically what is missing, so they must either work
with victims or make assumptions. Few academic institutions
can provide this experience without help from industry.

A third problem is the quality of the product or service.
Most software is poorly written. The problems usually lie in
the implementation of the design. A non-robust implementa-
tion, for example one that does not check inputs or makes
assumptions that can be checked yet are not, can make the
best-designed security tool a danger. Universities teach good
programming practices in the first, and sometimes the second,
programming class. After that, though, the students’ programs
are checked to see if they work, and few if any are rewarded
for excellent code (or penalized for non-robust code). Producer
organizations have been embarrassed when security-related
software has been used to compromise systems due to non-
robust programming. They often develop coding standards,
and do quality reviews, before shipping a product. Undergoing
such a review or being forced to adhere to specific program-
ming standards, is experience that academic institutions all too
rarely give students.

Summarizing, some goals of interacting with producer or-
ganizations for enhancing education are:
1–3. The goals of consumer organizations, above;

4. To develop requirements to meet specific market needs
and pressures;

5. To identify and analyze new threats in an environment
where time is critical; and

6. To design, implement, and deploy robust software.

III. METHODS OF INTERACTIONS

Academic institutions and organizations can work together
in a number of ways, depending on the specific goals of
the interaction. Each benefits from such an interaction, as
do their students and customers. We consider three methods:
internships, joint research, and adjunct or guest involvement.

Internships, or co-ops, are programs where students work
with an organization as an employee or a trainee. A good
internship will expose a student to the practice of the princi-
ples, concepts, and mechanisms they learn in the classroom.
The students will also learn what they do not know, and are
expected to know, when they work for such an organization.

Undoubtedly the organization will also talk to the academic
institution, especially the faculty supervising the academic
aspects of the internship program, of deficiencies. The faculty
can then take this into account when planning the institution’s
courses. In this way, the academic institution benefits from
the internship program. The benefits to the organization are
short-term and long-term. In the short term, they get a worker
(the student) who is well educated in the academics of the
job, usually at much less cost than for a normal employee.
In the long term, the organization’s managers can look over
the intern and decide whether they wish to recruit her after
graduation. More broadly, that organization can influence the
way that the academic institution teaches relevant courses by
providing examples and ideas related to the job.

A simple way to do this is to have organization members
give guest lectures or help run laboratory exercises. The
students do not get the full experience of seeing how the
academic work translates into what is used in industry and
government, but the non-academic lecturers often provide a
view of the field and of the material that many faculty cannot
provide. This has a second benefit. The approach of the
organization can be critiqued, and through a dialogue with
the students, the guest lecturer can discuss the reason for
that approach. Possibly the students will offer ideas that the
organization can use to improve their approach.

Having members of the organization run laboratory exer-
cises allows the faculty of the academic institution to provide
much more realistic exercises, and students enjoy seeing the
application of their work. As an example, UC Davis was
once given a set of electronic voting systems to test, and
the election officials gave a guest lecture about the process
in which those systems were used. They then helped guide
the laboratory exercises of applying the Flaw Hypothesis
Methodology [9], [15] to those voting systems. As a result,
several potential vulnerabilities were found, including one that
the voting process would not protect against (specifically, a
denial of service attack enabling a voter to crash the e-voting
system). When advised of the problem, the election officials
changed the process to prevent the voter from launching the
attack. The students were thrilled that a classroom project
helped improve the security of such a critical civic process.

The limiting case of this interaction is having the guest
lecturer teach a course. Such a course would presumably
focus on practice, and provide the students with experience
in applying the concepts learned in other classes. The critical
aspects of this course are how the theory is integrated into the
practice — from an academic point of view, that integration is
critical — and how closely the practice reflects what is done
by organizations and practitioners in the field.

More generally, having members of a non-academic orga-
nizations work with students in a classroom setting requires
that the instructors make the link between the more abstract
principles and concepts and the real-world practice.

