Chapter 8: Noninterference and Policy Composition

- Overview
- Problem
- Deterministic Noninterference
- Nondeducibility
- Generalized Noninterference
- Restrictiveness
Overview

• Problem
 – Policy composition
• Noninterference
 – HIGH inputs affect LOW outputs
• Nondeducibility
 – HIGH inputs can be determined from LOW outputs
• Restrictiveness
 – When can policies be composed successfully
Composition of Policies

- Two organizations have two security policies
- They merge
 - How do they combine security policies to create one security policy?
 - Can they create a coherent, consistent security policy?
The Problem

- Single system with 2 users
 - Each has own virtual machine
 - Holly at system high, Lara at system low so they cannot communicate directly

- CPU shared between VMs based on load
 - Forms a *covert channel* through which Holly, Lara can communicate
Example Protocol

- Holly, Lara agree:
 - Begin at noon
 - Lara will sample CPU utilization every minute
 - To send 1 bit, Holly runs program
 - Raises CPU utilization to over 60%
 - To send 0 bit, Holly does not run program
 - CPU utilization will be under 40%

- Not “writing” in traditional sense
 - But information flows from Holly to Lara
Policy vs. Mechanism

• Can be hard to separate these

• In the abstract: CPU forms channel along which information can be transmitted
 – Violates *-property
 – Not “writing” in traditional sense

• Conclusions:
 – Model does not give sufficient conditions to prevent communication, or
 – System is improperly abstracted; need a better definition of “writing”
Composition of Bell-LaPadula

- **Why?**
 - Some standards require secure components to be connected to form secure (distributed, networked) system

- **Question**
 - Under what conditions is this secure?

- **Assumptions**
 - Implementation of systems precise with respect to each system’s security policy
Issues

- Compose the lattices
- What is relationship among labels?
 - If the same, trivial
 - If different, new lattice must reflect the relationships among the levels
Example

\[(HIGH, \{EAST, WEST\})\]

\[(HIGH, \{EAST\})\]
\[(HIGH, \{WEST\})\]

\[(TS, \{EAST, SOUTH\})\]

\[(TS, \{EAST\})\]
\[(TS, \{SOUTH\})\]

\[(S, \{EAST, SOUTH\})\]

\[(S, \{EAST\})\]
\[(S, \{SOUTH\})\]

\[LOW\]
Analysis

- Assume $S < HIGH < TS$
- Assume SOUTH, EAST, WEST different
- Resulting lattice has:
 - 4 clearances ($LOW < S < HIGH < TS$)
 - 3 categories (SOUTH, EAST, WEST)
Same Policies

• If we can change policies that components must meet, composition is trivial (as above)
• If we cannot, we must show composition meets the same policy as that of components; this can be very hard
Different Policies

• What does “secure” now mean?
• Which policy (components) dominates?
• Possible principles:
 – Any access allowed by policy of a component must be allowed by composition of components (**autonomy**)
 – Any access forbidden by policy of a component must be forbidden by composition of components (**security**)
Implications

• Composite system satisfies security policy of components as components’ policies take precedence

• If something neither allowed nor forbidden by principles, then:
 – Allow it (Gong & Qian)
 – Disallow it (Fail-Safe Defaults)
Example

- System X: Bob can’t access Alice’s files
- System Y: Eve, Lilith can access each other’s files
- Composition policy:
 - Bob can access Eve’s files
 - Lilith can access Alice’s files
- Question: can Bob access Lilith’s files?
Solution (Gong & Qian)

• Notation:
 – \((a, b)\): \(a\) can read \(b\)’s files
 – \(AS(x)\): access set of system \(x\)

• Set-up:
 – \(AS(X) = \emptyset\)
 – \(AS(Y) = \{ (Eve, Lilith), (Lilith, Eve) \}\)
 – \(AS(X \cup Y) = \{ (Bob, Eve), (Lilith, Alice), (Eve, Lilith), (Lilith, Eve) \}\)
Solution (Gong & Qian)

- Compute transitive closure of AS(X ∪ Y):
 - $AS(X ∪ Y)^+ = \{(Bob, Eve), (Bob, Lilith), (Bob, Alice), (Eve, Lilith), (Eve, Alice), (Lilith, Eve), (Lilith, Alice)\}$
- Delete accesses conflicting with policies of components:
 - Delete (Bob, Alice)
- (Bob, Lilith) in set, so Bob can access Lilith’s files
Idea

- Composition of policies allows accesses not mentioned by original policies
- Generate all possible allowed accesses
 - Computation of transitive closure
- Eliminate forbidden accesses
 - Removal of accesses disallowed by individual access policies
- Everything else is allowed
- Note; determining if access allowed is of polynomial complexity
Interference

• Think of it as something used in communication
 – Holly/Lara example: Holly interferes with the CPU utilization, and Lara detects it—communication

• Plays role of writing (interfering) and reading (detecting the interference)
Model

• System as state machine
 – Subjects $S = \{ s_i \}$
 – States $\Sigma = \{ \sigma_i \}$
 – Outputs $O = \{ o_i \}$
 – Commands $Z = \{ z_i \}$
 – State transition commands $C = S \times Z$

• Note: no inputs
 – Encode either as selection of commands or in state transition commands
Functions

• State transition function $T: \mathbb{C} \times \Sigma \rightarrow \Sigma$
 – Describes effect of executing command c in state σ

• Output function $P: \mathbb{C} \times \Sigma \rightarrow \mathbb{O}$
 – Output of machine when executing command c in state s

• Initial state is σ_0
Example

• Users Heidi (high), Lucy (low)
• 2 bits of state, H (high) and L (low)
 – System state is (H, L) where H, L are 0, 1
• 2 commands: $xor0$, $xor1$ do xor with 0, 1
 – Operations affect both state bits regardless of whether Heidi or Lucy issues it
Example: 2-bit Machine

