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Antimalware Software: Do We Measure Resilience? 

Abstract 

There is great interest in the topic of resilient cyber systems, especially with respect to attacks by 

malicious software. The challenges of measuring the actual resilience of a system and the ambiguity 

of the term “resilience” itself cloud much of the accompanying research. In this paper, we examine 

some of the lessons learned in defining resilience metrics. We argue that such metrics are highly 

contextual and that a general, quantitative set of metrics for resilience of cyber systems is 

impractical. Instead, a set of considerations and guidelines for building metrics that are helpful for a 

particular system are provided. We then consider these metrics in the light of current anti-malware 

software tests and argue that testing efforts have been primarily directed toward robust systems, not 

resilient ones. As such, our testing tends to push the market toward existing solutions geared toward 

prevention rather than mitigation and survivability.  

Introduction 

The design of complex computational systems has been experiencing a philosophical shift of 

principles, moving from a robustness-centred design to a more flexible and adaptive design. These 

systems are capable of surviving, reacting and recovering from external attacks and localized 

failures. This paradigm shift to a “fighting through design” philosophy is, in retrospect, 

unavoidable, as the limitations of proactive defence mechanisms become clear. However, one area 

that has not benefited from this mindset is the anti-malware space. When dealing with malware, 

once the defensive lines are breached, reinstallation or recovery from backups is the primary 

restorative action.  

Given that it is now generally well-accepted that systems inevitably will be attacked, often 

successfully, it makes sense that they would be designed to survive these attacks, and recover from 

their effects to restore and maintain desired availability and functionality.  

In this paper, however, we argue that this is not the case in the anti-malware world, and posit that 

while there is much good work in this area, real scientific progress has been hampered by the loose 

definition of “resilience” and the resulting lack of metrics, and consequently tests, in this space. As 

such systems become more accepted and deployed in different application domains, the need for a 

definition and metrics becomes of greatest importance, not only to establish common ground, but 

also to determine whether progress is occurring. This is reflected in the way in which we test anti-

malware systems, which focuses almost exclusively on prevention, not cure (or co-existence). 

A previous publication (Bishop et al., 2011) focused on the definition of the term “resilience” and 

how it relates to the concepts of “robustness” and “survivability”. It noted that resilience is multi-

faceted. Although often discussed form the perspective of performance and availability (Heddaya & 

Helal, 1997, Carvalho et al., 2010), resilience also relates to different properties of the system such 

as confidentiality and integrity (Bishop et al., 2011).  

In this paper we focus on resilience metrics. After a brief review of the terminology and definitions, 

we introduce some of the current proposals for measuring resilience. We then discuss some of the 

challenges and limitations associated with these proposals, highlighting some of the additional 

considerations that must be taken into account to adequately represent the resilience of a system. 

Finally, we apply these insights to the state of anti-malware software, paying particular attention to 

the current state of the art in anti-malware tests.  



What Is Resilience? 

Resilience is challenging to define. The term may refer to specific systems, tasks, outputs, and other 

conditions that vary between scenarios, which precludes the development of a universal metric that 

applies to all system in all situations. Just as different musicians cannot agree on the “best” 

rendition of a song, this subjective definition of resilience has implications beyond mere style.  

In some disciplines such as ecology, the resilience of a system is defined as the time the system 

takes to recover to steady state conditions after a perturbation. In computing, such a definition is 

unsatisfactory, partly due to the demands we place on our systems (the fitness of a system depends 

not on its endpoint, but on the path taken to get there) and partly due to the immaturity of 

computing recovery options. Biological ecosystems exist to reproduce—to continue to exist, 

essentially. Computing infrastructures typically have an external mission. In the cyber arena, if we 

were to define resilience to be just the recovery time, how would we factor in the differences in 

missions? This question, while difficult to answer, plays an important role in how we quantify and 

measure the resilience of a system. 

So for our purposes, resilience is a measure of the ability to recover—but the specific measure, or 

measures, used to define resilience, and provide a value describing the resilience, must be 

determined from the particular system definition and the context in which the system is used. 

Considerations for Resilience Metrics 

The considerations of resilience metrics are particular to the context of cyber systems. Resilience of 

ecological systems, for example, rarely considers the magnitude of a response, focusing instead 

only on the time taken to return to pre-disturbance conditions. Developing a measure of such a 

property is not particularly difficult for these systems, and provides a way to compare and contrast 

different scenarios cleanly. 

