Chapter 5: Confidentiality Policies

- Overview
 - What is a confidentiality model
- Bell-LaPadula Model
 - General idea
 - Informal description of rules
 - Formal description of rules
- Tranquility
- Controversy
 - †-property
 - System Z
Overview

• Bell-LaPadula
 – Informally
 – Formally
 – Example Instantiation

• Tranquility

• Controversy
 – System Z
Confidentiality Policy

- Goal: prevent the unauthorized disclosure of information
 - Deals with information flow
 - Integrity incidental
- Multi-level security models are best-known examples
 - Bell-LaPadula Model basis for many, or most, of these
Bell-LaPadula Model, Step 1

- Security levels arranged in linear ordering
 - Top Secret: highest
 - Secret
 - Confidential
 - Unclassified: lowest

- Levels consist of security clearance $L(s)$
 - Objects have security classification $L(o)$
Example

<table>
<thead>
<tr>
<th>security level</th>
<th>subject</th>
<th>object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Secret</td>
<td>Tamara</td>
<td>Personnel Files</td>
</tr>
<tr>
<td>Secret</td>
<td>Samuel</td>
<td>E-Mail Files</td>
</tr>
<tr>
<td>Confidential</td>
<td>Claire</td>
<td>Activity Logs</td>
</tr>
<tr>
<td>Unclassified</td>
<td>Ulaley</td>
<td>Telephone Lists</td>
</tr>
</tbody>
</table>

- Tamara can read all files
- Claire cannot read Personnel or E-Mail Files
- Ulaley can only read Telephone Lists
Reading Information

- Information flows *up*, not *down*
 - “Reads up” disallowed, “reads down” allowed
- Simple Security Condition (Step 1)
 - Subject s can read object o iff, $L(o) \leq L(s)$ and s has permission to read o
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called “no reads up” rule
Writing Information

• Information flows up, not down
 – “Writes up” allowed, “writes down” disallowed

• *-Property (Step 1)
 – Subject s can write object o iff $L(s) \leq L(o)$ and s has permission to write o
 • Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 – Sometimes called “no writes down” rule
Basic Security Theorem, Step 1

• If a system is initially in a secure state, and every transition of the system satisfies the simple security condition, step 1, and the \(*\)-property, step 1, then every state of the system is secure
 – Proof: induct on the number of transitions
Bell-LaPadula Model, Step 2

- Expand notion of security level to include categories
- Security level is \((\text{clearance}, \text{category set})\)
- Examples
 - \((\text{Top Secret}, \{\text{NUC, EUR, ASI}\})\)
 - \((\text{Confidential}, \{\text{EUR, ASI}\})\)
 - \((\text{Secret}, \{\text{NUC, ASI}\})\)
Levels and Lattices

- \((A, C) \text{ dom } (A', C') \text{ iff } A' \leq A \text{ and } C' \subseteq C\)

- Examples
 - (Top Secret, \{NUC, ASI\}) dom (Secret, \{NUC\})
 - (Secret, \{NUC, EUR\}) dom (Confidential, \{NUC, EUR\})
 - (Top Secret, \{NUC\}) \neg dom (Confidential, \{EUR\})

- Let \(C\) be set of classifications, \(K\) set of categories. Set of security levels \(L = C \times K\), \text{ dom } form lattice
 - \(\text{lub}(L) = (\max(A), C)\)
 - \(\text{glb}(L) = (\min(A), \emptyset)\)
Levels and Ordering

• Security levels partially ordered
 – Any pair of security levels may (or may not) be related by *dom*
• “dominates” serves the role of “greater than” in step 1
 – “greater than” is a total ordering, though
Reading Information

• Information flows up, not down
 – “Reads up” disallowed, “reads down” allowed

• Simple Security Condition (Step 2)
 – Subject s can read object o iff $L(s) \text{ dom } L(o)$
 and s has permission to read o
 • Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 – Sometimes called “no reads up” rule
Writing Information

• Information flows up, not down
 – “Writes up” allowed, “writes down” disallowed
• *-Property (Step 2)
 – Subject s can write object o iff $L(o) \text{ dom } L(s)$ and s has permission to write o
 • Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 – Sometimes called “no writes down” rule
Basic Security Theorem, Step 2

- If a system is initially in a secure state, and every transition of the system satisfies the simple security condition, step 2, and the *-property, step 2, then every state of the system is secure
 - Proof: induct on the number of transitions
 - In actual Basic Security Theorem, discretionary access control treated as third property, and simple security property and *-property phrased to eliminate discretionary part of the definitions — but simpler to express the way done here.
Problem