- $S = \{ \text{Heidi, Lucy} \}$
- $\Sigma = \{ (0,0), (0,1), (1,0), (1,1) \}$
- $C = \{ \text{xor0, xor1} \}$

<table>
<thead>
<tr>
<th></th>
<th>Input States (H, L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0,0)</td>
</tr>
<tr>
<td>xor0</td>
<td>(0,0)</td>
</tr>
<tr>
<td>xor1</td>
<td>(1,1)</td>
</tr>
</tbody>
</table>
Outputs and States

• T is inductive in first argument, as
 \[T(c_0, \sigma_0) = \sigma_1; \quad T(c_{i+1}, \sigma_{i+1}) = T(c_{i+1}, T(c_i, \sigma_i)) \]

• Let C^* be set of possible sequences of commands in C

• $T^*: C^* \times \Sigma \rightarrow \Sigma$ and
 \[c_s = c_0 \ldots c_n \Rightarrow T^*(c_s, \sigma_i) = T(c_n, \ldots, T(c_0, \sigma_i) \ldots) \]

• P similar; define P^* similarly
Projection

• $T^*(c_s, \sigma_i)$ sequence of state transitions
• $P^*(c_s, \sigma_i)$ corresponding outputs
• $proj(s, c_s, \sigma_i)$ set of outputs in $P^*(c_s, \sigma_i)$ that subject s authorized to see
 – In same order as they occur in $P^*(c_s, \sigma_i)$
 – Projection of outputs for s
• Intuition: list of outputs after removing outputs that s cannot see
Purge

- $G \subseteq S$, G a group of subjects
- $A \subseteq Z$, A a set of commands
- $\pi_G(c_s)$ subsequence of c_s with all elements (s,z), $s \in G$ deleted
- $\pi_A(c_s)$ subsequence of c_s with all elements (s,z), $z \in A$ deleted
- $\pi_{G,A}(c_s)$ subsequence of c_s with all elements (s,z), $s \in G$ and $z \in A$ deleted
Example: 2-bit Machine

- Let $\sigma_0 = (0,1)$
- 3 commands applied:
 - Heidi applies $xor0$
 - Lucy applies $xor1$
 - Heidi applies $xor1$
- $c_s = ((Heidi,xor0),(Lucy,xor1),(Heidi,xor0))$
- Output is 011001
 - Shorthand for sequence (0,1)(1,0)(0,1)
Example

- \(\text{proj}(\text{Heidi}, c_s, \sigma_0) = 011001\)
- \(\text{proj}(\text{Lucy}, c_s, \sigma_0) = 101\)
- \(\pi_{\text{Lucy}}(c_s) = (\text{Heidi}, \text{xor}0), (\text{Heidi}, \text{xor}1)\)
- \(\pi_{\text{Lucy,xor}1}(c_s) = (\text{Heidi}, \text{xor}0), (\text{Heidi}, \text{xor}1)\)
- \(\pi_{\text{Heidi}}(c_s) = (\text{Lucy}, \text{xor}1)\)
Example

• $\pi_{\text{Lucy}, \text{xor}0}(c_s) = (\text{Heidi, xor}0), (\text{Lucy, xor}1), (\text{Heidi, xor}1)$

• $\pi_{\text{Heidi}, \text{xor}0}(c_s) = \pi_{\text{xor}0}(c_s) = (\text{Lucy, xor}1), (\text{Heidi, xor}1)$

• $\pi_{\text{Heidi}, \text{xor}1}(c_s) = (\text{Heidi, xor}0), (\text{Lucy, xor}1)$

• $\pi_{\text{xor}1}(c_s) = (\text{Heidi, xor}0)$
Noninterference

• Intuition: Set of outputs Lucy can see corresponds to set of inputs she can see, there is no interference

• Formally: $G, G' \subseteq S$, $G \neq G'$; $A \subseteq Z$; Users in G executing commands in A are noninterfering with users in G' iff for all $c_s \in C^*$, and for all $s \in G'$,

$$proj(s, c_s, \sigma_i) = proj(s, \pi_{G,A}(c_s), \sigma_i)$$

- Written $A,G : | G'$
Example

• Let $c_s = ((\text{Heidi}, \text{xor0}), (\text{Lucy}, \text{xor1}), (\text{Heidi}, \text{xor1}))$ and $\sigma_0 = (0, 1)$
• Take $G = \{ \text{Heidi} \}, G' = \{ \text{Lucy} \}, A = \emptyset$
• $\pi_{\text{Heidi}}(c_s) = (\text{Lucy}, \text{xor1})$
 – So $\text{proj}(\text{Lucy}, \pi_{\text{Heidi}}(c_s), \sigma_0) = 0$
• $\text{proj}(\text{Lucy}, c_s, \sigma_0) = 101$
• So $\{ \text{Heidi} \} :\!\!: \{ \text{Lucy} \}$ is false
 – Makes sense; commands issued to change H bit also affect L bit
Example

- Same as before, but Heidi’s commands affect H bit only, Lucy’s the L bit only
- Output is $0_H0_L1_H$
- $\pi_{Heidi}(c_s) = (Lucy, xor1)$
 - So $proj(Lucy, \pi_{Heidi}(c_s), \sigma_0) = 0$
- $proj(Lucy, c_s, \sigma_0) = 0$
- So $\{Heidi\} :| \{Lucy\}$ is true
 - Makes sense; commands issued to change H bit now do not affect L bit
Security Policy

• Partitions systems into authorized, unauthorized states
• Authorized states have no forbidden interferences
• Hence a security policy is a set of noninterference assertions
 – See previous definition
Alternative Development