Before describing some measures for cyber systems, we point out that our notion of metrics is 

congruent with the extensive theory of measurement. As early as 1946, Stevens (Stevens, 1946) 

proposed different levels of measurement, ranging from nominal, the labelling of objects, to ratio, 

the use of more sophisticated statistical techniques to determine equality, rank order, equality of 

intervals and equality of ratios. Typically, we consider measurements to range from weak to strong, 

with the weakest being nominal, and progressing toward the strongest through ordinal, interval, and 

ratio. 

We would like measurements of cyber resilience to be as useful as possible. When we refer to 

resilience, we need to ask what a system being “twice as resilient” as another actually indicates. If 

this cannot be expressed in terms that are meaningful, the idea of a ratio-based measurement may be 

impractical or inapplicable to the topic of resilience.  

As a refresher, in measurement theory, a measurement is a representation of a quantity. It is not the 

quantity being measured, and this is an important distinction. A measurement provides insight into 

the attribute under inspection.  

We propose several guidelines for constructing metrics that are appropriate for a particular system, 

given our definitional ambiguity. Each consideration is described and discussed. 

Guideline A: All near-term metrics for resilience are likely to be ordinal 

Engineers and scientists like to be able to assign numbers to things. “This GPU can carry out 1.1 

teraflops—3 times as many as a CPU” reveals something concrete about the objects under 



comparison. It is 1-dimensional, because it compares only speed of computation. However, as we 

shall argue below, resilience is not a 1-dimensional quantity.  

The resilience of a system would require “rolling up” a time series f(t) into a single number in order 

to be 1-dimensional. Different system inputs produce different time series; loss of dimensionality 

creates a many-to-one mapping and, consequently, a loss of information in the translation. 

Furthermore, the behaviour (and recovery) of the system varies depending on the failure or 

perturbation. For simple cases with a given set of possible outputs, it is typically possible to claim 

that one output is more desirable than another. This provides an ordinal metric. 

 

Figure 1: Examples or a system response to an external perturbation 

Let us consider a very simple system as an example. We will use this example throughout the 

remainder of this paper to illustrate a straightforward system. 

Consider a generator tasked to produce a certain voltage v. The system uses direct current (DC), so 

we do not have to consider issues related to phase and timing; instead, we have a single scalar value 

that represents the system at any particular time. At time t1, the system undergoes a perturbation of 

arbitrary origin. Figure 1 shows four possible graphs for the system response. 

In each panel of the graph, the basic shape is the same. However, in comparison to panels (a) and 

(d), panels (b) and (c) recover more slowly. Similarly, the peak perturbation in panels (a) and (c) is 

double that of panels (b) and (d). Finally, we note that these curves are idealizations – real systems 

may have unexpected and arbitrary responses to impulses, and any measurement scheme must take 

this into account. Measuring the lowest point and time to recovery does not adequately characterize 

these curves; neither does measuring the time to equilibrium. Even measuring the change in the area 

under the curve due to the perturbation, as proposed in (Wei & Ji, 2010), is only a partial measure 



of resilience (it is easy to think of curves which have the same area, but radically different 

properties). 

Of course, instead of a single number, we can measure quantities related to resilience. Time to 

recovery, for example, is a numerical measure of a single aspect of resilience (Ives, 1995). 

Composing the measures of different aspects in order to reason about resilience itself is where our 

sense of ordinality originates.  

Even with our simple example it is fairly easy to argue, by observation, that at least in vacuo, the 

system represented by Figure 1(d) is more resilient than those represented by Figures 1(a), 1(b) and 

1(c). Recovery follows the same trend, but just happens more quickly or with less perturbation. 

Even here, though, things are not quite that simple, and we will revisit these graphs in Guideline H.  

Guideline B: Resilience measurements are particular to a particular perturbation 

Different perturbations cause different system responses. The failure and subsequent recovery of a 

particular part of a system’s functionality is likely to lead to different output patterns. This inherent 

notion of events in resilience has been identified not only in the security domain but also in the 

areas of organizational (Westrum, 2006) and systems resilience (Sugden, 2001). In all cases, the 

concept relates to the challenge or disruption affecting the normal operation of the system.  

Thus, when measuring resilience, we are actually measuring each individual perturbation and its 

different magnitudes, and providing an ordering that may be unique to a particular set of conditions. 

