
Evaluating Secure Programming Knowledge

Matt Bishop1, Jun Dai2, Melissa Dark3, Ida Ngambeki4, Phillip Nico5, and
Minghua Zhu6

1 University of California at Davis; email : mabishop@ucdavis.edu
2 California State University at Sacramento; email : jun.dai@csus.edu

3 Purdue University; email : dark@purdue.edu
4 Purdue University; email : ingambek@purdue.edu

5 California Polytechnic State University; email : pnico@calpoly.edu
6 University of California at Davis; email : mhzhu@ucdavis.edu

Abstract. Secure programming is a widely used term for programming
robustly. Applying the principles and methodologies of this style of pro-
gramming would significantly improve the quality of software in use to-
day. Teaching students how to program robustly, or securely, is a first
step towards this goal. This paper presents a concept map for secure
programming and then some questions used to evaluate students’ knowl-
edge of this subject. These questions have been given both before and
after a term of programming, computer security, and other classes that
cover this subject. In this paper, we discuss how the questions reveal
the students’ understanding of material in the concept map, and what
erroneous ideas the questions reveal.

1 Introduction

In the United States, there has been considerable concern about the problem of
poor software. One of the effects has been to examine how to teach students to
program robustly.7 There are two approaches commonly considered. The first,
adding this material to classes, would require existing material to be dropped,
and the instructors to understand and apply this style of programming to all
class work. But in an algorithms class, for example, the students are assumed to
know how to program, so the teachers and graders focus on whether the programs
correctly implement the algorithms and meet the assignment requirements. Thus,
whether the students write their programs securely is not considered, and —
like any other aspect of practice — their skill atrophies (or is never acquired).
The second, creating a separate class that covers the principles and practice of
robust programming, adds a new class to an already crowded curriculum. The

7 In this paper, we use the terms “secure” and “robust” synonymously. In practice,
they are slightly different. “Secure” programming refers to a program that meets
specific security requirements. “Robust” programming refers to programs that do
not crash, and handle bad inputs in a reasonable way (“reasonable” being defined in
the context of use). Nevertheless, people refer to “secure programming” when they
mean “secure and robust programming”, and we adopt this use.

class would need to be required to ensure students learned the material. But the
students would need to practice it after the class, and this would require the co-
operation of other instructors, resulting in problems similar to those identified
earlier.

A third approach is to provide support for students through a mechanism
other than a class [3]. Writing clinics in law schools and English programs do
this. The clinics provide assistance on the mechanics of good writing: grammar,
organization, and expression. They do not determine if the content is correct
or meets the requirements of the assignment. With this clinic, the teachers can
focus on the content, and leave the mechanics to others. Similarly, a “secure
programming clinic” would assist students by showing them how to improve the
robustness and security of their programs without determining if they satisfied
the requirements of the assignment. Teaching robust programming techniques
in the context of assignments where robustness is not the focus, motivates the
students because they will see that programming robustly produces better over-
all results. For example, making a habit of checking library and system calls
for error return values speeds development and produces more correct programs
because programming mistakes are likely to be discovered quickly and remedied.
While analysis tools can provide much of this information, the clinic focuses
on student understanding. In addition to improving the students’ programming,
the knowledge obtained from the clinic enables the students to analyze the re-
sults produced by the tools, specifically to distinguish false positives from true
positives.

A key part of starting such a clinic is to understand how students think about
robust programming and to assess whether the clinic is having the desired effect
on their understanding of secure programming. To do this we have designed an
assessment consisting of a pre-test and a post-test administered to the students
at the beginning and end of the term during which they use the clinic. These
questions are the start of a concept inventory. In order to develop these questions,
we started by developing a concept map of secure programming to make sure
we were assessing a reasonable body of knowledge. We then developed questions
based on the concepts represented in the map. This paper presents the concept
map of secure programming and discusses several questions designed to test
students’ knowledge and misconceptions of secure programming based on the
concept map. We explain how the questions relate to the concept map, and how
well a set of 162 students performed when asked the questions.