• System X is a set of protection domains $D = \{ d_1, \ldots, d_n \}$

• When command c executed, it is executed in protection domain $dom(c)$

• Give alternate versions of definitions shown previously
Output-Consistency

- \(c \in C, \text{dom}(c) \in D \)
- \(\sim_{\text{dom}(c)} \) equivalence relation on states of system \(X \)
- \(\sim_{\text{dom}(c)} \) output-consistent if

\[
\sigma_a \sim_{\text{dom}(c)} \sigma_b \Rightarrow P(c, \sigma_a) = P(c, \sigma_b)
\]

- Intuition: states are output-consistent if for subjects in \(\text{dom}(c) \), projections of outputs for both states after \(c \) are the same
Security Policy

- \(D = \{ d_1, \ldots, d_n \} \), \(d_i \) a protection domain
- \(r: D \times D \) a reflexive relation
- Then \(r \) defines a security policy
- Intuition: defines how information can flow around a system
 - \(d_i \) \(r \) \(d_j \) means info can flow from \(d_i \) to \(d_j \)
 - \(d_i \) \(r \) \(d_i \) as info can flow within a domain
Projection Function

- π' analogue of π, earlier
- Commands, subjects absorbed into protection domains
- $d \in D, c \in C, c_s \in C^*$
- $\pi'_d(\nu) = \nu$
- $\pi'_d(c_s c) = \pi'_d(c_s)c$ if $dom(c)rd$
- $\pi'_d(c_s c) = \pi'_d(c_s)$ otherwise
- Intuition: if executing c interferes with d, then c is visible; otherwise, as if c never executed
Noninterference-Secure

- System has set of protection domains \(D \)
- System is noninterference-secure with respect to policy \(r \) if
 \[
 P^*(c, T^*(c_s, \sigma_0)) = P^*(c, T^*(\pi'_d(c_s), \sigma_0))
 \]
- Intuition: if executing \(c_s \) causes the same transitions for subjects in domain \(d \) as does its projection with respect to domain \(d \), then no information flows in violation of the policy
Lemma

- Let $T^*(c_s, \sigma_0) \sim^d T^*(\pi'_d(c_s), \sigma_0)$ for $c \in C$
- If \sim^d output-consistent, then system is noninterference-secure with respect to policy r
Proof

• $d = \text{dom}(c)$ for $c \in C$
• By definition of output-consistent,

\[T^*(c_s, \sigma_0) \sim^d T^*(\pi'_d(c_s), \sigma_0) \]

implies

\[P^*(c, T^*(c_s, \sigma_0)) = P^*(c, T^*(\pi'_d(c_s), \sigma_0)) \]

• This is definition of noninterference-secure with respect to policy r
Unwinding Theorem

- Links security of sequences of state transition commands to security of individual state transition commands.
- Allows you to show a system design is ML secure by showing it matches specs from which certain lemmata derived.
 - Says *nothing* about security of system, because of implementation, operation, *etc.* issues.
Locally Respects

• r is a policy
• System X locally respects r if $\text{dom}(c)$ being noninterfering with $d \in D$ implies $\sigma_a \sim^d T(c, \sigma_a)$
• Intuition: applying c under policy r to system X has no effect on domain d when X locally respects r
Transition-Consistent

- r policy, $d \in D$
- If $\sigma_a \sim^d \sigma_b$ implies $T(c, \sigma_a) \sim^d T(c, \sigma_b)$, system X transition-consistent under r
- Intuition: command c does not affect equivalence of states under policy r
Lemma

- $c_1, c_2 \in C, d \in D$
- For policy r, $dom(c_1)rd$ and $dom(c_2)rd$
- Then
 \[T^*(c_1c_2, \sigma) = T(c_1, T(c_2, \sigma)) = T(c_2, T(c_1, \sigma)) \]
- Intuition: if info can flow from domains of commands into d, then order doesn’t affect result of applying commands
Unwinding Theorem

• Links security of sequences of state transition commands to security of individual state transition commands

• Allows you to show a system design is ML secure by showing it matches specs from which certain lemmata derived
 – Says *nothing* about security of system, because of implementation, operation, *etc.* issues
Locally Respects

- \(r \) is a policy
- System \(X \) locally respects \(r \) if \(\text{dom}(c) \) being noninterfering with \(d \in D \) implies \(\sigma_a \sim^d T(c, \sigma_a) \)
- Intuition: applying \(c \) under policy \(r \) to system \(X \) has no effect on domain \(d \) when \(X \) locally respects \(r \)
Transition-Consistent

• r policy, $d \in D$

• If $\sigma_a \sim^d \sigma_b$ implies $T(c, \sigma_a) \sim^d T(c, \sigma_b)$, system X transition-consistent under r

• Intuition: command c does not affect equivalence of states under policy r
Lemma

- $c_1, c_2 \in C, d \in D$
- For policy r, $\text{dom}(c_1)rd$ and $\text{dom}(c_2)rd$
- Then
 \[T^*(c_1c_2, \sigma) = T(c_1, T(c_2, \sigma)) = T(c_2, T(c_1, \sigma)) \]
- Intuition: if info can flow from domains of commands into d, then order doesn’t affect result of applying commands
Theorem

- r policy, X system that is output consistent, transition consistent, locally respects r
- X noninterference-secure with respect to policy r
- Significance: basis for analyzing systems claiming to enforce noninterference policy
 - Establish conditions of theorem for particular set of commands, states with respect to some policy, set of protection domains
 - Noninterference security with respect to r follows
Proof

• Must show $\sigma_a \sim^d \sigma_b$ implies
 \[T^*(c_s, \sigma_a) \sim^d T^*(\pi'_d(c_s), \sigma_b) \]
• Induct on length of c_s
• Basis: $c_s = \nu$, so $T^*(c_s, \sigma) = \sigma$; $\pi'_d(\nu) = \nu$; claim holds
• Hypothesis: $c_s = c_1 \ldots c_n$; then claim holds
Induction Step