Unlike internships, guest lectures and assisting with labo-
ratory exercises will not achieve all the goals described in
section II. Specifically, much of the immersion (goals 1, 4,

3



5, and 6) will be a simulation or a partial instantiation of
the actual organization environment. This is often enough to
capture student interest and provide experience that will prove
useful later in their career.

A third type of interaction is joint research. The organi-
zation itself may fund the research, or the organization and
academic institution may jointly apply to a funding agency
(for example, a government department or a foundation). This
is particularly appropriate for graduate education that focuses
on research. Students and faculty involved in the research
will interact with organization members to learn how the
company or agency approaches and defines problems, and
what limits it has on solutions. Having students involved in
writing the proposal emphasizes these points to them even
more. Like an internship, the organization members will see
the student at work, and can decide whether to recruit her
as an employee after graduation. Further, the organization
reaps the fruits of the research while supporting education
in general and building bridges to the academic institution.
Producer organizations may find new algorithms or results that
markedly improve their products; consumer organizations may
devise new processes and procedures to enhance their security,
or learn about alternate approaches to protecting themselves.
The nature of the research project determines which goals are
met.

A benefit to all these methods of interaction is that the
students gain (varying degrees of) practical experience. If
the students want to go into non-academic positions, that
experience will help them get better jobs than had they not
had the experience. If they want to go into academic positions,
they can draw on their practical experience to enhance their
courses. Presenting this experience to show how principles
and concepts are translated into practice, and to show how
non-technical considerations affect security, enriches students’
understanding of the subject.

We now turn to a problem that is plaguing academic and
non-academic institutions alike, and show how industry in-
volvement in academia could provide a basis for ameliorating
the problem.

IV. ROBUST PROGRAMMING

Perhaps the most common complaint about software is
its low quality. It does not do what the user wants, it is
difficult to use, it is prone to crashes, or it is easy for
attackers to exploit flaws in the software to obtain privileged
access (or otherwise cripple the system). This complaint is not
new; indeed, the psychologist Gerald Weinberg formulated his
second law in the mid-1970s: “If builders built buildings the
way programmers wrote programs, then the first woodpecker
to come along would destroy civilization”.

This is especially true of security. Except in unusual
circumstances, we do not build systems that meet security
requirements in all cases. They may meet the requirements
for the vast majority of inputs, but the few inputs that cause
the properties to not be satisfied cause the security policy to
be violated. In normal programming, a flaw is called a “bug”.

When security is involved, a flaw that affects meeting the
security properties is a “hole”—and an attacker need find only
one to compromise the system.
Definition. Robust programming is a style of programming
that prevents unexpected actions, including abnormal termina-
tions.

A robust program (library) handles bad inputs (arguments)
in a reasonable way. If an internal error occurs, the program (li-
brary) terminates gracefully, and provides enough information
so a programmer can debug the program (library). It adheres
to four principles [3]:

1) Be paranoid — check any data the program does not
generate to be sure it is not malformed or incorrect;

2) Assume stupidity — handle incorrect, bogus, and mal-
formed inputs and parameters, and return unambiguous
and detailed error indicators;

3) Modularize — disallow access to anything expected to
be unchanged across invocations; and

4) Never say “can’t happen” — check that “impossible”
conditions do not occur, because changes may make
them possible.

Definition. Secure programming is a style of programming
that satisfies (stated or implicit) security properties.

A secure program cannot violate specific properties, called
“security properties”. These properties may be explicit (such
as a property that authentication always precede the granting
of privileges) or implicit (such as the property that all buffer
bounds are checked). Typically, the implicit properties include
those required for a robust program.

In what follows, “good programming” produces robust,
secure programs. “Poor programming” does not.

When students learn to program in introductory classes, they
learn to write programs that are well structured. They learn to
check inputs for problems, and to think of what can go wrong
and build appropriate error checking into the program. For
example, they learn to check that indices do not exceed the
buffer length when dealing with buffers. Thus, they become
aware of common errors. Further, part of the program grade
includes style, so using good programming practices results in
a higher grade than not using them.