2 Concept Inventories

Concept inventories are assessments designed to identify students’ misconcep-
tions; the questions, administration, scoring procedures, and interpretations are
consistent and in adherence with a predetermined standard/protocol. They are
not intended to be used to “grade” student learning, and therefore do not replace
examinations, homework, discussions, and other methods used to measure stu-
dent learning. Instead, the intent of concept inventories is diagnostic. Concept

inventories are designed to measure core concepts of a topic and the extent to
which students have achieved expert level thinking in a domain. The scores are
used to tell us how many students do and do not understand a concept, and
which conceptual picture they hold instead.

Concept inventories are useful for helping diagnose particular levels of stu-
dents’ conceptual understanding. Research on addressing misconceptions in sci-
ence suggests that a new concept cannot be learned until the student is forced
to confront the paradoxes, inconsistencies, and limitations of the mental model
that already exists in the student’s mind [7]. Students persist in erroneous be-
liefs, not intentionally, but because their erroneous beliefs seem plausible, useful,
and accurate [11]. Concept inventories aim to identify these erroneous beliefs, so
that once they are manifest, they can be addressed and corrected. The results
from concept inventories are primarily intended to improve pedagogy, though
the results can be used to help instructors make comparisons of teaching over
time.

This method for assessing students’ conceptual understanding was first de-
veloped 50 years ago, in the field of physics education to measure students’ un-
derstanding of Newtonian forces [1, 9]. This initial concept inventory, the Force
Concept Inventory, is still widely used today in physics and engineering. Since
then several studies have validated the effectiveness of concept inventories for
distinguishing between students who have understood concepts and students
who merely memorized them [6]. Concept inventories have also been validated
as effective in the evaluation of teaching methods [8, 10, 14]. Today concept in-
ventories also exist in astronomy, chemistry, engineering design graphics, biology,
thermodynamics, heat transfer, statics, statistics, electro-magnetism, circuit the-
ory, genetics, nursing, and many other disciplines.

The concept inventory is based on the group of learning theories classified as
conceptual change theories. Concepts are an abstract mental representation of a
particular phenomenon. Conceptual learning therefore is the process of identify-
ing and correctly categorizing concepts such that they can later be used to make
predictions or decisions [4, 12]. Correct categorization involves making links to
prior knowledge and so may require adjustment or correction of prior knowledge.
Ausubel’s assimilation theory contrasts rote learning (temporary acquisition of
disorganized or poorly understood isolated or arbitrarily related concepts) with
meaningful learning (long-term acquisition of organized, interrelated concepts
into existing cognitive structures) [2]. In this theory, meaningful learning requires
the connection of new knowledge to pre-existing understanding. This theory has
been supported by subsequent research into student learning [4]. Another theo-
retical basis for concept inventories comes from the National Research Council
publication, Knowing What Students Know: The Science and Design of Educa-
tional Assessment [13]. This study lays out an “assessment triangle” as the basis
for assessment instruments. This triangle has three elements: cognition, a theory
that describes how students learn in a particular content domain; observation,
tasks that allow students to demonstrate their knowledge; and interpretation, a
coherent method to make inferences about student knowledge based on obser-

vations from the assessment [14, 13]. Therefore, the assessment instrument must
be designed to align the beliefs about how students learn in the content domain
with the assessment tasks and interpretation of those tasks. Based on these theo-
ries, the development of the concept inventory begins with a clear understanding
of the content domain, in this case secure programming, and an understanding
of how students learn in this domain.

3 Concept Map and Inventory

Figure 1 shows the concept map developed for this project. Figure 2 describes
each element of the concept map. This concept map depicts epistemologically
important sets of concrete and abstract objects in secure programming. This
concept map was developed using the input of subject matter experts. Devel-
opment of the concept map is described in full in a related paper [5]. To date,
this project has developed and tested 26 questions, based on the concept map,
aimed at diagnosing students’ conceptual misunderstandings in secure program-
ming. The questions have been tested through the implementation of the Secure
Programming Clinic at University of California Davis, California Polytechnic
State University San Luis Obispo, and California State University Sacramento.
Roughly half of the questions have been used and revised three times now, and
half have been used and revised twice. The team continues to add additional
questions with the goal of eventually covering all concepts depicted in the con-
cept map. Examples of the questions and explanations of how distractors are
used to target misconceptions are presented below.