For example, one ecosystem might be resilient with respect to temperature increases of 5, 10, or 15 

degrees Celsius, returning to steady state conditions after each temperature change. However, the 

same system may fail completely (that is, have no resilience whatsoever) in the event of a flood. For 

any system that we are likely to care about, there will be sufficient complexity that the resilience of 

the system will vary as a function of the type and magnitude of the perturbation. Determining the 

“best” system in this case will require an understanding of the disruptions that could occur in 

practice and of the users’ tolerance of them. Capturing this numerically will be difficult. 

Guideline C: Resilience metrics are deeply dependent on the boundary drawn around 

the system 

Rarely does considering the resilience of a single piece of a larger system in isolation make sense. 

Our example above (see Figure 1) considered a generator in isolation. If we increase the scope of 

that system to include what the generator powers, our determination of its resilience with respect to 

the system changes. Consider, for example, a generator that is powering a series of incandescent 

bulbs. Such a system is still usable when the voltage sags—the lights may dim, but still provide 

adequate lighting. In contrast, a generator powering a computing device will fail in its mission when 

the voltage sags below a critical value—the computer is either working or it is not. 

Let us extend our example by providing support for a battery backup. When the generator output 

sags, the batteries can provide power for a certain number of kWh. For this system, the total power 

shortfall drives the failure—that is, it does not matter if the generator output drops to zero as long as 

it returns to functionality before the batteries are exhausted. Continuing to expand our view, 

suppose the batteries can run long enough for a human to intervene and install a new generator. The 

electronic system is not in itself resilient—it does not repair itself or recover—but the system as a 

whole, including the human, is resilient.  



The boundaries we draw around the “system” are critical in considering resilience. They must be 

carefully thought through and well defined. By changing the boundaries, we may change a system 

that we considered not to be resilient into one that may in fact be resilient, and vice versa. Any 

metrics we use to measure resilience are therefore specific to a particular system boundary.  

Perhaps the most fundamental distinction we can draw concerns human input discriminating 

between those systems with autonomic recovery, and those requiring some level of manual 

intervention. Determining which type of system we are exploring is critical to our choice of metric. 

In the case of an autonomic recovery, we expect the system to handle perturbations without human 

input. By considering humans as part of the system, all systems are in some sense resilient because 

the imagination and understanding of people provide a deep pool of resources from which to rebuild 

the system. Conversely, for many real world systems, human intervention is a very real part of the 

larger system, and a resilience mechanism that provides adequate performance until humans can 

intervene is sufficient.  

Guideline D: There is no universal way to combine multiple scenarios meaningfully to 

produce a “global” resilience ordering 

As touched on above, any attempt to distill multiple measures of resilience into an “overall” 

measure of the system is fraught with problems. The varying magnitudes of each class of disruption 

may result in very different behaviors.  

Attempting to unify the resulting curves into something that adequately represents the system is 

deeply contextual. Furthermore, when considering systems that need to be resilient to attack, any 

metric must take into consideration that a skilled attacker will attack the system at its weakest point. 

Attempting to reduce different aspects of resilience to a simple scalar loses so much information 

that we believe such a reduction to be ill-advised.  

Guideline E: The ordinal ranking of a system could be different for each customer or 

application  

System requirements drive our ordinal ranking of resilience, as they informally define our mental 

fitness function. Turning once again to our generator example, we can imagine two different sets of 

requirements. One customer may require the generator to maintain a certain minimum voltage at all 

times. Thus, any drop of voltage below this critical value makes the system as a whole not robust 

even if the generator itself recovers, and is not resilient if the system as a whole cannot recover 

from this disruption. In contrast, another customer may care about the total time the voltage sags 

below its assigned value. If this sag lasts longer than a certain period of time, the system fails. So in 

this case, even if the generator capacity recovers after the sag, the system as a whole has failed. 

This leads to two observations. First, the systems are not the same. External dependencies beyond 

the generator itself make the systems different, even though the generation component is the same. 

Second, a particular behaviour of the generator can be “good” for some customers and “bad” for 

others. Thus, we cannot treat the customer requirements as a black box. The resilience of the 

generation system itself matters less than the resilience of the system it supports. The customer 

requirements must drive our metrics for resilience; they are not tied to a single component.  