• Colonel has (Secret, \{NUC, EUR\}) clearance

• Major has (Secret, \{EUR\}) clearance
 – Major can talk to colonel (“write up” or “read down”)
 – Colonel cannot talk to major (“read up” or “write down”)

• Clearly absurd!
Solution

- Define maximum, current levels for subjects
 - $\text{maxlevel}(s) \dom \text{curlevel}(s)$
- Example
 - Treat Major as an object (Colonel is writing to him/her)
 - Colonel has maxlevel (Secret, \{ NUC, EUR \})
 - Colonel sets curlevel to (Secret, \{ EUR \})
 - Now $L(\text{Major}) \dom \text{curlevel}(\text{Colonel})$
 - Colonel can write to Major without violating “no writes down”
 - Does $L(s)$ mean $\text{curlevel}(s)$ or $\text{maxlevel}(s)$?
 - Formally, we need a more precise notation
DG/UX System

- Provides mandatory access controls
 - MAC label identifies security level
 - Default labels, but can define others
- Initially
 - Subjects assigned MAC label of parent
 - Initial label assigned to user, kept in Authorization and Authentication database
 - Object assigned label at creation
 - Explicit labels stored as part of attributes
 - Implicit labels determined from parent directory
MAC Regions

Hierarchy levels

<table>
<thead>
<tr>
<th>Categories</th>
<th>VP–1</th>
<th>VP–2</th>
<th>VP–3</th>
<th>VP–4</th>
<th>VP–5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A&A database, audit</td>
<td>Site executables</td>
<td>Trusted data</td>
<td>Executables not part of the TCB</td>
<td>Executables part of the TCB</td>
<td>Reserved for future use</td>
</tr>
<tr>
<td>Administrative Region</td>
<td>User data and applications</td>
<td>User Region</td>
<td>Virus Prevention Region</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IMPL_HI is “maximum” (least upper bound) of all levels
IMPL_LO is “minimum” (greatest lower bound) of all levels
Directory Problem

- Process \(p \) at MAC\(_A\) tries to create file \(/	ext{tmp}/x\)
- \(/	ext{tmp}/x\) exists but has MAC label MAC\(_B\)
 - Assume MAC\(_B\) dom MAC\(_A\)
- Create fails
 - Now \(p \) knows a file named \(x \) with a higher label exists
- Fix: only programs with same MAC label as directory can create files in the directory
 - Now compilation won’t work, mail can’t be delivered
Multilevel Directory

- Directory with a set of subdirectories, one per label
 - Not normally visible to user
 - p creating /tmp/x actually creates /tmp/d/x where d is directory corresponding to MAC_A
 - All p’s references to /tmp go to /tmp/d

- p cd’s to /tmp/a, then to ..
 - System call stat(".", &buf) returns inode number of real directory
 - System call dg_stat(".", &buf) returns inode of /tmp
Object Labels

1. Requirements:
 - Every file system object must have a MAC label.

 1. Roots of file systems have explicit MAC labels.
 - If mounted file system has no label, it gets label of mount point.

 2. Object with implicit MAC label inherits label of parent.
Object Labels

• Problem: object has two names
 – /x/y/z, /a/b/c refer to same object
 – y has explicit label IMPL_HI
 – b has explicit label IMPL_B

• Case 1: hard link created while file system on DG/UX system, so …

3. Creating hard link requires explicit label
 • If implicit, label made explicit
 • Moving a file makes label explicit
Object Labels

- Case 2: hard link exists when file system mounted
 - No objects on paths have explicit labels: paths have same *implicit* labels
 - An object on path acquires an explicit label: implicit label of child must be preserved

so …

4. Change to directory label makes child labels explicit *before* the change
Object Labels

• Symbolic links are files, and treated as such, so …

5. When resolving symbolic link, label of object is label of target of the link
• System needs access to the symbolic link itself
Using MAC Labels

- Simple security condition implemented
- *-property not fully implemented
 - Process MAC must equal object MAC
 - Writing allowed only at same security level
- Overly restrictive in practice
MAC Tuples

- Up to 3 MAC ranges (one per region)
- MAC range is a set of labels with upper, lower bound
 - Upper bound must dominate lower bound of range
- Examples
 1. [(Secret, {NUC}), (Top Secret, {NUC})]
 2. [(Secret, ∅), (Top Secret, {NUC, EUR, ASI})]
 3. [(Confidential, {ASI}), (Secret, {NUC, ASI})]
MAC Ranges