• Consider $c_s c_{n+1}$. Assume $\sigma_a \sim^d \sigma_b$ and look at $T^* (\pi'_d (c_s c_{n+1}), \sigma_b)$

• 2 cases:
 – $dom(c_{n+1})rd$ holds
 – $dom(c_{n+1})rd$ does not hold
\[\text{dom}(c_{n+1})rd \text{ Holds} \]

\[T^*(\pi'_d(c_s c_{n+1}), \sigma_b) = T^*(\pi'_d(c_s c_{n+1}), \sigma_b) = T(c_{n+1}, T^*(\pi'_d(c_s), \sigma_b)) \]

- by definition of \(T^* \) and \(\pi'_d \)

- \(T(c_{n+1}, \sigma_a) \sim^d T(c_{n+1}, \sigma_b) \)
- as \(X \) transition-consistent and \(\sigma_a \sim^d \sigma_b \)

- \(T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T(c_{n+1}, T^*(\pi'_d(c_s), \sigma_b)) \)
- by transition-consistency and IH
$\text{dom}(c_{n+1}) \text{rd} \text{ Holds}$

$T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T(c_{n+1}, T^*(\pi'_d(c_s)c_{n+1}, \sigma_b))$

– by substitution from earlier equality

$T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T(c_{n+1}, T^*(\pi'_d(c_s)c_{n+1}, \sigma_b))$

– by definition of T^*

• proving hypothesis
$dom(c_{n+1})rd$ Does Not Hold

\[T^*(\pi'_d(c_s c_{n+1}), \sigma_b) = T^*(\pi'_d(c_s), \sigma_b) \]
- by definition of π'_d

\[T^*(c_s, \sigma_b) = T^*(\pi'_d(c_s c_{n+1}), \sigma_b) \]
- by above and IH

\[T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T^*(c_s, \sigma_a) \]
- as X locally respects r, so $\sigma \sim^d T(c_{n+1}, \sigma)$ for any σ

\[T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T(c_{n+1}, T^*(\pi'_d(c_s) c_{n+1}, \sigma_b)) \]
- substituting back

• proving hypothesis
Finishing Proof

• Take $\sigma_a = \sigma_b = \sigma_0$, so from claim proved by induction,

$$T^*(c_s, \sigma_0) \sim^d T^*(\pi'_d(c_s), \sigma_0)$$

• By previous lemma, as X (and so \sim^d) output consistent, then X is noninterference-secure with respect to policy r
Access Control Matrix

- Example of interpretation
- Given: access control information
- Question: are given conditions enough to provide noninterference security?
- Assume: system in a particular state
 - Encapsulates values in ACM
ACM Model

- Objects \(L = \{ l_1, \ldots, l_m \} \)
 - Locations in memory
- Values \(V = \{ v_1, \ldots, v_n \} \)
 - Values that \(L \) can assume
- Set of states \(\Sigma = \{ \sigma_1, \ldots, \sigma_k \} \)
- Set of protection domains \(D = \{ d_1, \ldots, d_j \} \)
Functions

- **value**: \(L \times \Sigma \rightarrow V \)
 - returns value \(v \) stored in location \(l \) when system in state \(\sigma \)
- **read**: \(D \rightarrow 2^V \)
 - returns set of objects observable from domain \(d \)
- **write**: \(D \rightarrow 2^V \)
 - returns set of objects observable from domain \(d \)
Interpretation of ACM

- Functions represent ACM
 - Subject s in domain d, object o
 - $r \in A[s, o]$ if $o \in \text{read}(d)$
 - $w \in A[s, o]$ if $o \in \text{write}(d)$

- Equivalence relation:
 \[
 [\sigma_a \sim^{\text{dom}(c)} \sigma_b] \iff [\forall l_i \in \text{read}(d) \quad [\text{value}(l_i, \sigma_a) = \text{value}(l_i, \sigma_b)]]
 \]
 - You can read the exactly the same locations in both states
Enforcing Policy r

- 5 requirements
 - 3 general ones describing dependence of commands on rights over input and output
 - Hold for all ACMs and policies
 - 2 that are specific to some security policies
 - Hold for most policies
Enforcing Policy r: First

- Output of command c executed in domain $\text{dom}(c)$ depends only on values for which subjects in $\text{dom}(c)$ have read access

$$\sigma_a \sim^{\text{dom}(c)} \sigma_b \Rightarrow P(c, \sigma_a) = P(c, \sigma_b)$$
Enforcing Policy r: Second

- If c changes l_i, then c can only use values of objects in $\text{read} (\text{dom} (c))$ to determine new value

\[
\begin{align*}
[& \sigma_a \sim^{\text{dom}(c)} \sigma_b \text{ and } \\
(& \text{value} (l_i, T(c, \sigma_a)) \neq \text{value} (l_i, \sigma_a) \text{ or } \\
& \text{value} (l_i, T(c, \sigma_b)) \neq \text{value} (l_i, \sigma_b))] \Rightarrow \\
& \text{value} (l_i, T(c, \sigma_a)) = \text{value} (l_i, T(c, \sigma_b))
\end{align*}
\]
Enforcing Policy r: Third

- If c changes l_i, then $dom(c)$ provides subject executing c with write access to l_i

$$value(l_i, T(c, \sigma_a)) \neq value(l_i, \sigma_a) \Rightarrow l_i \in write(dom(c))$$
Enforcing Policies \(r: \) Fourth

- If domain \(u \) can interfere with domain \(v \), then every object that can be read in \(u \) can also be read in \(v \)
- So if object \(o \) cannot be read in \(u \), but can be read in \(v \); and object \(o' \) in \(u \) can be read in \(v \), then info flows from \(o \) to \(o' \), then to \(v \)

Let \(u, v \in D \); then \(urv \Rightarrow \text{read}(u) \subseteq \text{read}(v) \)
Enforcing Policies r: Fifth

