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“No one is so brave that he is not disturbed by
something unexpected.” Julius Caesar

The operating system is increasingly regarded as un-
trustworthy. Applications, hardware, and hypervisors are
erecting defenses to insulate themselves from the operat-
ing system. This paper explores the potential benefits
if operating systems simply embraced these lowered ex-
pectations and deliberately varied API behavior. We ar-
gue that, even for trusted or benign applications, diversity
roughly within the specification can improve resilience to
attack and improve robustness. Malicious software tends
to be brittle; a preliminary case study indicates that, for
software of questionable origin, a somewhat hostile op-
erating system may do more good than harm for sys-
tem security. This paper describes the architecture of
Chameleon, an ongoing project to implement spectrum-
behavior as an operating system feature.

1 Introduction

A common goal of modern operating systems is to be
predictable. This improves compatibility among differ-
ent instances of the system. It supports backwards com-
patibility, so that older programs can run on newer sys-
tems. It provides a basis for programmers to customize
their environment, because they know that they can port
these changes to other instances of the operating system.

But predictability poses problems. Predictability al-
lows vulnerabilities that are exploitable on one system
to be exploitable on all systems of that type. This con-
cept, called “monoculture,” posits that diversity of soft-
ware increases the work factor of attackers. Randomly
perturbing systems can undermine the attacker’s ability
to predict whether an exploit will work against any par-
ticular instance of the system [1]. Essentially, diversity
supplies a specific form of unpredictability.

The intent of diversity is independence, which means
that multiple entities achieve a particular result in such a
way that the only common factor are the inputs. An ex-
ample of this in software is N-version programming [2],
in which multiple teams create software to perform the
same actions, but do so in different ways. That the soft-
ware produces the same results adds credibility to those
results. Fault tolerance work hypothesizes that faults are

independent, and therefore can be compensated for by
using voting or Byzantine protocols [3, 4].

At the system level, approaches to diversity generally
involve randomness. For example, address space layout
randomization (ASLR) causes the system to randomize
the placement of pages of a program in memory dur-
ing execution. A return-to-libc or ROP attack that relies
on a buffer overflow causing a branch to a library func-
tion or gadget may fail, as the address of that target will
vary among instances of an operating system. But this
randomization is often insufficient against knowledge-
able attackers. A recent paper [5] demonstrated how,
even without specific knowledge of the ASLR of a web
server, one can quickly identify and exploit buffer over-
flows in it. The technique relied on the fact that systems
are configured to automatically restart daemons like a
web server, and that ASLR implementations do not re-
randomize the address space after restarting. As a result,
an attacker can incrementally explore the address space
and probe application behavior. Although fixes to ASLR
may mitigate this specific attack, the underlying lesson
is that diversity without unpredictability is not enough.
There is enough residual certainty that adversaries can
craft attacks that will work reliably across multiple in-
stances of a diverse system.

System constraints limit the effectiveness of diversity
because many aspects of operating systems cannot be
random without sacrificing efficiency or reliability. The
obvious question is how to add sufficient uncertainty
while maintaining those qualities.

Consider what “efficient” and “reliable” mean in the
context of using an operating system. An operating sys-
tem’s job is to manage tasks that the system is authorized
to run, “authorized” meaning “in conformance with a se-
curity policy.” For unauthorized tasks, such as those an
attacker would execute to exploit vulnerabilities or oth-
erwise misuse a system, the operating system should be
as inefficient and unreliable as possible. So for “good”
users and uses, the operating system should work pre-
dictably; but for “bad” users or uses, the system should
be unpredictable. The latter case eliminates efficiency
and reliability. An extension is a spectrum of predictabil-
ity, so that the less actions conform to the security policy,
the more unpredictable the results of those actions should
be.
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This paper explores the benefits and feasibility of mak-
ing OS APIs less predictable on a spectrum from diver-
sity within the specification to active deception of dodgy
software. We argue that software robustness can actu-
ally be improved by being developed on a spectrum-
behavior operating system. Even within POSIX, mature,
portable software packages already handle considerable
variations in system call behavior. Most of this matu-
rity is the product of testing and bug reports across many
platforms. Moreover, hardware, compiler, and hypervi-
sor tools to protect the application from a malicious oper-
ating system are rapidly evolving [6–9]. Rather than re-
quire a software developer to manually test the software
on multiple platforms, the development process could be
facilitated by easily generating a range of different be-
haviors to test the software on—running the same test
suite against different operating system behaviors. In
essence, the operating system is a chameleon, taking on
attributes appropriate to the user and use to which it is
put.