1. \([(\text{Secret}, \{\text{NUC}\}), (\text{Top Secret}, \{\text{NUC}\})]\]
2. \([(\text{Secret}, \emptyset), (\text{Top Secret}, \{\text{NUC, EUR, ASI}\})]\]
3. \([(\text{Confidential}, \{\text{ASI}\}), (\text{Secret}, \{\text{NUC, ASI}\})]\]
 - \((\text{Top Secret}, \{\text{NUC}\})\) in ranges 1, 2
 - \((\text{Secret, } \{\text{NUC, ASI}\})\) in ranges 2, 3
 - \([(\text{Secret, } \{\text{ASI}\}), (\text{Top Secret, } \{\text{EUR}\})]\) not valid range
 - as \((\text{Top Secret, } \{\text{EUR}\}) \not\in \text{dom}\ (\text{Secret, } \{\text{ASI}\})\)
Objects and Tuples

- Objects must have MAC labels
 - May also have MAC label
 - If both, tuple overrides label
- Example
 - Paper has MAC range:
 $$([(Secret, \{EUR\}), (Top\ Secret, \{NUC, EUR\})]]$$
MAC Tuples

• Process can read object when:
 – Object MAC range \((lr, hr)\); process MAC label \(pl\)
 – \(pl \text{ dom } hr\)
 • Process MAC label grants read access to upper bound of range

• Example
 – Peter, with label \((\text{Secret, } \{\text{EUR}\})\), cannot read paper
 • \((\text{Top Secret, } \{\text{NUC, EUR}\}) \text{ dom } (\text{Secret, } \{\text{EUR}\})\)
 – Paul, with label \((\text{Top Secret, } \{\text{NUC, EUR, ASI}\})\) can read paper
 • \((\text{Top Secret, } \{\text{NUC, EUR, ASI}\}) \text{ dom } (\text{Top Secret, } \{\text{NUC, EUR}\})\)
MAC Tuples

- Process can write object when:
 - Object MAC range \((lr, hr)\); process MAC label \(pl\)
 - \(pl \in (lr, hr)\)
 - Process MAC label grants write access to any label in range

- Example
 - Peter, with label \((\text{Secret}, \{\text{EUR}\})\), can write paper
 - \((\text{Top Secret}, \{\text{NUC, EUR}\})\) \(dom\) \((\text{Secret}, \{\text{EUR}\})\) and \((\text{Secret}, \{\text{EUR}\})\) \(dom\) \((\text{Secret}, \{\text{EUR}\})\)
 - Paul, with label \((\text{Top Secret}, \{\text{NUC, EUR, ASI}\})\), cannot read paper
 - \((\text{Top Secret}, \{\text{NUC, EUR, ASI}\})\) \(dom\) \((\text{Top Secret}, \{\text{NUC, EUR}\})\)
Formal Model Definitions

- S subjects, O objects, P rights
 - Defined rights: r read, a write, w read/write, e empty
- M set of possible access control matrices
- C set of clearances/classifications, K set of categories, $L = C \times K$ set of security levels
- $F = \{(f_s, f_o, f_c)\}$
 - $f_s(s)$ maximum security level of subject s
 - $f_c(s)$ current security level of subject s
 - $f_o(o)$ security level of object o
More Definitions

• Hierarchy functions $H: O \rightarrow P(O)$

• Requirements
 1. $o_i \neq o_j \Rightarrow h(o_i) \cap h(o_j) = \emptyset$
 2. There is no set $\{ o_1, \ldots, o_k \} \subseteq O$ such that, for $i = 1, \ldots, k$, $o_{i+1} \in h(o_i)$ and $o_{k+1} = o_1$.

• Example
 – Tree hierarchy; take $h(o)$ to be the set of children of o
 – No two objects have any common children (#1)
 – There are no loops in the tree (#2)
States and Requests

- **V** set of states
 - Each state is \((b, m, f, h)\)
 - \(b\) is like \(m\), but excludes rights not allowed by \(f\)
- **R** set of requests for access
- **D** set of outcomes
 - \(y\) allowed, \(n\) not allowed, \(i\) illegal, \(o\) error
- **W** set of actions of the system
 - \(W \subseteq R \times D \times V \times V\)
History

- $X = R^N$ set of sequences of requests
- $Y = D^N$ set of sequences of decisions
- $Z = V^N$ set of sequences of states
- Interpretation
 - At time $t \in N$, system is in state $z_{t-1} \in V$; request $x_t \in R$ causes system to make decision $y_t \in D$, transitioning the system into a (possibly new) state $z_t \in V$
- System representation: $\Sigma(R, D, W, z_0) \in X \times Y \times Z$
 - $(x, y, z) \in \Sigma(R, D, W, z_0)$ iff $(x_t, y_t, z_{t-1}, z_t) \in W$ for all t
 - (x, y, z) called an appearance of $\Sigma(R, D, W, z_0)$
Example