- Subject s can read object o in v, subject s' can read o in u, then domain v can interfere with domain u

$$l_i \in read(u) \text{ and } l_i \in write(v) \implies vru$$
Theorem

• Let X be a system satisfying the five conditions. The X is noninterference-secure with respect to r

• Proof: must show X output-consistent, locally respects r, transition-consistent
 – Then by unwinding theorem, theorem holds
Output-Consistent

• Take equivalence relation to be \sim^d, first condition is definition of output-consistent
Locally Respects r

- Proof by contradiction: assume $(\text{dom}(c), d) \notin r$ but $\sigma_a \sim^d T(c, \sigma_a)$ does not hold
- Some object has value changed by c:

$$\exists l_i \in \text{read}(d) \ [\text{value}(l_i, \sigma_a) \neq \text{value}(l_i, T(c, \sigma_a))]$$

- Condition 3: $l_i \in \text{write}(d)$
- Condition 5: $\text{dom}(c)\text{rd}$, contradiction
- So $\sigma_a \sim^d T(c, \sigma_a)$ holds, meaning X locally respects r
Transition Consistency

• Assume $\sigma_a \sim^d \sigma_b$
• Must show $\text{value}(l_i, T(c, \sigma_a)) = \text{value}(l_i, T(c, \sigma_b))$ for $l_i \in \text{read}(d)$
• 3 cases dealing with change that c makes in l_i in states σ_a, σ_b
Case 1

- $\text{value}(l_i, T(c, \sigma_a)) \neq \text{value}(l_i, \sigma_a)$
- Condition 3: $l_i \in \text{write}(\text{dom}(c))$
- As $l_i \in \text{read}(d)$, condition 5 says $\text{dom}(c) \text{rd}$
- Condition 4 says $\text{read}(\text{dom}(c)) \subseteq \text{read}(d)$
- As $\sigma_a \sim^d \sigma_b$, $\sigma_a \sim^{\text{dom}(c)} \sigma_b$
- Condition 2:
 - $\text{value}(l_i, T(c, \sigma_a)) = \text{value}(l_i, T(c, \sigma_b))$
- So $T(c, \sigma_a) \sim^{\text{dom}(c)} T(c, \sigma_b)$, as desired
Case 2

- \(\text{value}(l_i, T(c, \sigma_b)) \neq \text{value}(l_i, \sigma_b) \)
- Condition 3: \(l_i \in \text{write}(\text{dom}(c)) \)
- As \(l_i \in \text{read}(d) \), condition 5 says \(\text{dom}(c) \subseteq \text{rd} \)
- Condition 4 says \(\text{read}(\text{dom}(c)) \subseteq \text{read}(d) \)
- As \(\sigma_a \sim^d \sigma_b \), \(\sigma_a \sim^{\text{dom}(c)} \sigma_b \)
- Condition 2:
 \[
 \text{value}(l_i, T(c, \sigma_a)) = \text{value}(l_i, T(c, \sigma_b))
 \]
- So \(T(c, \sigma_a) \sim^{\text{dom}(c)} T(c, \sigma_b) \), as desired
Case 3

• Neither of the previous two
 – \(\text{value}(l_i, T(c, \sigma_a)) = \text{value}(l_i, \sigma_a) \)
 – \(\text{value}(l_i, T(c, \sigma_b)) = \text{value}(l_i, \sigma_b) \)

• Interpretation of \(\sigma_a \sim^d \sigma_b \) is:
 for \(l_i \in \text{read}(d) \), \(\text{value}(l_i, \sigma_a) = \text{value}(l_i, \sigma_b) \)

• So \(T(c, \sigma_a) \sim^d T(c, \sigma_b) \), as desired

• In all 3 cases, \(X \) transition-consistent
Policies Changing Over Time

- Problem: previous analysis assumes static system
 - In real life, ACM changes as system commands issued
- Example: \(w \in C^* \) leads to current state
 - \(\text{cando}(w, s, z) \) holds if \(s \) can execute \(z \) in current state
 - Condition noninterference on \(\text{cando} \)
 - If \(-\text{cando}(w, \text{Lara}, \text{“write } f\text{”})\), Lara can’t interfere with any other user by writing file \(f \)
Generalize Noninterference

- $G \subseteq S$ group of subjects, $A \subseteq Z$ set of commands, p predicate over elements of C^*
- $c_s = (c_1, \ldots, c_n) \in C^*$
- $\pi''(v) = v$
- $\pi''((c_1, \ldots, c_n)) = (c_1', \ldots, c_n')$
 - $c_i' = v$ if $p(c_1', \ldots, c_{i-1}')$ and $c_i = (s, z)$ with $s \in G$ and $z \in A$
 - $c_i' = c_i$ otherwise
Intuition

- \(\pi''(c_s) = c_s \)
- But if \(p \) holds, and element of \(c_s \) involves both command in \(A \) and subject in \(G \), replace corresponding element of \(c_s \) with empty command \(\nu \)
 - Just like deleting entries from \(c_s \) as \(\pi_{A,G} \) does earlier
Noninterference

- $G, G' \subseteq S$ groups of subjects, $A \subseteq Z$ set of commands, p predicate over C^*
- Users in G executing commands in A are noninterfering with users in G' under condition p iff, for all $c_s \in C^*$, all $s \in G'$, $\text{proj}(s, c_s, \sigma_i) = \text{proj}(s, \pi''(c_s), \sigma_i)$
 - Written $A,G \vdash G'$ if p
Example

- From earlier one, simple security policy based on noninterference:

\[\forall (s \in S) \ \forall (z \in Z) \\]

\[[\{z\}, \{s\} :| S \text{ if } \neg cando(w, s, z)] \]

- If subject can’t execute command (the \(-cando\) part), subject can’t use that command to interfere with another subject
Policies Changing Over Time