4 Example Questions

The goal of the questions presented in this section is to determine how well the
students understand the concepts underlying secure programming. The questions
therefore have to have carefully designed distractors to ensure that the students
who answer the questions correctly do so based on understanding the concept
and not based on simply eliminating obviously wrong answers. The questions
presented here were selected from a larger set of 27 questions. Each question has
several distractors, the rationale for each is discussed, and the effectiveness of
the distractors are shown as percentages of the 162 students who completed the
assessment.

4.1 Handling User Input

This question deals with the important concept “If you have no reason to trust
it, don’t trust it. Take greater care with any input you have not generated.” The
goal of this question is to see if students know how to handle such input.

Question: User input can be unpredictable. Which of the following is the
best way to avoid problems processing that input?

	

	

	

	

	

	

	

	 	

	

	

	

	

	

	

	

	

	

	

Secure	
Programmer	

Code	Design	

Algorithms	SWA	Tools	Assumptions	 Programming	
Development	
Environment	

Inputs	 Bad	Code	

Memory	
Management	

Input	
Validation	

Authoritative	
Cryptography	

1	

2	3	 4	 5	 6	

7	 8	

9	 10	

11	

12	

A	B	

C	

D	

E	

F	

G	 H	

I	J	

K	

L	

M	N	 i	 ii	

iii	

iv	

v	

Fig. 1. The concept map. Figure 2 provides the captions for the content.

Very	Important	

1. Assume	whatever	can	go	wrong	will
2. Assume	any	input	is	going	to	be	malformed	or	not	what	you	expect
3. Do	not	make	a	security	decision	based	on	un-trusted	inputs
4. Check	that	all	arguments	are	of	the	correct	type	and	will	not	overflow	any	arrays	
5. Use	data	abstraction	to	enable	the	compiler	to	perform	rigorous	type	checking	and	to

enforce	constraints	on	values	and	lengths
6. Understand	the	context	in	which	the	program	will	execute
7. Validate	your	input	stream	to	ensure	that	the	commands	invoked	are	expected	and	no

other	commands	are	injected
8. When	performing	input	validation	take	into	account	how	programs	invoked	with	those

arguments	could	interpret	them
9. Avoid	hard	coded	passwords	and	secrets	in	your	program
10. Use	well	known	and	accepted	cryptographic	algorithms	and.	Don't	use	obsolete	or

deprecated	cryptographic	algorithms	or	create	your	own	algorithms
11. Use	well	known	and	accepted	cryptographic	random	number	generation.	Don't	use

obsolete	or	deprecated	cryptographic	algorithms	or	create	your	own	algorithms	
12. Many	tools	help	you	create	a	secure	program,	please	take	advantage	of	them

Somewhat	Important	

i. Hide	details	that	users	don't	need	to	know	about
ii. Avoid	side	effects	in	arguments	to	unsafe	macros.	If	a	developer	is	using	a	macro	that

uses	its	arguments	more	than	once,	then	the	developer	must	avoid	passing	any
arguments	with	side	effects	to	that	macro

iii. Use	parentheses	around	macro	replacement	lists.	Otherwise	operator	precedence	may
cause	the	expression	to	be	computed	in	unexpected	ways

iv. Minimize	the	scope	of	variables	and	functions.	This	prevents	many	unexpected	changes
to	the	variables	due	to	programming	error

v. When	the	memory	a	pointer	points	to	is	freed,	set	the	pointer	to	NULL.	Otherwise,
these	dangling	pointers	could	cause	writing	to	freed	memory,	and	create	a	double	free
vulnerability.