• \(S = \{ s \} \), \(O = \{ o \} \), \(P = \{ r, w \} \)

• \(C = \{ \text{High, Low} \} \), \(K = \{ \text{All} \} \)

• For every \(f \in F \), either \(f_c(s) = (\text{High, \{All\}}) \) or \(f_c(s) = (\text{Low, \{All\}}) \)

• Initial State:
 - \(b_1 = \{ (s, o, r) \} \), \(m_1 \in M \) gives \(s \) read access over \(o \), and for \(f_1 \in F \), \(f_{c,1}(s) = (\text{High, \{All\}}) \), \(f_{o,1}(o) = (\text{Low, \{All\}}) \)
 - Call this state \(v_0 = (b_1, m_1, f_1, h_1) \in V \).
First Transition

- Now suppose in state \(v_0 \): \(S = \{ s, s' \} \)
- Suppose \(f_{c,1}(s') = (\text{Low}, \{\text{All}\}) \)
- \(m_1 \in M \) gives \(s \) and \(s' \) read access over \(o \)
- As \(s' \) not written to \(o \), \(b_1 = \{ (s, o, r) \} \)
- \(z_0 = v_0 \); if \(s' \) requests \(r_1 \) to write to \(o \):
 - System decides \(d_1 = y \)
 - New state \(v_1 = (b_2, m_1, f_1, h_1) \in V \)
 - \(b_2 = \{ (s, o, r), (s', o, w) \} \)
 - Here, \(x = (r_1), y = (y), z = (v_0, v_1) \)
Second Transition

- Current state $v_1 = (b_2, m_1, f_1, h_1) \in V$
 - $b_2 = \{ (s, o, r), (s', o, w) \}$
 - $f_{c,1}(s) = \text{(High, \{ All \}), } f_{o,1}(o) = \text{(Low, \{ All \})}$
- s' requests r_2 to write to o:
 - System decides $d_2 = n$ (as $f_{c,1}(s) \text{ dom } f_{o,1}(o)$)
 - New state $v_2 = (b_2, m_1, f_1, h_1) \in V$
 - $b_2 = \{ (s, o, r), (s', o, w) \}$
 - So, $x = (r_1, r_2)$, $y = (y, n)$, $z = (v_0, v_1, v_2)$, where $v_2 = v_1$
Basic Security Theorem

• Define action, secure formally
 – Using a bit of foreshadowing for “secure”
• Restate properties formally
 – Simple security condition
 – *-property
 – Discretionary security property
• State conditions for properties to hold
• State Basic Security Theorem
Action

- A request and decision that causes the system to move from one state to another
 - Final state may be the same as initial state
- \((r, d, v, v') \in R \times D \times V \times V\) is an action of \(\Sigma(R, D, W, z_0)\) iff there is an \((x, y, z) \in \Sigma(R, D, W, z_0)\) and a \(t \in N\) such that \((r, d, v, v') = (x_t, y_t, z_t, z_{t-1})\)
 - Request \(r\) made when system in state \(v\); decision \(d\) moves system into (possibly the same) state \(v'\)
 - Correspondence with \((x_t, y_t, z_t, z_{t-1})\) makes states, requests, part of a sequence
Simple Security Condition

\[(s, o, p) \in S \times O \times P \text{ satisfies the simple security condition relative to } f \text{ (written }ssc \ rel f\text{)} \iff \text{ one of the following holds:}\]

1. \(p = e\) or \(p = a\)
2. \(p = r\) or \(p = w\) and \(f_s(s) \ \text{dom} \ f_o(o)\)

- Holds vacuously if rights do not involve reading
- If all elements of \(b\) satisfy \(ssc \ rel f\), then state satisfies simple security condition
- If all states satisfy simple security condition, system satisfies simple security condition
Necessary and Sufficient

• \(\Sigma(R, D, W, z_0) \) satisfies the simple security condition for any secure state \(z_0 \) iff for every action \((r, d, (b, m, f, h), (b', m', f', h')) \), \(W \) satisfies
 - Every \((s, o, p) \in b - b' \) satisfies \(ssc \ rel \ f \)
 - Every \((s, o, p) \in b' \) that does not satisfy \(ssc \ rel \ f \) is not in \(b \)

• Note: “secure” means \(z_0 \) satisfies \(ssc \ rel \ f \)

• First says every \((s, o, p) \) added satisfies \(ssc \ rel \ f \); second says any \((s, o, p) \) in \(b' \) that does not satisfy \(ssc \ rel \ f \) is deleted
*-Property