Interestingly enough, few textbooks in introductory pro-
gramming cover the principles of robust and secure program-
ming; instructors must do so on their own, or through the
use of supplementary material [10]. One way to do this is
to gather examples of problems that arose through non-robust
or non-secure programming, but often they are very complex
and require sophistication to see how the non-robust practice
causes the problem. Generally, the instructor must carefully
craft examples — and this requires considerable knowledge
of how the poor programming practices can be exploited.

Once students begin taking advanced courses, the goal of
the programming becomes reinforcement of what is learned
in class, or an exploration of details not covered in class.
Grading focuses on these aspects — correctness with respect
to the concepts or details — and often the program’s style

4



is not examined. Thus, the practice of robust and secure
programming is not reinforced, and it atrophies.

Simply saying that those practices must be reinforced begs
the question of how they are to be reinforced. Here, non-
academic organization can play a role both in imparting the
knowledge of how to write robust or secure programs, and in
showing students why this type of programming is important.
Indeed, bringing in examples seen in practice of what non-
robust, non-secure programs look like, and explaining exactly
how the non-robust or non-secure feature led to a problem,
would tie the need for good programming practices to specific
class material. Demonstrating the effects of failing to check
the length of an input in a system call, and the resulting buffer
overflow corrupting the kernel stack, would emphasize the
need for operating systems developers to use good program-
ming style while writing the operating system in a way that
an abstract discussion of possible consequences could not.

Examples and materials need to be grounded in problems
and practices found in organizations. In addition to illustrating
the principles, concepts, and methods discussed in lecture,
such examples demonstrate the applicability of that material
to current events. These problems and practices also help the
instructor choose which principles to emphasize. They may be
the ones tied to the problems and practices. Or, extrapolating
from these current problems, they may be ones that would
prove useful in the future.

Non-academic involvement enhances learning by providing
such examples. For instance, most security classes spend little
time discussing usability. But the complexity of configuring
a program, a system, or a set of systems to provide the
desired types and levels of security is great enough that users
make mistakes that open the organization to attack. Worse,
errors made by system administrators who install, configure,
and maintain systems may leave the systems, and hence the
organization, even more vulnerable to attack.

Because modern software is so complex, most organizations
use special code-checking tools to enable analysts and pro-
grammers to check their code. Having industry-standard tools
available for students to use ensures they are familiar with
these tools when they graduate. It will also make students
familiar with the limits of those tools, because they must
learn to distinguish false positives from true positives. Alterna-
tively, using languages and development environments in class
that inhibit the use of non-robust, non-secure programming
constructs leads to better programs, but these environments
come with one danger. They hide the details of robustness and
security. This is, ideally, what should be done; but should the
programmer ever use a language or development environment
that does not provide such support, the student still needs to
know how to avoid non-robust, non-secure constructs.

Other types of tools will prove useful. Security problems
arise because of failures to maintain a code base, or to
update one software module and fail to integrate it properly,
or other code development problems. Encouraging students
to use industry-standard tools for software development and
maintenance, such as source code control systems Subversion

(SVN) [11] and Concurrent Versioning System (CVS) [14],
and to adopt appropriate controls, will ameliorate this problem.

Human assessment of programs is critical. This requires
someone who can review software (possibly with the help
of code-checking tools) and point out examples of potential
problems, so the students can then learn how to do the analyses
themselves. The theory underlying the analyses can be taught
in programming language, security, or other classes. The goal
of the human assessment will be to ensure the students learn
how to check for non-robust, non-secure constructs in practice.