Underlying this idea is the observation that systems
tend to be fixed and do not adapt well to new conditions.
A motivated attacker can bring great resources to find at-
tack variations that will succeed. Despite the explosion
of security software, malware size remains at an aver-
age of 125 lines of code [10]. Thus, a “holy grail” of
system design is the ability for the system to adapt with
considerably less effort than the attacker must expend to
explore the new system variants. We argue that unpre-
dictable behavior can be used as a mechanism for active
defense against an attacker.

Section 2 examines deception and diversity as mecha-
nisms for introducing unpredictability into OSes. Sec-
tion 3 presents preliminary results that indicate vary-
ing OS behavior affects malware, which looses data
and functionality. Section 4 describes the design of
Chameleon, a system that combines inconsistent and
consistent deception with software diversity to provide
a mechanism for active defense of computer systems
and herd protection. Chameleon leverages recent work
that pushes an increasing portion of system code to user
level [9, 11–19] as a means to more quickly and easily
mix-and-match system behavior transparently to the ap-
plication.

2 Truths about Deception

This section summarizes how deception and diversity
have been used previously in software design, and high-
lights areas which have been under-studied.

2.1 Diversity

The ability to diversify behavior within a system is an
essential building block for unpredictability. We define
the distinction between diversity and unpredictability as
whether the variations stay within the API specification
or not.

Researchers have studied building diverse computer
systems. Forrest et al. [1] proposed guidelines and ad-
vocated the use of randomized compilation techniques,
which motivated later work in this area [20]. These ad-
vocate breaking unnecessary consistencies in the genera-
tion of instructions to introduce costs for attack exploita-
tion. These methods are passive, and do not adapt to
changing attacks. Instruction randomization techniques
are complementary and orthogonal to our work, as soft-
ware generated with such techniques will make a com-
puter system even more secure.

Chew and Song [21] proposed mitigating buffer over-
flows by employing randomization of system call map-
pings, global library entry points, and the stack place-
ment. However, these methods do not employ inconsis-
tent deception with probabilistic loss of functionality.

Although the focus of this work is not on diver-
sity, we observe that much of the needed infrastruc-
ture for both diversity and deception are already be-
ing developed for other purposes. Recent library OS
designs [9, 11–14, 17, 19], high-performance I/O sys-
tems [16–18], and other hardware access techniques [15]
facilitate migration of kernel APIs into the application it-
self, and are, in some cases, implemented in higher level
languages [14]. With some disciplined modularization
of library OS subsystems, the otherwise daunting task
of multi-version programming can be made feasible—a
few hundred or thousand lines per component, possibly
in different languages. Our vision is to mix-and-match
different implementations of different components, such
that one can run many instances of an application, such
as a web server, and only a few of instances will share
the same combinations of vulnerabilities. When the im-
plementation effort is smaller and well-defined, a single
graduate operating system course could easily generate
dozens of functional implementations of each subsystem.

2.2 Deception

The art of deception has been successfully used in war-
fare for thousands of years. Strategists such as Sun Tzu,
Julius Caesar, and Napoleon Bonaparte advocated the
use of deception as a way to confuse and stall the en-
emy, sap their morale, and decrease their maneuverabil-
ity [22–27].