- $b(s: p_1, \ldots, p_n)$ set of all objects that s has p_1, \ldots, p_n access to
- State (b, m, f, h) satisfies the *-property iff for each $s \in S$ the following hold:
 1. $b(s: a) \neq \emptyset \Rightarrow \forall o \in b(s: a) [f_o(o) \text{ dom } f_c(s)]$
 2. $b(s: w) \neq \emptyset \Rightarrow \forall o \in b(s: w) [f_o(o) = f_c(s)]$
 3. $b(s: r) \neq \emptyset \Rightarrow \forall o \in b(s: r) [f_c(s) \text{ dom } f_o(o)]$
- Idea: for writing, object dominates subject; for reading, subject dominates object
***-Property**

- If all states satisfy simple security condition, system satisfies simple security condition
- If a subset S' of subjects satisfy *-property, then *-property satisfied relative to $S' \subseteq S$
- Note: tempting to conclude that *-property includes simple security condition, but this is false
 - See condition placed on w right for each
Necessary and Sufficient

- \(\Sigma(R, D, W, z_0) \) satisfies the *-property relative to \(S' \subseteq S \) for any secure state \(z_0 \) iff for every action \((r, d, (b, m, f, h), (b', m', f', h'))\), \(W \) satisfies the following for every \(s \in S' \)
 - Every \((s, o, p) \in b - b'\) satisfies the *-property relative to \(S' \)
 - Every \((s, o, p) \in b'\) that does not satisfy the *-property relative to \(S' \) is not in \(b \)

- Note: “secure” means \(z_0 \) satisfies *-property relative to \(S' \)
- First says every \((s, o, p)\) added satisfies the *-property relative to \(S' \); second says any \((s, o, p)\) in \(b' \) that does not satisfy the *-property relative to \(S' \) is deleted
Discretionary Security Property

- State \((b, m, f, h)\) satisfies the discretionary security property iff, for each \((s, o, p) \in b\), then \(p \in m[s, o]\)

- Idea: if \(s\) can read \(o\), then it must have rights to do so in the access control matrix \(m\)

- This is the discretionary access control part of the model
 - The other two properties are the mandatory access control parts of the model
Necessary and Sufficient

• $\Sigma(R, D, W, z_0)$ satisfies the ds-property for any secure state z_0 iff, for every action $(r, d, (b, m, f, h), (b', m', f', h'))$, W satisfies:
 - Every $(s, o, p) \in b - b'$ satisfies the ds-property
 - Every $(s, o, p) \in b'$ that does not satisfy the ds-property is not in b

• Note: “secure” means z_0 satisfies ds-property

• First says every (s, o, p) added satisfies the ds-property; second says any (s, o, p) in b' that does not satisfy the *-property is deleted
Secure

• A system is secure iff it satisfies:
 – Simple security condition
 – *-property
 – Discretionary security property
• A state meeting these three properties is also said to be secure
Basic Security Theorem

• $\Sigma(R, D, W, z_0)$ is a secure system if z_0 is a secure state and W satisfies the conditions for the preceding three theorems
 – The theorems are on the slides titled “Necessary and Sufficient”
Rule

- $\rho: R \times V \rightarrow D \times V$
- Takes a state and a request, returns a decision and a (possibly new) state
- Rule ρ **ssc-preserving** if for all $(r, v) \in R \times V$ and v satisfying $ssc \ rel f$, $\rho(r, v) = (d, v')$ means that v' satisfies $ssc \ rel f'$.
 - Similar definitions for *-property, ds-property
 - If rule meets all 3 conditions, it is **security-preserving**
Unambiguous Rule Selection

• Problem: multiple rules may apply to a request in a state
 – if two rules act on a read request in state \(v \) …

• Solution: define relation \(W(\omega) \) for a set of rules \(\omega = \{ \rho_1, \ldots, \rho_m \} \) such that a state \((r, d, v, v') \in W(\omega) \) iff either
 – \(d = i \); or
 – for exactly one integer \(j \), \(\rho_j(r, v) = (d, v') \)

• Either request is illegal, or only one rule applies
Rules Preserving SSC

- Let ω be set of ssc-preserving rules. Let state z_0 satisfy simple security condition. Then $\Sigma(R, D, W(\omega), z_0)$ satisfies simple security condition
 - Proof: by contradiction.
 - Choose $(x, y, z) \in \Sigma(R, D, W(\omega), z_0)$ as state not satisfying simple security condition; then choose $t \in N$ such that (x_t, y_t, z_t) is first appearance not meeting simple security condition
 - As $(x_t, y_t, z_t, z_{t-1}) \in W(\omega)$, there is unique rule $\rho \in \omega$ such that $\rho(x_t, z_{t-1}) = (y_t, z_t)$ and $y_t \neq i$.
 - As ρ ssc-preserving, and z_{t-1} satisfies simple security condition, then z_t meets simple security condition, contradiction.
Adding States Preserving SSC