Important	

A. If	you	have	no	reason	to	trust	it,	don't	trust	it.	Take	greater	care	with	any	input	you	have
not	generated

B. If	it	cannot	happen,	check	for	it.	Someone	may	modify	the	program	in	such	a	way	that	it
can	happen	...	or	you	may	be	wrong

C. Do	not	use	input	or	constructor	string	functions	that	do	not	perform	any	bound
checking

D. Do	not	use	input	or	constructor	functions	that	cannot	check	the	length	of	the	input	
E. C	and	C++	compilers	generally	do	not	check	types	rigorously.	A	developer	can	increase

this	level	of	checking	by	turning	on	compiler	warnings,	which	will	often	catch	more	type
errors	than	if	they	are	not	used

F. Avoid	calls	to	malloc()	with	the	parameter	(number	of	bytes	to	be	allocated)	set	to	0.
Either	the	function	returns	NULL,	or	it	returns	a	pointer	to	space	that	cannot	be	used
without	overwriting	unallocated	memory

G. Control	the	input	values	when	possible	by	limiting	them	to	a	finite	set
H. Calling	functions	with	null	parameters	for	input	should	be	checked	for	and	defended

against
I. Type	conversion	issues	especially	for	cases	that	may	result	in	integer	wraparound	and

overflows
J. Rules	for	pointer	arithmetic	as	vulnerabilities	can	arise	when	addition	or	size	checks

involve	two	pointer	types
K. When	performing	input	validation	make	sure	that	any	validated	path	does	not	allow

escaping	from	a	restricted	directory
L. Before	creating	a	directory	or	file,	make	sure	you	have	set	the	correct	default

permission	specification
M. Be	wary	of	off	by	one	errors
N. When	using	format	string	functions,	make	sure	that	the	format	string	can	be

authenticated/trusted

Fig. 2. The contents of the concept map.

a. Elevate privileges when processing user-provided input, to ensure the com-
putation can be done.

b. Drop unnecessary privileges when processing user-provided input, to limit
the effects of bad user input.

c. Keep privileges constant whenever possible, for more readable code that is
easier to maintain without introducing error.

d. Assign elevated privileges to a new process or thread that reads the input
and does the computation, so that any malicious side-effects do not affect
the primary process or thread.

e. Keep privileges the same but constrain the process execution in a sandbox
so that any malicious side-effects are contained.

The approach to answering this question lies in the effects of bad input, which
could cause the program to act in unexpected ways. If the program has elevated
privileges, this could breach security. The program may also serve as a vector for
the attacker to inject malicious code, for example through a buffer overflow. The
answers probe what the student is thinking about how to handle this situation.

Answer (a) focuses on the trade-off between security and getting the job
done. Here, students selecting (a) are focused on the latter rather than the for-
mer. Answer (d) is similar, but here there is an element of isolation by handling
the input in a separate thread. This presents an application of a secure program-
ming concept; it is simply the wrong use of that concept. Answers (c) and (e)
sound reasonable because no elevation of privileges is involved, but (c) focuses
on simplicity and (e) the concept of isolation. The correct answer is (d), as it
implements least privilege most effectively.

Most students (43%) got the right answer. The rest generally chose (d) and
(e) (18% and 25%, respectively). A few (9%) chose (c), and only 5% chose (a).

The concept of isolation provides a good distractor. Students found that
elevating privileges without isolation was obviously wrong, and keeping privileges
constant without isolation was less obviously wrong, but generally considered
wrong. So from these answers, an instructor can lead a discussion of the role of
isolation in secure programming, and how to use it properly.

4.2 Indexing into an Array

Failing to check bounds and indices when manipulating arrays is a common
problem. This question deals with the important concept “Check parameters
to ensure that all arguments are of the correct type and will not overflow any
arrays.” It focuses on overflow in the negative direction (really, underflow) that
is more subtle than overflow due to numbers that are too big.

Question: Your program accepts parameters x, y, and z to calculate the
position of an item in an array relative to the current item indexed by ptr.

101 newOffset = (x ∗ c o l S i z e) + (y ∗ rowSize) − z
102 ptr = ptr + newOffset
103 newObject = objectArray [ptr]

Which of the following is true?

a. I should check that the result in line 101 is not negative.
b. I should check that the result in line 101 is not null.
c. I should check that the result in line 102 is not negative.
d. I should check that the result in line 102 is not null.

This question examines the student’s awareness of needing to locate the pa-
rameters to check and to validate the index used. Here, the parameters are
implicitly of an integer type or a type that would be coerced into the integer
type in arithmetic expressions.