• Problem: previous analysis assumes static system
 – In real life, ACM changes as system commands issued
• Example: $w \in C^*$ leads to current state
 – $\text{cando}(w, s, z)$ holds if s can execute z in current state
 – Condition noninterference on cando
 – If $\neg \text{cando}(w, \text{Lara}, \text{“write } f\text{”})$, Lara can’t interfere with any other user by writing file f
Generalize Noninterference

- $G \subseteq S$ group of subjects, $A \subseteq Z$ set of commands, p predicate over elements of C^*
- $c_s = (c_1, \ldots, c_n) \in C^*$
- $\pi''(v) = v$
- $\pi''((c_1, \ldots, c_n)) = (c_1', \ldots, c_n')$
 - $c_i' = v$ if $p(c_1', \ldots, c_{i-1}')$ and $c_i = (s, z)$ with $s \in G$ and $z \in A$
 - $c_i' = c_i$ otherwise
Intuition

• $\pi''(c_s) = c_s$

• But if p holds, and element of c_s involves both command in A and subject in G, replace corresponding element of c_s with empty command ν
 – Just like deleting entries from c_s as $\pi_{A,G}$ does earlier
Noninterference

- \(G, G' \subseteq S \) groups of subjects, \(A \subseteq Z \) set of commands, \(p \) predicate over \(C^* \)
- Users in \(G \) executing commands in \(A \) are noninterfering with users in \(G' \) under condition \(p \) iff, for all \(c_s \in C^* \), all \(s \in G' \),
 \[\text{proj}(s, c_s, \sigma_i) = \text{proj}(s, p''(c_s), \sigma_i) \]
 - Written \(A,G :| G' \) if \(p \)
Example

• From earlier one, simple security policy based on noninterference:

\[\forall (s \in S) \forall (z \in Z) \]

\[\{z\}, \{s\} :| S \textbf{ if } \neg \text{cando}(w, s, z) \]

• If subject can’t execute command (the \(-\text{cando}\) part), subject can’t use that command to interfere with another subject
Another Example

- Consider system in which rights can be passed
 - $\text{pass}(s, z)$ gives s right to execute z
 - $w_n = v_1, \ldots, v_n$ sequence of $v_i \in C^*$
 - $\text{prev}(w_n) = w_{n-1}$; $\text{last}(w_n) = v_n$
Policy

• No subject \(s \) can use \(z \) to interfere if, in previous state, \(s \) did not have right to \(z \), and no subject gave it to \(s \)

\[
\{ z \}, \{ s \} \vdash S \text{ if }
\]

\[
[\neg \text{cando}(\text{prev}(w), s, z) \land
\]

\[
[\text{cando}(\text{prev}(w), s', \text{pass}(s, z)) \Rightarrow
\]

\[
\neg \text{last}(w) = (s', \text{pass}(s, z))]]
\]
Effect

• Suppose $s_1 \in S$ can execute $\text{pass}(s_2, z)$
• For all $w \in C^*$, $\text{cando}(w, s_1, \text{pass}(s_2, z))$ true
• Initially, $\text{cando}(\nu, s_2, z)$ false
• Let $z' \in Z$ be such that (s_3, z') noninterfering with (s_2, z)
 – So for each w_n with $\nu_n = (s_3, z')$,
 $\text{cando}(w_n, s_2, z) = \text{cando}(w_{n-1}, s_2, z)$
Effect

• Then policy says for all \(s \in S \)

\[
\text{proj}(s, ((s_2, z), (s_1, \text{pass}(s_2, z))), (s_3, z'), (s_2, z), \sigma_i) = \\
\text{proj}(s, ((s_1, \text{pass}(s_2, z)), (s_3, z'), (s_2, z), \sigma_i)
\]

• So \(s_2 \)’s first execution of \(z \) does not affect any subject’s observation of system
Policy Composition I

• Assumed: Output function of input
 – Means deterministic (else not function)
 – Means uninterruptability (differences in timings can cause differences in states, hence in outputs)

• This result for deterministic, noninterference-secure systems
Compose Systems

- Louie, Dewey LOW
- Hughie HIGH
- b_L output buffer
 - Anyone can read it
- b_H input buffer
 - From HIGH source
- Hughie reads from:
 - b_{LH} (Louie writes)
 - b_{LDH} (Louie, Dewey write)
 - b_{DH} (Dewey writes)
Systems Secure

- All noninterference-secure
 - Hughie has no output
 - So inputs don’t interfere with it
 - Louie, Dewey have no input
 - So (nonexistent) inputs don’t interfere with outputs
Security of Composition

• Buffers finite, sends/receives blocking: composition not secure!
 – Example: assume b_{DH}, b_{LH} have capacity 1

• Algorithm:
 1. Louie (Dewey) sends message to $b_{LH} (b_{DH})$
 – Fills buffer
 2. Louie (Dewey) sends second message to $b_{LH} (b_{DH})$
 3. Louie (Dewey) sends a 0 (1) to b_L
 4. Louie (Dewey) sends message to b_{LDH}
 – Signals Hughie that Louie (Dewey) completed a cycle
Hughie

- Reads bit from b_H
 - If 0, receive message from b_{LH}
 - If 1, receive message from b_{DH}
- Receive on b_{LDH}
 - To wait for buffer to be filled
Example

• Hughie reads 0 from b_H
 – Reads message from b_{LH}
• Now Louie’s second message goes into b_{LH}
 – Louie completes step 2 and writes 0 into b_L
• Dewey blocked at step 1
 – Dewey cannot write to b_L
• Symmetric argument shows that Hughie reading 1 produces a 1 in b_L
• So, input from b_H copied to output b_L
Nondeducibility

• Noninterference: do state transitions caused by high level commands interfere with sequences of state transitions caused by low level commands?