- Let \(v = (b, m, f, h) \) satisfy simple security condition. Let
 \((s, o, p) \notin b, b' = b \cup \{ (s, o, p) \} \), and \(v' = (b', m, f, h) \).
 Then \(v' \) satisfies simple security condition iff:

1. Either \(p = e \) or \(p = a \); or
2. Either \(p = r \) or \(p = w \), and \(f_c(s) \) dom \(f_o(o) \)

- Proof

1. Immediate from definition of simple security condition and \(v' \) satisfying \(ssc \ rel \ f \)
2. \(v' \) satisfies simple security condition means \(f_c(s) \) dom \(f_o(o) \), and for converse, \((s, o, p) \in b' \) satisfies \(ssc \ rel \ f \), so \(v' \) satisfies simple security condition
Rules, States Preserving *-Property

Let ω be set of *-property-preserving rules, state z_0 satisfies *-property. Then $\Sigma(R, D, W(\omega), z_0)$ satisfies *-property.

Let $\nu = (b, m, f, h)$ satisfy *-property. Let $(s, o, p) \not\in b$, $b' = b \cup \{(s, o, p)\}$, and $\nu' = (b', m, f, h)$. Then ν' satisfies *-property iff one of the following holds:

1. $p = e$ or $p = a$
2. $p = r$ or $p = w$ and $f_c(s) \text{ dom } f_o(o)$
Rules, States Preserving ds-Property

- Let ω be set of ds-property-preserving rules, state z_0 satisfies ds-property. Then $\Sigma(R, D, W(\omega), z_0)$ satisfies ds-property.
- Let $v = (b, m, f, h)$ satisfy ds-property. Let $(s, o, p) \notin b$, $b' = b \cup \{ (s, o, p) \}$, and $v' = (b', m, f, h)$. Then v' satisfies ds-property iff $p \in m[s, o]$.
Combining

• Let ρ be a rule and $\rho(r, v) = (d, v')$, where $v = (b, m, f, h)$ and $v' = (b', m', f', h')$. Then:

1. If $b' \subseteq b, f' = f$, and v satisfies the simple security condition, then v' satisfies the simple security condition

2. If $b' \subseteq b, f' = f$, and v satisfies the $*$-property, then v' satisfies the $*$-property

3. If $b' \subseteq b, m[s, o] \subseteq m'[s, o]$ for all $s \in S$ and $o \in O$, and v satisfies the ds-property, then v' satisfies the ds-property
Proof

1. Suppose v satisfies simple security property.
 a) $b' \subseteq b$ and $(s, o, r) \in b'$ implies $(s, o, r) \in b$
 b) $b' \subseteq b$ and $(s, o, w) \in b'$ implies $(s, o, w) \in b$
 c) So $f_c(s) \text{ dom } f_o(o)$
 d) But $f' = f$
 e) Hence $f'_c(s) \text{ dom } f'_o(o)$
 f) So v' satisfies simple security condition

2, 3 proved similarly
Example Instantiation: Multics

- 11 rules affect rights:
 - set to request, release access
 - set to give, remove access to different subject
 - set to create, reclassify objects
 - set to remove objects
 - set to change subject security level
- Set of “trusted” subjects $S_T \subseteq S$
 - *-property not enforced; subjects trusted not to violate
- $\Delta(\rho)$ domain
 - determines if components of request are valid
get-read Rule

- Request \(r = (\text{get, } s, o, r) \)
 - \(s \) gets (requests) the right to read \(o \)
- Rule is \(\rho_1(r, v) \):

 \[
 \text{if } (r \neq \Delta(\rho_1)) \text{ then } \rho_1(r, v) = (i, v);
 \]

 \[
 \text{else if } (f_s(s) \text{ dom } f_o(o) \text{ and } [s \in S_T \text{ or } f_c(s) \text{ dom } f_o(o)])
 \text{ and } r \in m[s, o])
 \text{ then } \rho_1(r, v) = (y, (b \cup \{ (s, o, r) \}, m, f, h));
 \]

 \[
 \text{else } \rho_1(r, v) = (n, v);
 \]
Security of Rule

- The get-read rule preserves the simple security condition, the *-property, and the ds-property
 - Proof
 - Let v satisfy all conditions. Let $\rho_1(r, v) = (d, v')$. If $v' = v$, result is trivial. So let $v' = (b \cup \{(s_2, o, r)\}, m, f, h)$.
Proof