To a limited extent, deception has been an implicit
technique for cyber warfare and defense. The best known
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example is Cliff Stoll’s use of deception to keep an
intruder on an international telephone line for several
hours, downloading a bogus but interesting file [28]. The
authorities were able to trace the call, and broke up a
spy ring. Cheswick’s response to Berferd is another clas-
sic in this area [29], and foreshadowed much of the hon-
eypot work [30, 31]. Zhao and Mannan [32] employed
deception in system authentication by giving adversaries
access to fake accounts in cases of password brute force
attacks. Sandboxes and virtual machines limit the actions
of the attackers while giving the appearance of unfettered
access to resources.

Consistent deception strategies make the deceiver’s
system appear as indistinguishable as possible from an-
other, real system. The attacker does not perceive the de-
ception and believes in a consistent false reality. Stoll’s
actions were designed to make the attacker think he
had found a system with classified documents on it.
Cheswick created a falsity of a system that was old, slow,
and vulnerable. Honeypots, honeynets, sandboxes, and
virtual machines are designed to exhibit behavior consis-
tent with production systems.

Several technologies for providing deception have
been studied. Software decoys are agents that protect
objects from unauthorized access [33–37]. The goal is
to create a belief in the attacker’s mind that the defended
systems are not worth attacking or that the attack was
successful. The researchers considered tactics such as
responding with common system errors and inducing de-
lays to frustrate attackers. The work assumed consis-
tency of the deception.

Red-teaming experiments at Sandia tested the effec-
tiveness of network deception on attackers working in
groups [38]. The deception mechanisms at the net-
work level successfully delayed attackers for a few hours.
They apparently wore down those who were exposed to
it and prompted some groups to quit before the experi-
ments had ended.

Deception at the host level modifies system behavior
when an attacker is logged in. One implementation uses
a wrapper that intercepts program execution requests and
optionally runs a different program without the user de-
tecting the switch [39]. But many command interpreters
perform some of the requested actions directly, without
invoking system calls and so bypassing the wrapper.

Almeshekah and Spafford [40] further investigated
the adversaries’ biases and proposed a model to inte-
grate deception-based mechanisms in computer systems.
While this model does not address challenges of incon-
sistent deception, the implementation of Chameleon will
leverage it.

In all these cases, the fictional systems are predictable
to some degree; they act as would real systems given the
attacker’s inputs. Other inputs (such as hardware fail-

ures) introduce a degree of unpredictability with respect
to the availability of the system, but do not compromise
its basic architecture or the attacker’s steps to compro-
mise the system.

True unpredictability requires randomness at a level
that would cause the the attacker to get inconsistent re-
sults. This observation leads to the notion of inconsistent
deception [41], a model of deception that challenges the
cornerstone of projecting false reality with internal con-
sistency. Neagoe and Bishop argued that an attacker will
have no idea of whether she is exposed under a decep-
tion or a normal system is truly malfunctioning, but will
feel disoriented and may withdraw from the situation.
In this paper we tested inconsistency with automated at-
tacks and proved their idea with some preliminary results
from keyloggers and botnets. When a keylogger is run-
ning in the inconsistent deceptive environment, it meets
with partial key loss or random key injection.

Iago attacks [42] are a good example of how such
deception might work. An Iago attack occurs when a
trusted program, designed to run on an untrusted system,
is compromised by the untrusted kernel returning inte-
ger values to system calls designed to cause the trusted
program to violate its security policy. This work focuses
on how to attack trusted programs. The notion of moni-
toring system calls on which software depends was first
studied by Forrest et al. [43, 44], who hypothesized that
abnormal sequences of system calls might indicate mali-
cious processes. Peisert and his colleagues extended this
work to include function calls [45]. Both these works
focused on the detection of attacks during runtime. Our
aim is to protect the hosts rather than simply detect at-
tacks. Taking a deeper view into monitoring system call
parameters and randomly employing various strategies,
we are going to build a more powerful spectrum-behavior
OS with both inconsistent and consistent deception, and
software diversity.

3 Malware Case Study

In this section, we show that common malware can be
quite sensitive to relatively minor misbehavior by the op-
erating system. In this particular case study, these are of-
ten errors that are within the specification of the network
or potential storage failure modes; a robust application
would detect these issues with end-to-end checks [46].