Guideline F: Metrics for cyber systems are different than those of their biological 

counterparts 

When we consider cyber operations—especially when we must account for the presence of a 

malicious adversary intent on damaging the system—we must think about systemic resilience 

differently than when thinking about random failure.   

When dealing with random errors, it is possible to determine with some degree of accuracy the 

probability of the different failure modes of the system. As such, one can consider the probability of 

different trajectories the system might take. 

In contrast, when we apply this reasoning to non-random failures such as those that an attacker 

might cause, a different picture emerges. A simple example is helpful. Assume we have 10 

vulnerable web servers, and we patch 9 of them. We might conclude that, because we have repaired 

90% of the machines, our risk has diminished dramatically. Alas, when facing an adversary, this is 

incorrect. We have simply added a step that requires the attacker to identify the weak server. Then 

the site as a whole will be penetrated—so patching 9 web servers does not make the system as a 

whole 9 times more secure. 

Thus, when dealing with an adversary, resilience needs to take into account attacker capability and 

cost.  

Guideline G: Considering just the system output is not a sufficient picture of resilience 

When reasoning about resilience, it is important to measure the ability of the system to withstand 

further attacks (Mendonca, 2008). For example, consider a system composed of n redundant 

generators. When a generator fails for any reason, it can be replaced by one of the other generators; 

conceivably, this could happen without any significant degradation of quality of service. However, 

after the failure, the system is not as resilient as it was previously because only n–1 redundant 

generators remain. This “capacity” of the system to recover from subsequent failures is an 

important part of determining systemic resilience and is not necessarily captured by the output of 

the system until it actually fails. As such, an important part of measuring the system’s resilience is 

the cost in terms of its effect on the ability of the system to recover from subsequent failures or 

attacks.  

Guideline H: Measuring resilience alone is usually not what we want 

How we define “robustness” and “resilience” has strong implications when we try to compare the 

resilience of two systems. In particular, the sense that robustness is related to the system’s rigidity, 

and the sense that resilience is related to recovery, can lead to some counter-intuitive conclusions if 

we attempt to measure resilience alone.  

Consider the system producing the graphs in Figure 1. Imagine a system that is not affected (in 

terms of output) by any event or disturbance—that is, the system essentially continues unperturbed 

by the attack or failure. Technically, this system displays robustness, but has not demonstrated 

resilience to a particular attack. Thus, one could argue that it could be less resilient than a system 

that is perturbed by, but recovers from, the same kind of event. In this scenario, measuring 

resilience may not make sense, at least from the perspective of recovery to an attack (as defined in 

(Bishop et al., 2011)). An isolated measure of resilience may not be meaningful without a given 

context, and associated indicators of robustness of the system.  



Anti-Malware Testing: A Case Study 

Now that we have spent some time discussing resilience and its many dimensions, it is enlightening 

to apply these guidelines to a particular area. In our case, we turn our attention to anti-malware 

software, and ask questions not about the robustness it provides systemically, but about the 

resilience of the system. 

Considering guideline C, it is important that we describe the bounds of the system and the property 

we are trying to provide continuity/recovery for.  

The way we think about security is typically centred on robustness. Firewalls keep intruders out. 

Anti-malware software prevents hostile software from executing. Commercial products have 

historically focused on prevention. This actually is a reasonable perspective: stopping bad things 

from happening is crucial to security. However, post-incident behaviours are not as well understood 

but still important. When something goes wrong, how do we restore our system? 

This question is complicated by the meaning of the word “restore”. While preserving and/or 

recovering services is valuable, in many cases it is best simply to restore infected machines from 

backups. If the data contained on the machine can be saved, application of a standard system image 

may well be the “safest” choice. Pragmatically, however, this is often not practical. Backups may 

not be available, and users often spend significant time customizing their machines for use. Thus, 

there is a time penalty to the “reinstall and reconfigure” approach. Conversely, administrators and 

executives care deeply about malware not being completely removed, which can allow subsequent 

attacks, data exfiltration, and even fiscal liabilities. As such, we want to measure not just the actual 

efficacy of system recovery, but the confidence that an organization can have in the repair. 

By way of example, consider two products. One works 90% of the time, repairing the systems 

perfectly, but the remaining one time out of ten fails silently, allowing an attacker to retain access to 

the system. Conversely, another product can only recover 50% of the systems it is run on, but can 

detect perfectly whether or not recovery was successful. For most corporate environments, our 

sense is that the latter product is more useful than the former. However, even based on our 

guidelines, which is more resilient?  