• Consider the simple security condition.
 – From the choice of \(v' \), either \(b' - b = \emptyset \) or \(\{ (s_2, o, r) \} \)
 – If \(b' - b = \emptyset \), then \(\{ (s_2, o, r) \} \in b \), so \(v = v' \), proving that \(v' \) satisfies the simple security condition.
 – If \(b' - b = \{ (s_2, o, r) \} \), because the get-read rule requires that \(f_c(s) \) \(\text{dom} \) \(f_o(o) \), an earlier result says that \(v' \) satisfies the simple security condition.
Proof

• Consider the *-property.
 – Either $s_2 \in S_T$ or $f_c(s) \text{ dom } f_o(o)$ from the definition of get-read
 – If $s_2 \in S_T$, then s_2 is trusted, so *-property holds by definition of trusted and S_T.
 – If $f_c(s) \text{ dom } f_o(o)$, an earlier result says that v' satisfies the simple security condition.
Proof

• Consider the discretionary security property.
 – Conditions in the get-read rule require \(r \in m[s, o] \) and either \(b' - b = \emptyset \) or \(\{ (s_2, o, r) \} \)
 – If \(b' - b = \emptyset \), then \(\{ (s_2, o, r) \} \in b \), so \(v = v' \), proving that \(v' \) satisfies the simple security condition.
 – If \(b' - b = \{ (s_2, o, r) \} \), then \(\{ (s_2, o, r) \} \not\in b \), an earlier result says that \(v' \) satisfies the ds-property.
give-read Rule

- Request $r = (s_1, \text{give}, s_2, o, \mathfrak{r})$
 - s_1 gives (request to give) s_2 the (discretionary) right to read o
 - Rule: can be done if giver can alter parent of object
 - If object or parent is root of hierarchy, special authorization required

- Useful definitions
 - $\text{root}(o)$: root object of hierarchy h containing o
 - $\text{parent}(o)$: parent of o in h (so $o \in h(\text{parent}(o)))$
 - $\text{canallow}(s, o, v)$: s specially authorized to grant access when object or parent of object is root of hierarchy
 - $m \land m[s, o] \leftarrow \mathfrak{r}$: access control matrix m with \mathfrak{r} added to $m[s, o]$
give-read Rule

- Rule is $\rho_6(r, v)$:

 \[
 \text{if } (r \neq \Delta(\rho_6)) \text{ then } \rho_6(r, v) = (i, v);
 \]

 \[
 \text{else if } ([o \neq \text{root}(o) \text{ and } \text{parent}(o) \neq \text{root}(o) \text{ and } \text{parent}(o) \in b(s_1:w)] \text{ or }
 \]

 \[
 [\text{parent}(o) = \text{root}(o) \text{ and } \text{canallow}(s_1, o, v)] \text{ or }
 \]

 \[
 [o = \text{root}(o) \text{ and } \text{canallow}(s_1, o, v)]
 \]

 \[
 \text{then } \rho_6(r, v) = (y, (b, m\land m[s_2, o] \leftarrow r, f, h));
 \]

 \[
 \text{else } \rho_1(r, v) = (n, v);
 \]
Security of Rule

- The give-read rule preserves the simple security condition, the *-property, and the ds-property

 Proof: Let \(v \) satisfy all conditions. Let \(\rho_1(r, v) = (d, v') \). If \(v' = v \), result is trivial. So let \(v' = (b, m[s_2, o] \leftarrow r, f, h) \). So \(b' = b, f' = f, m[x, y] = m'[x, y] \) for all \(x \in S \) and \(y \in O \) such that \(x \neq s \) and \(y \neq o \), and \(m[s, o] \subseteq m'[s, o] \). Then by earlier result, \(v' \) satisfies the simple security condition, the *-property, and the ds-property.
Principle of Tranquility

• Raising object’s security level
 – Information once available to some subjects is no longer available
 – Usually assume information has already been accessed, so this does nothing

• Lowering object’s security level
 – The *declassification problem*
 – Essentially, a “write down” violating *-property
 – Solution: define set of trusted subjects that sanitize or remove sensitive information before security level lowered
Types of Tranquility

• Strong Tranquility
 – The clearances of subjects, and the classifications of objects, do not change during the lifetime of the system

• Weak Tranquility
 – The clearances of subjects, and the classifications of objects, do not change in a way that violates the simple security condition or the *-property during the lifetime of the system
Example

• DG/UX System
 – Only a trusted user (security administrator) can lower object’s security level
 – In general, process MAC labels cannot change
 • If a user wants a new MAC label, needs to initiate new process
 • Cumbersome, so user can be designated as able to change process MAC label within a specified range
Controversy

