
A Clinic to Teach Good
Programming Practices

Matt Bishop
B. J. Orvis

1

2

Contact Us

 Matt Bishop	 B. J. Orvis
mabishop@ucdavis.edu	wsorvis@ucdavis.edu

Department of Computer Science
University of California at Davis

One Shields Ave.
Davis, CA 95616-8562

2

3

Problem Statement

•Few students write well-written programs
‣ Curriculum already crowded
‣ Emphasis in most courses on getting

programs working right

•Key question: how can we improve
quality of programs that students
write throughout undergraduate,
graduate work?

3

4

Secure Programming

•Meaningless without definition of “security”
‣ Some requirements implicit

•Notions usually implicit here
‣ Robustness: paranoia, stupidity, dangerous

implements, can’t happen here
‣ Security: program does not add or delete

privileges, information unless specifically
required to do so

•Really, just aspects of software assurance

4

5

Writing Clinics

•Students must know how to write
‣ Critical in all majors requiring

communication, literary analysis skills

•Many don’t
‣ Majors provide support for writing in

classes (law, English, rhetoric, etc.)

•Does not add material to curriculum
‣ Instructors focus on content, not writing

•Provides reinforcement

5

6

Secure Programming
Clinic

•Genesis: operating system class
‣ TA deducted for poor programming style
‣ Dramatic improvement in quality of code!

•Programming foundational in CS, just like
writing in English (and, really, all majors …)
‣ Clinicians assume students know some

elements of style
‣ Level of students affect what clinic teaches

6

7

How Clinic Functions

•Assist students
‣ Clinicians examine program, meet with

student to give feedback
‣ Clinic does not grade style

•Assist instructors
‣ Clinic grades programs’ styles
‣ Meet with students to explain grade, how

the program should have been done

•Readers can focus on program correctness

7

8

Analysis

•Assist students
‣ Strictly adjunct to existing classes
‣ Instructor has to incorporate use of clinic

into deadlines, assignments, grading

•Assist instructors
‣ Students ignore feedback, get lower grade
‣ Clinicians must take different instructor

grading styles into account

• Interaction with students critical

8

9

Experience

•Tested in computer security class at UC
Davis
‣ Class emphasizes robust, secure

programming

•Setup for class
‣ Class had to analyze small program for

security problems
‣ Class applied Fortify code analysis tool to

larger program, and traced attack paths

9

10

The Program

•Write program to check attributes of file; if
correct, change ownership, permissions
‣ If done wrong, leads to TOCTTOU flaw

•Students had to get program checked at
clinic before submitting it
‣ Students sent program to clinician first
‣ Clinician reviewed program before

meeting with student
‣ Student then could modify program

10

11

Initial Problems

programming problem before after

TOCTTOU race condition 100% 12%

Unsafe calls (strcpy, strcat, etc.) 53% 12%

Format string vulnerability 18% 0%

Unnecessary code 59% 53%

Failure to zero out password 70% 0%

No sanity checking on mod time 82% 35%

Poor style 41% N/A

11

12

Notes

•Unsafe function calls
‣ 4 did not set last byte of target to NUL

•Unnecessary code
‣ 2: unnecessary checking; 7: errors or

unnecessary system calls

•Zero out password
‣ 2 did so at end of program

•Sanity checking (not pointed out to all)
‣ 4 found it despite no mention

•Style greatly cleaned up

12

13

Observations

•Students required to participate upon pain
of not having program graded
‣ Probably too harsh; 7/24 did not do

program

•Clinician not TA
‣ Students seemed to prefer this

• In general, students unfamiliar with robust,
secure programming before class
‣ Clinic uses handouts for other classes

13

14

Conclusion

•Need to do this for more classes
‣ Spring: doing it for ECS 40, second course

in programming

•Use educational metrics to evaluate success
‣ And to figure out how to make clinic

more effective

• If successful, can help improve state of
programming without impacting material
taught in computer science classes

14