Answers (a) and (b) both deal with validating something other than the
index. It is tempting to assume checking newOffset is enough as that is derived
directly from the parameters, but that is not the index; ptr is. They speak to
locating the right variable to check.

Answers (b) and (d) both deal with the parameter type. The value “null”
refers to a pointer that one cannot validly dereference (for example, the NULL
pointer in C). As the result in line 102 is used as an index in line 103, it cannot
be a pointer, and hence checking for “null” is not appropriate. Also, in many
languages, “null” is a synonym for 0, which is a valid index.

When given to students, 38% got the right answer, (c). The rest of the stu-
dents generally chose (a) (28%) followed by (b) and (d) (both at 17%). Thus,
the three distractors effectively cover the most usual student misunderstandings,
and resulting failures to index into an array properly in this code snippet.

4.3 Handling Missing Data

This question speaks to the important concept “If you have no reason to trust it,
don’t trust it. Take greater care with any input you have not generated.” Here,
the input from a list has some fields that are missing.

Question: You must read a list of user names and starting date: day, month,
year. Then your program must sort them in ascending order to create a list of
users by seniority. Some start dates are missing the day or month of the start
date. This list-sorting function may be used elsewhere, or tweaked in the future.
Which statement below is the most robust way to handle the missing data?

a. Initialize the variables for missing information with a random plausible value.
b. Leave the variables for missing information uninitialized.
c. Initialize the variables for missing information with 0.
d. Initialize the variables for missing information with the maximum plausible

value.

This question examines how the student handles the missing data. In general,
there are four ways to handle such data: ignore it, insert a value (random, 0, or
a maximum value), give an error message and discard the rest of the record, or
have the program stop. The answers focus on the first two behaviors. The key
is that the caller of the sorting function must handle the missing values because
the list-sorting function may be used elsewhere, or changed.

Answer (b) ignores the missing data. Answer (a) suggests using random val-
ues. The problem with this answer is that the data with the missing values will
be randomly scattered throughout the data with all values present. Answers (c)
and (d) cause the data with the missing fields to be grouped together, but as we
do not know the minimum value for those fields, setting the missing values to 0
may put the data into the middle of all the data. Answer (d) puts all the data
at one end of all the data, so it is the most robust.

When given to students, 22% got the right answer, (d). Of the other an-
swers, 57% of the students chose (c). Fewer chose (a) and (b) (7% and 13%,
respectively). Thus the incorrect answers provide good distractors to capture
the student misconceptions for this question.8

4.4 Pointer Validation

This question tests common misconceptions about two important concepts, “Fol-
low the rules for pointer arithmetic as vulnerabilities can arise when addition
or size checks involve two pointer types” and “Be Wary of off by one errors.”
Problems with these concepts often occur together.

Question: For a C program you must create an array of size integers. You
write:

1 unsigned long ∗ s ta r t , ∗end ;
2 s t a r t = mal loc (s i z e ∗ s i z e o f (unsigned long)) ;

Assuming malloc succeeds, the correct value for end can be computed by:

a. end = start + size ∗ sizeof (unsigned long);
b. end = start + size ∗ (sizeof (unsigned long) − 1);
c. end = start + (size − 1) ∗ sizeof (unsigned long);
d. end = start + size − 1;
e. end = start + sizeof(unsigned long) − 1;

This question tests the student’s knowledge of the two concepts by asking the
student to set a pointer to the last element of an array of unsigned longs. Answer
(a) goes past the end of the array by the number of bytes in one unsigned long
integer (usually 4 or 8 bytes). Answers (b) and (c) offer the option of subtracting
1 from either the size of the allocated space or the element size, thereby testing
the student’s understanding of pointers. Answer (d) captures those students who
understand the off-by-one problem, but who do not realize that the buffer size
and element size are distinct, and answer (e) omits the number of elements in
the array. All these are common student errors.

For this question, 31% of students got the right answer, (c). Answers (b)
and (e) distracted roughly 16% of students, while (d) attracted 20%. Even the
least successful, (a), attracted 10% of the students. Thus the incorrect answers
provide good distractors to capture the student misconceptions for this question.