• McLean:
 – “value of the BST is much overrated since there is a great deal more to security than it captures. Further, what is captured by the BST is so trivial that it is hard to imagine a realistic security model for which it does not hold.”
 – Basis: given assumptions known to be non-secure, BST can prove a non-secure system to be secure
†-Property

- State \((b, m, f, h)\) satisfies the †-property iff for each \(s \in S\) the following hold:
 1. \(b(s: a) \neq \emptyset \Rightarrow [\forall o \in b(s: a) [f_c(s) \text{ dom } f_o(o)]]\)
 2. \(b(s: w) \neq \emptyset \Rightarrow [\forall o \in b(s: w) [f_o(o) = f_c(s)]]\)
 3. \(b(s: r) \neq \emptyset \Rightarrow [\forall o \in b(s: r) [f_c(s) \text{ dom } f_o(o)]]\)

- Idea: for writing, subject dominates object; for reading, subject also dominates object

- Differs from *-property in that the mandatory condition for writing is reversed
 - For *-property, it’s object dominates subject
Analogues

The following two theorems can be proved

- \(\Sigma(R, D, W, z_0) \) satisfies the \(\dagger \)-property relative to \(S' \subseteq S \) for any secure state \(z_0 \) iff for every action \((r, d, (b, m, f, h), (b', m', f', h'))\), \(W \) satisfies the following for every \(s \in S' \):
 - Every \((s, o, p) \in b - b' \) satisfies the \(\dagger \)-property relative to \(S' \)
 - Every \((s, o, p) \in b' \) that does not satisfy the \(\dagger \)-property relative to \(S' \) is not in \(b \)

- \(\Sigma(R, D, W, z_0) \) is a secure system if \(z_0 \) is a secure state and \(W \) satisfies the conditions for the simple security condition, the \(\dagger \)-property, and the ds-property.
Problem

• This system is *clearly* non-secure!
 – Information flows from higher to lower because of the †-property
Discussion

• Role of Basic Security Theorem is to demonstrate that rules preserve security

• Key question: what is security?
 – Bell-LaPadula defines it in terms of 3 properties (simple security condition, -*-property, discretionary security property)
 – Theorems are assertions about these properties
 – Rules describe changes to a particular system instantiating the model
 – Showing system is secure requires proving rules preserve these 3 properties
Rules and Model

• Nature of rules is irrelevant to model
• Model treats “security” as axiomatic
• Policy defines “security”
 – This instantiates the model
 – Policy reflects the requirements of the systems
• McLean’s definition differs from Bell-LaPadula
 – … and is not suitable for a confidentiality policy
• Analysts cannot prove “security” definition is appropriate through the model
System Z

• System supporting weak tranquility
• On any request, system downgrades *all* subjects and objects to lowest level and adds the requested access permission
 – Let initial state satisfy all 3 properties
 – Successive states also satisfy all 3 properties
• Clearly not secure
 – On first request, everyone can read everything
Reformulation of Secure Action

• Given state that satisfies the 3 properties, the action transforms the system into a state that satisfies these properties and eliminates any accesses present in the transformed state that would violate the property in the initial state, then the action is secure.

• BST holds with these modified versions of the 3 properties.
Reconsider System Z

• Initial state:
 – subject s, object o
 – $C = \{\text{High, Low}\}$, $K = \{\text{All}\}$

• Take:
 – $f_c(s) = (\text{Low}, \{\text{All}\})$, $f_o(o) = (\text{High}, \{\text{All}\})$
 – $m[s, o] = \{w\}$, and $b = \{(s, o, w)\}$.

• s requests r access to o

• Now:
 – $f'_o(o) = (\text{Low}, \{\text{All}\})$
 – $(s, o, r) \in b'$, $m'[s, o] = \{r, w\}$
Non-Secure System Z

- As \((s, o, r) \in b' - b\) and \(f'_o(o) \text{ dom } f'_c(s)\), access added that was illegal in previous state
 - Under the new version of the Basic Security Theorem, System Z is not secure
 - Under the old version of the Basic Security Theorem, as \(f'_c(s) = f'_o(o)\), System Z is secure
Response: What Is Modeling?

- Two types of models
 1. Abstract physical phenomenon to fundamental properties
 2. Begin with axioms and construct a structure to examine the effects of those axioms

- Bell-LaPadula Model developed as a model in the first sense
 - McLean assumes it was developed as a model in the second sense
Reconciling System Z

• Different definitions of security create different results
 – Under one (original definition in Bell-LaPadula Model), System Z is secure
 – Under other (McLean’s definition), System Z is not secure
Key Points

- Confidentiality models restrict flow of information
- Bell-LaPadula models multilevel security
 - Cornerstone of much work in computer security
- Controversy over meaning of security
 - Different definitions produce different results