One way to do this is to have a grader (or group of graders)
assess the programming style of the software, and others
examine it to see how well it fulfilled the requirements of the
assignment. The instructor could then compute the grade using
an appropriate combination of the two. A second is to provide
a “secure programming clinic”. The model here is to have
clinicians to whom students can bring their programs, and who
will work with the student to identify security and robustness
problems. Such a clinic can be set up for a particular class,
or for all students [4]. The advantage to these methods is that
they do not require a separate class or extra lectures. The
students learn by doing, and especially from the feedback
on their assignments. These techniques can be used with any
programming course, or (preferably) all of them.

Staffing issues abound. The analysts could be students with
special skills and experience in analyzing code. However,
few students have those skills. But non-academic organiza-
tions who practice this style of programming do have such
personnel. So one way to begin such a clinic is to have
those non-academic organizations work with the academic
institution to “seed” such a clinic, and train the students who
will work in the clinic while helping others detect problems
with their programs. In this way, the organizations effectively
provide mentors for the students. This benefits the students by
giving them time with experienced practitioners. It benefits the
mentors (and the organizations they work for) by enhancing
their knowledge — paradoxically, the best way to improve
one’s knowledge is to teach it — and enabling them to identify
students for possible future work with, or in, the company.

Many of the above ideas can be applied to non-computer sci-
ence curricula where students program. Indeed, much software
is written in other disciplines, ranging from physics to digital
art, that suffers from similar problems. The interested reader
is referred to the final report of the Summit on Education in
Secure Software [5] for ideas about teaching robust, secure
programming to a variety of audiences. Indeed, that report
suggested many of the ideas elaborated here.

Students learning to write robust programs will not by itself
cause the state of software and system security to improve
dramatically. The problem is that software and systems depend
on existing libraries and services. If these have vulnerabilities,
so do their callers — this is the “supply chain” problem.
For example, in 1999, the widely-used RSAREF2 library
was found to have a buffer overflow vulnerability; as that
standard cryptographic library is widely used in security-
sensitive programs, those programs were at risk [6]. Further,

5



system security relies on systems being set up and configured
as required for the particular environment in which the system
is used. Writing robust software is not enough. But system and
software security depends upon it.

V. CONCLUSION

Sir Richard Livingstone gave perhaps the best exposition of
experience enhancing education:

This truth was first brought home to me more than
thirty years ago one December day, as I walked
down the road from Argentières to Chamonix after
a snowfall, and suddenly from the abyss of uncon-
scious memory a line of Virgil rose into my mind
and I found myself repeating

Sed iacet aggeribus niveis informis, et alto
Terra gelu.

I had read the words at school and no doubt trans-
lated them glibly “the earth lies formless under
snow-drifts and deep frost”; but suddenly, with the
snow scene before my eyes, I perceived for the
first time what Virgil meant by the epithet informis,
“without form”, and how perfectly it describes the
work of snow, which literally does make the world
formless, blurring the sharp outlines of roofs and
eaves, of pines and rocks and mountain ridges,taking
from them their definiteness of shape and form. Yet
how many times before that day had I read the words
without seeing what they really mean! It is not that
the word informis meant nothing to me when I was
an undergraduate; but it meant much less than its
full meaning. Personal experience was necessary to
real understanding. [2, p. 89]

Industries, foundations, governmental and other agencies,
and practitioners have much to contribute to the next gen-
eration, who one day will need to provide society’s tools,
products, and services. Working with academic institutions,
that contribution can be integrated with more theoretic work
to provide a solid basis for improving today’s practices, and
advancing the state of the art of computer security.

In some ways, this process has begun. Large organizations
(and, sometimes, smaller ones) have internships and co-ops.
Several academic institutions have had success in working
with organizations that saw benefit from class laboratories
undertaking analyses; the voting machine exercise mentioned
above is just one of many examples.

Many faculty see academic education as divorced from prac-
tice because the goal of academic education is understanding,
not implementing. Yet achieving that understanding requires
experience, as noted above. Those who feel that academic
education is education in the “ivory tower” should understand
that the nexus for working with non-academic organizations
lies in the realm of giving students experience to cement their
understanding, something any teacher will agree is critical.