8 The numbers add up to 99%, not 100%, due to roundoff error.

4.5 Input Validation

This question speaks to the very important concept “Assume any input is going
to be malformed or not what you expect.” The vehicle used is parameters that
are pointers.

Question: You must write a function that stores an integer in the destination
pointed to by value, and returns an integer indicating success or failure. You start
with this function signature:

i n t getSeconds (i n t ∗ secondsParameter)

Which of the following must you do before or instead of any of the others?

a. I must dereference the pointer to get the memory location.
b. I must find the value that the pointer refers to.
c. I must check that the pointer passed in does not already have a value.
d. I must check that the pointer passed in is not NULL.

Here, common misconceptions about pointers lead to confusion about what
is and is not possible with input validation in C. The only thing that the pro-
grammer can do is to check that the pointer is not NULL, meaning the correct
answer is (d). Answer (a) is based on the erroneous belief that dereferencing
a pointer gets the address of the location rather than the value stored at the
pointed-to location.. Answer (b) refers to the value at the location, but does not
check that the pointer is not NULL. Answer (c) uses the common misconception
among novice programmers that something special must be done with respect
to initializing or not initializing a pointer before it can be used.

Most students (69%) got the correct answer. Distractors (a) and (c) were
similar in effectiveness, capturing 10% and 13% of the students respectively.
Answer (b) got 8% of the students. Hence most of the students understood the
idea underlying the concept of input validation.

4.6 Use of Tools

This question deals with the important concept “There are many tools to help
you create a secure program, please take advantage of them.” The goal of this
question is to see if students know the differences between a file descriptor and
a file name.

Question: Explain the choice of a file descriptor over the file name as the
channel to securely access a file.

a. A file descriptor is a data structure that allows only me to use the file for as
long as it is open, while the file name does not.

b. The file descriptor is an abstraction that makes for more understandable
code.

c. The file descriptor is a pointer to the file that stays the same regardless of
changes to the file name or location.

d. The file descriptor is a data structure that encapsulates the file name.

e. The file descriptor is a data structure that represents the validated file name.

The approach to answering this question lies in the differences between a file
descriptor and a file name. A file descriptor designates an open file in a particular
process, and a file name is a string that designates a file in a filesystem. One
common problem in computer programming is the TOCTTOU (Time Of Check
to Time Of Use) race condition. Using a file descriptor to a file allows one to
check or change the status on the file without worrying that the file reference
has been changed in the meantime.

Answer (a) is wrong because multiple file descriptors can refer to the same
file. Answer (b) is not correct because “file descriptor” has nothing to do with
making code more understandable. Answers (d) and (e) are wrong because the
file descriptor is an integer that the kernel uses as an index into a table containing
information about the file. The “file descriptor is a data structure” in answers
(a), (d) and (e) is a good distractor. Thus, those selecting (a), (d) and (e) do not
understand the underlying mechanism of a file descriptor. The correct answer
is (c), because the file descriptor refers to the same file regardless of changes to
the file name or location.

When given to students, 54% got the right answer. The rest generally chose
(a), (d) and (e) (11%, 14% and 12%, respectively). A few (9%) chose (b). This
suggests that an instructor should focus on the underlying mechanism of a file
descriptor.

5 Psychometric Analysis

Once students have taken the test, the test question and its distractors are an-
alyzed. We calculate item effect, which is a point biserial correlation coefficient
with a possible range of −1.00 to 1.00. Item effect tells us which students with
a high overall score also got a particular test question correct. A strong positive
correlation suggests that students who get any one question correct also have
a relatively high score on the overall exam. For a concept inventory where the
main goal is to identify misconceptions, item effect is most useful for identify-
ing questions that are not functioning at all, i.e., those that have a very low
correlation or a negative correlation. Such a correlation would indicate that the
distractors are so confusing even students who generally know the material are
unable to answer correctly. Figure 3 below shows the item effect distribution for
the 26 questions on the concept inventory.

We then combine the item effect with an analysis of the percent of correct
responses for each item distractor. The table in Fig. 4 below shows the item
effect and distractor analysis for a sample question (with content removed). The
correct answer is (c). This test question is functioning fairly well; it is both
discriminating knowers from non-knowers, and the distractors are not so easy
that students can guess they are not the right answer.