When we consider testing of individual products, it quickly becomes apparent that the community’s 

work to date has been focused on measuring the robustness of anti-malware products. We now look 

at four well-known and important reviewers and their tests, and consider their contribution to 

driving product resilience.  

AV Comparatives 

AV Comparatives (av-comparatives.org) is one of the major specialized anti-malware testing 

groups. AV Comparatives runs a large number of different tests of products; one of these tests is on 

virus removal. Unlike AV-Test, AV Comparatives infects a machine prior to the installation of anti-

malware software (Anti-Virus Comparative, 2012).  

Perhaps in part due to the difficulty of carrying out removal tests, only a handful of samples are 

used in disinfection tests, and all the malware used is relatively well known. Unlike detection tests 

that are run frequently, only two removal tests – from 2011 and 2009 – were available on the AV 

Comparatives website. Thus, while there is some limited focus on recovery, it falls a distant second 

to prevention.  



AV-Test.org 

One of the large specialist commercial anti-malware test groups is av-test.org. This effort, led by 

Andreas Marx, does measure some elements of resilience in that the tests include a section on 

repair. The tests are fairly simple, but do represent a major step in the right direction. According to 

AV-Test’s descriptions, machines have anti-malware protection installed on them, and, then with 

the protection disabled, the system is infected. The products are then restarted and allowed to clean 

the machine. Finally, the cleaned machine is compared to the system prior to infection (AV Test, 

2012). 

While these tests do move us toward resilience, they also test a scenario that is rather unlikely to 

exist in the real world. Protection does not typically get turned off and on. Instead, a machine gets 

infected by a piece of new (to the protection subsystem) piece of malware that resides on the 

machine until the product detects it, either using known or generic malware detection techniques.  

NSS Labs 

NSS Labs carries out regular tests on anti-malware software. Many of their reports are “for fee”, but 

one of the reports they frequently provide publically is their “Consumer Anti-malware Products 

Group Test Report” (NSSLabs, 2010). This report, typically available in the autumn of each year, 

documents the efficacy and performance of consumer-centric anti-malware protection. In the 

September 2010 tests, 11 well-known products were ranked based on their ability to block malware, 

block exploits, and their performance impact. 

One of the interesting parts of the test is that it is exclusively measuring robustness. Should a 

machine become infected or a vulnerability exploited, the tests provide no information on how the 

products allow for system recovery. As such, this test clearly focuses on the robustness of 

protection, and not on its contribution toward resilience. 

Virus Bulletin 

Virus Bulletin has long been known for the high quality of its comparative reviews. However, Virus 

Bulletin tests measure impact on system performance and detection, not repair. Tests describe a 

component that measures how well products detect new samples. From the Virus Bulletin website 

(Virus Bulletin, 2012), we see: 

The VB RAP (Reactive And Proactive) test has been running as part of the bi-monthly 

VB100 comparative reviews since February 2009. The test measures products’ detection 

rates over the freshest samples available at the time the products are submitted to the test, as 

well as samples not seen until after product databases are frozen, thus reflecting both the 

vendors' ability to handle the huge quantity of newly emerging malware and their accuracy 

in detecting previously unknown malware.   

Such tests are interesting, but once again focus on the robustness of the products, not the resilience 

they provide.  

Implications 

The current state of the art of anti-malware product testing reflects our “walls and moats” mentality 

with respect to security: keep the bad things out. However, this mindset is anything but forward 

thinking and represents a battle that we have, as defenders, already lost. Especially in the malware 

space, we must accept that attacks will succeed and we must develop systems that continue to work 

even when penetrated.  



The challenge is that we neither test the resilience of a particular machine or the entire system. At 

the individual machine level, tests of repair are hard to come by, and are overshadowed by tests of 

products’ abilities to block threats before exploitation. At the systemic level, the picture is perhaps 

more complex. The diversity of protection techniques plus the unbounded human-driven recovery 

process does provide for some resilience, but this is not measured, or even really considered by 

current tests. Furthermore, as we discussed in our exploration of resilience more broadly, all 

systems that include human actors have some features that provide resilience. Autonomous 

resilience, however, is not being measured at all with respect to malware.  

Unfortunately, this lack of measurement coupled with a heavy focus on robustness has driven the 

industry toward solutions that are brittle; when they fail, they fail completely. The process of 

working with infected machines is poorly explored, and vendors have little incentive to improve in 

this area. Test results drive user perception, which in turn drives product development cycles.  