• Really case about inputs and outputs:
 – Can low level subject deduce *anything* about high level outputs from a set of low level outputs?
Example: 2-Bit System

- *High* operations change only *High* bit
 - Similar for *Low*
- \(s_0 = (0, 0) \)
- Commands (Heidi, xor1), (Lara, xor0), (Lara, xor1), (Lara, xor0), (Heidi, xor1), (Lara, xor0)
 - Both bits output after each command
- Output is: 00101011110101
Security

- Not noninterference-secure w.r.t. Lara
 - Lara sees output as 0001111
 - Delete *High* and she sees 00111
- But Lara still cannot deduce the commands deleted
 - Don’t affect values; only lengths
- So it is deducibly secure
 - Lara can’t deduce the commands Heidi gave
Event System

• 4-tuple \((E, I, O, T)\)
 – \(E\) set of events
 – \(I \subseteq E\) set of input events
 – \(O \subseteq E\) set of output events
 – \(T\) set of all finite sequences of events legal within system

• \(E\) partitioned into \(H, L\)
 – \(H\) set of \textit{High} events
 – \(L\) set of \textit{Low} events
More Events …

- $H \cap I$ set of $High$ inputs
- $H \cap O$ set of $High$ outputs
- $L \cap I$ set of Low inputs
- $L \cap O$ set of Low outputs
- T_{Low} set of all possible sequences of Low events that are legal within system
- $\pi_L: T \rightarrow T_{Low}$ projection function deleting all $High$ inputs from trace
 - Low observer should not be able to deduce anything about $High$ inputs from trace $t_{Low} \in T_{low}$
Deducibly Secure

- System deducibly secure if, for every trace $t_{Low} \in T_{Low}$, the corresponding set of high level traces contains every possible trace $t \in T$ for which $\pi_L(t) = t_{Low}$
 - Given any t_{Low}, the trace $t \in T$ producing that t_{Low} is equally likely to be any trace with $\pi_L(t) = t_{Low}$
Example

• Back to our 2-bit machine
 – Let xor0, xor1 apply to both bits
 – Both bits output after each command
• Initial state: (0, 1)
• Inputs: $1_H0_L1_L0_H1_L0_L$
• Outputs: 10 10 01 01 10 10
• Lara (at Low) sees: 001100
 – Does not know initial state, so does not know first input; but can deduce fourth input is 0
• Not deducibly secure
Example

- Now $xor0$, $xor1$ apply only to state bit with same level as user
- Inputs: $1_H 0_L 1_L 0_H 1_L 0_L$
- Outputs: 1011111011
- Lara sees: 01101
- She cannot deduce *anything* about input
 - Could be $0_H 0_L 1_L 0_H 1_L 0_L$ or $0_L 1_H 1_L 0_H 1_L 0_L$ for example
- Deducibly secure
Security of Composition

• In general: deducibly secure systems not composable

• *Strong noninterference*: deducible security + requirement that no *High* output occurs unless caused by a *High* input
 – Systems meeting this property *are* composable
Example

- 2-bit machine done earlier does not exhibit strong noninterference
 - Because it puts out *High* bit even when there is no *High* input
- Modify machine to output only state bit at level of latest input
 - *Now* it exhibits strong noninterference
Problem

- Too restrictive; it bans some systems that are *obviously* secure
- Example: System *upgrade* reads *Low* inputs, outputs those bits at *High*
 - Clearly deducibly secure: low level user sees no outputs
 - Clearly does not exhibit strong noninterference, as no high level inputs!
Remove Determinism

• Previous assumption
 – Input, output synchronous
 – Output depends only on commands triggered by input
 • Sometimes absorbed into commands …
 – Input processed one datum at a time
• Not realistic
 – In real systems, lots of asynchronous events
Generalized Noninterference

- Nondeterministic systems meeting noninterference property meet *generalized noninterference-secure property*
 - More robust than nondeducible security because minor changes in assumptions affect whether system is nondeducibly secure
Example

- System with *High* Holly, *Low* lucy, text file at *High*
 - File fixed size, symbol `b` marks empty space
 - Holly can edit file, Lucy can run this program:

```plaintext
while true do begin
    n := read_integer_from_user;
    if n > file_length or char_in_file[n] = b then
        print random_character;
    else
        print char_in_file[n];
end;
```
Security of System

• Not noninterference-secure
 – High level inputs—Holly’s changes—affect low level outputs

• *May* be deducibly secure
 – Can Lucy deduce contents of file from program?
 – If output meaningful (“This is right”) or close (“Thes is riqht”), yes
 – Otherwise, no

• So deducibly secure depends on which inferences are allowed
Composition of Systems

• Does composing systems meeting generalized noninterference-secure property give you a system that also meets this property?
• Define two systems \((cat, dog)\)
• Compose them
First System: *cat*

- Inputs, outputs can go left or right
- After some number of inputs, *cat* sends two outputs
 - First *stop_count*
 - Second parity of High inputs, outputs
Noninterference-Secure?

• If even number of High inputs, output could be:
 – 0 (even number of outputs)
 – 1 (odd number of outputs)

• If odd number of High inputs, output could be:
 – 0 (odd number of outputs)
 – 1 (even number of outputs)

• High level inputs do not affect output
 – So noninterference-secure
Second System: *dog*

- High outputs to left
- Low outputs of 0 or 1 to right
- `stop_count` input from the left
 - When it arrives, *dog* emits 0 or 1
Noninterference-Secure?