Fig. 3. Item effect distribution for the 26 questions on the concept inventory.

Test Item % correct response

(a) 27.78%
(b) 17.28%
(c) 38.27%
(d) 16.67%
Item effect 0.363

Fig. 4. Example of distractor analysis and item effect for a sample question.

6 Conclusion

Three schools have used these questions in an evaluation of students in three
different classes. The questions here were used to test students’ understanding
at the beginning of the classes. They could also be used at the end, and the
difference will indicate how well the students have absorbed the material on
secure programming. A second set of questions has been developed for testing
at the end of the classes, using the same concept map and a similar method of
evaluating the distractors.

In the future, we hope to involve more academic institutions in this program.
The greater the diversity of schools, and hence students, involved in the evalu-
ation of these questions, the more effective the distractors under a wide variety
of circumstances. This will lead to clearer results in the evaluation of the secure
programming clinics, the ultimate goal of these questions.

Acknowledgements. We Thank Stephen Belcher for his valuable insights and
assistance with this work. This material is based upon work supported by the
National Science Foundation under Grant No. DGE-1303211 to the University
of California at Davis and Grant No. DGE-1303048 to Purdue University. Any
opinions, findings, and conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

References

1. Abou Halloun, I., Hestenes, D.: The initial knowledge state of college physics stu-
dents. American Journal of Physics 53(11), 1043–1055 (1985)

2. Ausubel, D.P., Novak, J.D., Hanesian, H.: Education Psychology: A Cognitive
View. Holt, Rinehart & Winston, New York, NY USA (1978)

3. Bishop, M., Orvis, B.J.: A clinic to teach good programming practices. In: Pro-
ceedings from the Tenth Colloquium on Information Systems Security Education.
pp. 168–174 (Jun 2006)

4. Bransford, J.D., Brown, A.L., Cocking, R.R.: How People Learn: Brain, Mind,
Experience, and School. National Academies Press, Washington, DC USA (2000)

5. Dark, M., Ngambeki, I., Bishop, M., Belcher, S.: Teach the hands, train the mind
. . . a secure programming clinic! In: Proceedings of the 19th Colloquium for Infor-
mation Systems Security Education. pp. 119–133 (Jun 2015)

6. D’Avanzo, C.: Biology concept inventories: Overview, status, and next steps. Bio-
Science 58(11), 1079–1085 (Dec 2008)

7. Garvin-Doxas, K., Klymkowsky, M., Elrod, S.: Building, using, and maximizing
the impact of concept inventories in the biological sciences: Report on a national
science foundation–sponsored conference on the construction of concept inventories
in the biological sciences. CBE Life Sciences Education 6(4), 277–282 (Winter 2007)

8. Hake, R.R.: Interactive engagement versus traditional methods: A six thousand
student survey of mechanics test data for introductory physics courses. American
Journal of Physics 66(1), 64–74 (Jan 1998)

9. Hestenes, D., Wells, M., Swackhamer, G.: Force concept inventory. The Physics
Teacher 30(3), 159–166 (Mar 1992)

10. Laws, P., Sokoloff, D., Thornton, R.: Promoting active learning using the results
of physics education results. UniServe Science News 13, 14–19 (Jul 1999)

11. Mayer, R.E.: Educational Psychology: A Cognitive Approach. Harper Collins, New
York, NY USA (1987)

12. Özdemir, G., Clark, D.B.: An overview of conceptual change theories. Eurasia
Journal of Mathematics, Science & Technology Education 3(4), 351–361 (2007)

13. Pellegrino, J.W., Chudowsky, N., Glaser, R.: Knowing What Students Know: The
Science and Design of Educational Assessment. National Academies Press, Wash-
ington, DC USA (2001)

14. Streveler, R.A., Miller, R.L., Santiago-Román, A.I., Nelson, M.A., Geist, M.R.,
Olds, B.M.: Rigorous methodology for concept inventory development: Using the
‘assessment triangle’ to develop and test the thermal and transport science concept
inventory (ttci). International Journal of Engineering Education 27(5), 968–984
(2011)