Organizations must believe that working with academia
and students will benefit them. The benefit varies with the
organization’s mission. Essentially, the organization must be

willing to commit some resources in the hopes of getting a
greater return. It is a gamble, with potentially high payoff.

For example, organizations understand the need for robust
programming, but are unwilling to pay the additional cost that
it requires in both development time and money. Academia
also understands the need for it, but often sees it as an
“implementation skill” not in high demand. Students do not
see that experience in robust programming has any competitive
advantage in the job market, and so are unconcerned about it.

There are no easy answers. Perhaps the best that can be said
is that, unless institutions and organizations work together to
solve the problem, the problem will render them obsolete and
unresponsive to the needs of society, and of the students—the
next generation of producers and consumers.

ACKNOWLEDGMENTS

Thanks to Urko Zurutuza and Marco Prandini for help-
ful discussions. This work was supported by U.S. National
Science Foundation awards CCF-0905530 and CNS-1039564.
Any opinions expressed are those of the author.

REFERENCES

[1] W32.duqu: The precursor to the next stuxnet. Technical report, Syman-
tec Corporation, Mountain View, CA, USA, Oct. 2011.

[2] S. D. Alinsky. Rules for Radicals. Vintage Books, New York, NY, USA,
1989.

[3] M. Bishop and C. Elliott. Robust programming by example. In
Proceedings of the Seventh World Conference on Information Security
Education, pages 23–30, June 2011.

[4] M. Bishop and B. J. Orvis. A clinic to teach good programming
practices. In Proceedings of the Tenth Colloquium for Information
Systems Security Education, pages 168–174, June 2006.

[5] D. Burley and M. Bishop. Summit on education in secure software: Final
report. Technical Report GW-CSPRI-2011-7, Cyber Security Policy and
Research Institute, The George Washington University, Washington, DC,
June 2011.

[6] CERT. Buffer overflows in SSH daemon and RSAREF2 library. certadv
CA-1999-15, CERT, Pittsburgh, PA, USA, Dec. 1999.

[7] W. R. Cheswick, S. M. Bellovin, and A. D. Rubin. Firewalls and Internet
Security: Repelling the Wily Hacker. Addison-Wesley Professional,
Boston, MA, USA, second edition, Mar. 2003.

[8] N. Falliere, L. O Murchu, and E. Chien. W32.stuxnet dossier version
1.3. Technical report, Symantec Corporation, Mountain View, CA, USA,
Nov. 2010.

[9] R. R. Linde. Operating system penetration. In Proceedings of the 1975
National Computer Conference, AFIPS ’75, pages 361–268, New York,
NY, USA, May 1975. ACM.

[10] K. Nance, B. Hay, and M. Bishop. Secure coding education: Are we
making progress? In Proceedings of the 16th Colloquium for Information
Systems Security Education, June 2012.

[11] C. M. Pilato, B. Collins-Sussman, and B. W. Fitzpatrick. Version Control
with Subversion. O’Reilly and Associates, Sebastopol, CA, USA, second
edition, Sept. 2008.

[12] J. H. Saltzer and M. D. Schroeder. The protection of information in
computer systems. Proceedings of the IEEE, 63(9):1278–1308, Sep.
1975.

[13] sKyWIper Analysis Team. sKyWIper (a.k.a. flame a.k.a. flamer): A
complex malware for targeted attacks. Technical Report v1.05 (May 31,
2012), Laboratory of Cryptography and System Security (CrySyS Lab),
Budapest University of Technology and Economics, Budapest, Hungary,
May 2012.

[14] J. Vesperman. Essential CVS. O’Reilly and Associates, Sebastopol, CA,
USA, second edition, Nov. 2006.

[15] C. Weissman. Security penetration testing guideline: A chapter of the
handbook for the computer security certification of trusted systems.
Technical Memorandum 5540:082A, Naval Research Laboratory, Wash-
ington, DC, USA, Jan. 1995.

6