Future Work 

One of the challenges of a metric that provides an ordinal scale is that we can say that, under a 

certain set of circumstances, System A is more resilient than System B, but we cannot say how 

much better it is. This is particularly important when considering the cost-benefit ratio of System A 

compared to that of System B. If, in practice, System A provides only a small improvement over 

System B, its value may not be much higher than System B’s. Conversely, if “more resilient” means 

that A will survive and recover and B will not, the difference in value of System A over B is 

potentially very high. 

Our sense is that there is no universal way of quantifying these differences. The “correct” approach 

is one that takes into account the relative costs and likelihood of failure. This is further complicated 

when systems need to be resilient to attack as well as random failure or perturbation. For such a 

system, an approach that provides generally good performance but fails utterly in one particular 

attack scenario should be weighed by its worst-case performance coupled with the cost to the 

attacker in terms of resources, sophistication, or exploitability. For example, if a system fails 

catastrophically when a certain number can be guessed but the chances of successful prediction are 

low—say 264 to 1—the failure, despite its severity, might not be very important in practice.  

Perhaps the solution is to identify a nuanced set of definitions for resilience that takes context and 

other external factors into account. Simplifying the definition to describe a single dimension of the 

property (for example, the system recovery time) may provide a single comfortable metric, but will 

certainly fail to grasp the full meaning of resilience. Instead, if resilience is considered as a multi-

faceted property of the system, it may require a more complex description and a set of nuanced 

metrics, but will better represent the different system perspectives, and operational contexts.   

The relative lack of test scenarios for resilience is an area that is ripe for exploration. As we have 

illustrated in the simple case study of anti-malware products, the major testing groups are hardly 

measuring resilience at all. Those tests, which do include a repair component, do not really shed 

much light on the resilience problem, and tend to consider scenarios that are, perhaps, unrealistic.  

Given that the resilience of a system is so sensitive to the scenario under consideration, standardized 

scenarios being available for different problem spaces would allow the direct and reproducible 

comparison of different approaches to survivability (and robustness, and resilience) using different 

techniques. Without this, much of the work in resilient systems is open to criticism on the grounds 

that careful (or even random) selection of the scenario and requirements can lead to vastly different 

conclusions. Creating such a protocol for anti-malware, for example, would help drive user 

awareness, which in turn will shape the development of new product capabilities. Our ability to 



measure is as important as our ability to design and protect. Any funding agency interested in this 

space should carefully consider this point; even in our simple examples, two identical component 

behaviours can have different implications based on the design of the system as a whole. 

Conclusion 

In this paper, we have examined the concept of resilience as it applies to cyber systems. Our 

conclusion is that the development of an overarching set of metrics that can adequately measure 

resilience in all, or even most, systems is, for the foreseeable future, impractical. Resilience is very 

much about the requirements of the system, and different inputs can and will produce different 

systemic behaviour. Any “simple” measure of resilience obscures much detail, and is likely to be 

counterproductive. 

In recognition of this, we have described several issues to be considered when attempting to 

measure the resilience of a simple system (a simplified power generator). We do not claim this 

group of issues to be universal or comprehensive, but it at least allows us to begin reasoning about 

both how to demonstrate resilience in experiments, and how to best compare different routes toward 

resilient systems. Despite the challenges inherent in measuring resilience, the problem is an 

important one, and its lack of a clear or partial solution restricts progress in the field of cyber 

resilience in general.  

In particular, we have examined current tests of anti-malware product tests in the light of our 

resilience metrics guidelines. As can be seen, almost all our current testing is focused on measuring 

the robustness of products, not the resilience they can provide to the ecosystem in general. This 

testing bias needs to change if we are to provide evolutionary pressure toward solutions that focus 

more on survivability and resilience.   

The complexity and nuances of resilience in real world systems are a major challenge in the 

development not only of resilient systems but also in allowing us to compare the actual behaviour of 

systems. This complexity rises quickly in the face of an adversary who will attempt to exploit the 

system in different ways. Our intuition tells us that funding agencies that have in interest in the 

design of resilient systems will need to provide unambiguous and shareable scenarios that allow the 

direct comparison of different techniques. These scenarios are a critical component of the definition 

of both “resilience” and of the actual system under consideration. 
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