We performed a preliminary study using ptrace to
interpose on system calls invoked by a keylogger and a
botnet, introducing unpredictable behavior into their ex-
ecution. In these cases, the malware runs without crash-
ing, but some I/O is corrupted.

We select the strategies below based on analysis of the
types and frequency of system calls invoked by benign
processes and malware. Ideally, we would like to se-

3



lect system calls that are more frequent in malware. We
selected 39 benign software from sourceforge [47] and
86 malware samples for Linux, including 17 backdoors,
20 general exploits, 24 Trojan horses and 25 viruses and
compared the system calls they invoke. We found that
malware invokes a system call set that is smaller than be-
nign software; approximately 50 different system calls.
The most common system calls invoked by malware in-
clude write(), wait(), clone(), close(), read(),
open(), send() and fstat().

In selecting strategies for spectrum behavior, we per-
turb calls that still allow code to run, but do harm
to malware. We found that the following calls are
critical to process start-up and execution, and can-
not be easily varied: fstat(), getuid(), ioperm(),
set thread area(), and mprotect(). Other system
calls, however, will just deviate from normal track in-
nocuously when their parameters are changed. For in-
stance, decreasing the number of bytes for write() will
cause a keylogger to lose keystrokes, silencing a send()
might cause a process to fail sending an e-mails, and ex-
tending time in nanosleep() will just slow down a pro-
cess. The unpredictability coverage is defined as the set
of system calls that are safe for spectrum behavior and
are of strong relevance to malware execution. It currently
includes the following system calls: open(), read(),
write(), lseek(), socket(), send(), recv() and
nanosleep().

We discovered some initial strategies for spectrum
behavior, varying several types of parameters that are
widely used in system calls.

Strategy 1: Silence the system call: we immedi-
ately return a fabricated value upon system call invo-
cation. This strategy only succeeds when subsequent
system calls are not highly dependent on the silenced
action. For example, this strategy worked for read()
and write(), but not on open(), where a subsequent
read() or write() would fail.

Strategy 2: Change buffer bytes: we randomly
change some bytes or shorten the length of a buffer
passed to a system call, such as read(), write(),
send() and recv(). This strategy corrupts execution
of a scripts, and the reading or exfiltrating of sensitive
data.

Strategy 3: Add more wait time: the goal of this
strategy is to slow down a questionable process, for ex-
ample rate-limiting network attacks. We randomly in-
crease the time a nanosleep() call yields the CPU.

Strategy 4: Change file pointer: this approach simu-
lates file corruption by randomly changing the file de-
scriptor pointer between some invocations of read()
and write().

We first applied unpredictability to the Linux Keylog-
ger (LKL) [48], a userspace keylogger, using strategies

Figure 1: Comparison of email bytes sent from bots in
predictable and unpredictable environments.

1, 2 and 4. The keylogger not only lost valid keystrokes
but also had some noise data added to the log file.

Next we applied unpredictability to the BotNET [49]
malware, which is mainly a communication library for
the IRC protocol that was refined to add spam and SYN-
flood capabilities. We used the IRC client platform
irssi [50] to configure the botnet architecture with a
botherder, bots and victims. The unpredictable strategies
were applied to one of the bots.

We first tested commands that successfully reached
the bot under the unpredictable environment, such as
adduser, deluser, list, identify, access, memo,
sendMail and part. The bot gets the command through
calling read() for one byte each time, and one lost byte
will destroy the command from being recognized. Here
we randomly silenced the read() system calls and mea-
sured how many commands were correctly received by
the bot. Nearly 40% of the commands from the bot
herder were lost under our unpredictable environment.

We measured the effects of the unpredictable environ-
ments on the victim’s ability to send spam emails (see
Figure 1). In the normal environment, nine emails vary-
ing in length from 10 to 90 bytes were successfully sent.
In the unpredictable environment only partial random
bytes were sent out by arbitrarily reducing the buffer size
of send() in the bot process. In the case of a spam bot,
truncated emails will streamline the filtering process, not
only for automatic filters, but also for the end users.