• When \textit{stop_count} arrives:
 – May or may not be inputs for which there are no corresponding outputs
 – Parity of \textit{High} inputs, outputs can be odd or even
 – Hence \textit{dog} emits 0 or 1

• High level inputs do not affect low level outputs
 – So noninterference-secure
Compose Them

- Once sent, message arrives
 - But \textit{stop_count} may arrive before all inputs have generated corresponding outputs
 - If so, even number of \textit{High} inputs and outputs on \textit{cat}, but odd number on \textit{dog}
- Four cases arise
The Cases

• *cat*, odd number of inputs, outputs; *dog*, even number of inputs, odd number of outputs
 – Input message from *cat* not arrived at *dog*, contradicting assumption

• *cat*, even number of inputs, outputs; *dog*, odd number of inputs, even number of outputs
 – Input message from *dog* not arrived at *cat*, contradicting assumption
The Cases

- cat, odd number of inputs, outputs; dog, odd number of inputs, even number of outputs
 - dog sent even number of outputs to cat, so cat has had at least one input from left
- cat, even number of inputs, outputs; dog, even number of inputs, odd number of outputs
 - dog sent odd number of outputs to cat, so cat has had at least one input from left
The Conclusion

• Composite system *catdog* emits 0 to left, 1 to right (or 1 to left, 0 to right)
 – Must have received at least one input from left

• Composite system *catdog* emits 0 to left, 0 to right (or 1 to left, 1 to right)
 – Could not have received any from left

• So, *High* inputs affect *Low* outputs
 – Not noninterference-secure
Feedback-Free Systems

• System has n distinct components
• Components c_i, c_j connected if any output of c_i is input to c_j
• System is feedback-free if for all c_i connected to c_j, c_j not connected to any c_i
 – Intuition: once information flows from one component to another, no information flows back from the second to the first
Feedback-Free Security

- *Theorem*: A feedback-free system composed of noninterference-secure systems is itself noninterference-secure.
Some Feedback

- **Lemma**: A noninterference-secure system can feed a high level output o to a high level input i if the arrival of o at the input of the next component is delayed until after the next low level input or output.

- **Theorem**: A system with feedback as described in the above lemma and composed of noninterference-secure systems is itself noninterference-secure.
Why Didn’t They Work?

- For compositions to work, machine must act the same way regardless of what precedes low level input (high, low, nothing).
- *dog* does not meet this criterion:
 - If first input is *stop_count*, *dog* emits 0.
 - If high level input precedes *stop_count*, *dog* emits 0 or 1.
State Machine Model

- 2-bit machine, levels *High*, *Low*, meeting 4 properties:

1. For every input i_k, state σ_j, there is an element $c_m \in C^*$ such that $T^*(c_m, \sigma_j) = \sigma_n$, where $\sigma_n \neq \sigma_j$

 - T^* is total function, inputs and commands always move system to a different state
Property 2

- There is an equivalence relation \equiv such that:
 - If system in state σ_i and high level sequence of inputs causes transition from σ_i to σ_j, then $\sigma_i \equiv \sigma_j$
 - If $\sigma_i \equiv \sigma_j$ and low level sequence of inputs i_1, \ldots, i_n causes system in state σ_i to transition to σ_i', then there is a state σ_j' such that $\sigma_i' \equiv \sigma_j'$ and the inputs i_1, \ldots, i_n cause system in state σ_j to transition to σ_j'
- \equiv holds if low level projections of both states are same
Property 3

- Let $\sigma_i \equiv \sigma_j$. If high level sequence of outputs o_1, \ldots, o_n indicate system in state σ_i transitioned to state σ_i', then for some state σ_j' with $\sigma_j' \equiv \sigma_i'$, high level sequence of outputs o_1', \ldots, o_m' indicates system in σ_j transitioned to σ_j'
 - High level outputs do not indicate changes in low level projection of states
Property 4

• Let $\sigma_i \equiv \sigma_j$, let c, d be high level output sequences, e a low level output. If ced indicates system in state σ_i transitions to σ_i', then there are high level output sequences c' and d' and state σ_j' such that $c'ed'$ indicates system in state σ_j transitions to state σ_j'

 – Intermingled low level, high level outputs cause changes in low level state reflecting low level outputs only
Restrictiveness

• System is restrictive if it meets the preceding 4 properties
Composition

• Intuition: by 3 and 4, high level output followed by low level output has same effect as low level input, so composition of restrictive systems should be restrictive
Composite System

- System M_1’s outputs are M_2’s inputs
- μ_{1i}, μ_{2i} states of M_1, M_2
- States of composite system pairs of M_1, M_2 states (μ_{1i}, μ_{2i})
- Event e causing transition
- e causes transition from state (μ_{1a}, μ_{2a}) to state (μ_{1b}, μ_{2b}) if any of 3 conditions hold
Conditions

1. M_1 in state μ_{1a} and e occurs, M_1 transitions to μ_{1b}; e not an event for M_2; and $\mu_{2a} = \mu_{2b}$

2. M_2 in state μ_{2a} and e occurs, M_2 transitions to μ_{2b}; e not an event for M_1; and $\mu_{1a} = \mu_{1b}$

3. M_1 in state μ_{1a} and e occurs, M_1 transitions to μ_{1b}; M_2 in state μ_{2a} and e occurs, M_2 transitions to μ_{2b}; e is input to one machine, and output from other
Intuition

• Event causing transition in composite system causes transition in at least 1 of the components

• If transition occurs in exactly one component, event must not cause transition in other component when not connected to the composite system
Equivalence for Composite

• Equivalence relation for composite system
\[(\sigma_a, \sigma_b) \equiv_C (\sigma_c, \sigma_d) \iff \sigma_a \equiv \sigma_c \text{ and } \sigma_b \equiv \sigma_d\]

• Corresponds to equivalence relation in property 2 for component system
Key Points

- Composing secure policies does not always produce a secure policy
 - The policies must be restrictive
- Noninterference policies prevent HIGH inputs from affecting LOW outputs
 - Prevents “writes down” in broadest sense
- Nondeducibility policies prevent the inference of HIGH inputs from LOW outputs
 - Prevents “reads up” in broadest sense