We also performed a SYN-flood attack to analyze the
effectiveness of the unpredictable environment in miti-
gating DDoS attacks. In a standard environment, one
client can bring down a server in one minute with SYN
packets. When we set the unpredictability threshold to
70% and applied strategies 1 and 3, the rate of SYN pack-
ets arriving at the victim server decreased (Figure 2), re-
quiring two additional bots to achieve the same outcome.
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Figure 2: Comparison of SYN-flood attacks in standard
and unpredictable environments. Unpredictability can
increase the DDoS resource requirements.

Figure 3: Chameleon can transition processes among
three operating modes: Diverse, to protect benign soft-
ware; Unpredictable, to disturb unknown software; and
Deceptive, to analyze likely malware.

4 Spectrum-Behavior OS

Chameleon combines inconsistent and consistent decep-
tion with software diversity for active defense of com-
puter systems and herd protection. It provides three
distinct environments for process execution: (i) a di-
verse environment for whitelisted processes, (ii) an un-
predictable environment for unknown or suspicious pro-
cesses (inconsistent deception), and (iii) a consistently
deceptive environment for malicious processes. This is
illustrated in Figure 3.

Known benign or whitelisted processes run in the di-
verse operating system environment, where the imple-
mentation of the program APIs are randomized to re-
duce instances with the same combinations of vulnera-
ble code. Unknown processes run in the unpredictable
environment, where a subset of the system calls have
their parameters modified or are silenced probabilisti-
cally. The execution of processes in this environment is
unpredictable as they can lose some I/O data and func-
tionality. An unpredictability threshold prevents pro-
cesses from crashing. If a process running in this envi-
ronment is malicious, it will have difficulty accomplish-
ing its tasks as some system call options used to exploit
operating system vulnerabilities might not be available
all the time, some sensitive data being collected from and
transferred to the system might get lost, and network con-

nectivity with remote malicious hosts is not guaranteed.
The idea is to create a foggy environment for the attacker,
thereby protecting the host. It also offers herd protection
to a community of hosts by raising the bar for the imple-
mentation of large-scale attacks, as bots or similar mal-
ware running in the unpredictable environment will not
be reliable anymore. An attacker might notice the hostile
environment, but its unpredictable nature will leave her
with few options, one of them being system exit, which
from the host perspective is a winning outcome.

Processes identified as malicious run in a deceptive
environment, where a subset of the system calls are
modified to deceive an adversary with a consistent false
front while tracking down her actions. In this environ-
ment, files the attacker intends to leak will be honey-
files, and any system privileges she thinks she has will
be bogus. Connections and activities with malicious re-
mote hosts will be intercepted and logged. The goal is
to give the attacker the illusion that she controls the sys-
tem, while forensic data is collected and forwarded to
response teams such as CERT [51].

Chameleon can adjust its behavior over the lifetime
of a process. Its design includes a dynamic, machine
learning-based process categorization module that ob-
serves behavior of unknown processes, and compares to
training sets of known good and malicious code. Based
on its behavior, a process can migrate to the diverse or
deceptive environment.

The Chameleon prototype is ongoing work. Diversity
is implemented with variations of the Graphene library
OS [12]. Unpredictability is primarily implemented us-
ing the host ABI, although we expect some of this may
be usefully implemented in the library OS as well.

5 Conclusions

We currently have the worst of both worlds: rather sim-
ple attacks work, and both research and industry are
moving towards models of mutual distrust between ap-
plications and the operating system [6–9]. If applications
code will trust the operating system less in the future,
why not leverage this as a way to make malware and at-
tacks harder to write?

Sacrificing predictability will introduce new, but
tractable, research questions—especially around usabil-
ity. For example, a user who installs a new game with a
potential Trojan horse online will be tempted to whitelist
the game if it isn’t playable. We believe the types of vari-
ation can be adjusted dynamically, potentially with user
feedback. If successful, sacrificing predictable behav-
ior can finally give systems an edge over one of the pri-
mary sources of computer compromises [52]: malware
installed by drive-by downloads and social engineering.
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