Chapter 8: Noninterference and Policy Composition

• Overview
• Problem
• Deterministic Noninterference
• Nondeducibility
• Generalized Noninterference
• Restrictiveness
Overview

• Problem
 – Policy composition

• Noninterference
 – HIGH inputs affect LOW outputs

• Nondeducibility
 – HIGH inputs can be determined from LOW outputs

• Restrictiveness
 – When can policies be composed successfully
Composition of Policies

• Two organizations have two security policies
• They merge
 – How do they combine security policies to create one security policy?
 – Can they create a coherent, consistent security policy?
The Problem

• Single system with 2 users
 – Each has own virtual machine
 – Holly at system high, Lara at system low so they cannot communicate directly

• CPU shared between VMs based on load
 – Forms a covert channel through which Holly, Lara can communicate
Example Protocol

• Holly, Lara agree:
 – Begin at noon
 – Lara will sample CPU utilization every minute
 – To send 1 bit, Holly runs program
 • Raises CPU utilization to over 60%
 – To send 0 bit, Holly does not run program
 • CPU utilization will be under 40%

• Not “writing” in traditional sense
 – But information flows from Holly to Lara
Policy vs. Mechanism

• Can be hard to separate these
• In the abstract: CPU forms channel along which information can be transmitted
 – Violates *-property
 – Not “writing” in traditional sense

• Conclusions:
 – Model does not give sufficient conditions to prevent communication, or
 – System is improperly abstracted; need a better definition of “writing”
Composition of Bell-LaPadula

• Why?
 – Some standards require secure components to be connected to form secure (distributed, networked) system

• Question
 – Under what conditions is this secure?

• Assumptions
 – Implementation of systems precise with respect to each system’s security policy
Issues

• Compose the lattices
• What is relationship among labels?
 – If the same, trivial
 – If different, new lattice must reflect the relationships among the levels
Example

(HIGH, \{EAST, WEST\})
(HIGH, \{EAST\})
(HIGH, \{WEST\})

(Low)

(TS, \{EAST, SOUTH\})
(TS, \{EAST\})
(TS, \{SOUTH\})

(Low)
Analysis

- Assume \(S < \text{HIGH} < \text{TS} \)
- Assume SOUTH, EAST, WEST different
- Resulting lattice has:
 - 4 clearances (LOW < S < HIGH < TS)
 - 3 categories (SOUTH, EAST, WEST)
Same Policies

- If we can change policies that components must meet, composition is trivial (as above)
- If we cannot, we must show composition meets the same policy as that of components; this can be very hard
Different Policies

• What does “secure” now mean?
• Which policy (components) dominates?
• Possible principles:
 – Any access allowed by policy of a component must be allowed by composition of components (autonomy)
 – Any access forbidden by policy of a component must be forbidden by composition of components (security)
Implications

• Composite system satisfies security policy of components as components’ policies take precedence

• If something neither allowed nor forbidden by principles, then:
 – Allow it (Gong & Qian)
 – Disallow it (Fail-Safe Defaults)
Example

- **System X**: Bob can’t access Alice’s files
- **System Y**: Eve, Lilith can access each other’s files
- **Composition policy**:
 - Bob can access Eve’s files
 - Lilith can access Alice’s files
- **Question**: can Bob access Lilith’s files?
Solution (Gong & Qian)

• Notation:
 – \((a, b)\): \(a\) can read \(b\)'s files
 – \(AS(x)\): access set of system \(x\)

• Set-up:
 – \(AS(X) = \emptyset\)
 – \(AS(Y) = \{ (Eve, Lilith), (Lilith, Eve) \}\)
 – \(AS(X \cup Y) = \{ (Bob, Eve), (Lilith, Alice), (Eve, Lilith), (Lilith, Eve) \}\)
Solution (Gong & Qian)

• Compute transitive closure of $AS(X \cup Y)$:
 \[- AS(X \cup Y)^+ = \{(Bob, Eve), (Bob, Lilith), (Bob, Alice), (Eve, Lilith), (Eve, Alice), (Lilith, Eve), (Lilith, Alice)\}\]

• Delete accesses conflicting with policies of components:
 \[- Delete (Bob, Alice)\]

• (Bob, Lilith) in set, so Bob can access Lilith’s files
Idea

- Composition of policies allows accesses not mentioned by original policies
- Generate all possible allowed accesses
 - Computation of transitive closure
- Eliminate forbidden accesses
 - Removal of accesses disallowed by individual access policies
- Everything else is allowed
- Note; determining if access allowed is of polynomial complexity
Interference

- Think of it as something used in communication
 - Holly/Lara example: Holly interferes with the CPU utilization, and Lara detects it—communication

- Plays role of writing (interfering) and reading (detecting the interference)
Model

• System as state machine
 – Subjects $S = \{ s_i \}$
 – States $\Sigma = \{ \sigma_i \}$
 – Outputs $O = \{ o_i \}$
 – Commands $Z = \{ z_i \}$
 – State transition commands $C = S \times Z$

• Note: no inputs
 – Encode either as selection of commands or in state transition commands
Functions

- State transition function $T: C \times \Sigma \rightarrow \Sigma$
 - Describes effect of executing command c in state σ
- Output function $P: C \times \Sigma \rightarrow O$
 - Output of machine when executing command c in state s
- Initial state is σ_0
Example

• Users Heidi (high), Lucy (low)
• 2 bits of state, H (high) and L (low)
 – System state is (H, L) where H, L are 0, 1
• 2 commands: $xor0$, $xor1$ do xor with 0, 1
 – Operations affect both state bits regardless of whether Heidi or Lucy issues it
Example: 2-bit Machine

- $S = \{ \text{Heidi, Lucy} \}$
- $\Sigma = \{ (0,0), (0,1), (1,0), (1,1) \}$
- $C = \{ \text{xor0, xor1} \}$

<table>
<thead>
<tr>
<th></th>
<th>Input States (H, L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0,0)</td>
</tr>
<tr>
<td>xor0</td>
<td>(0,0)</td>
</tr>
<tr>
<td>xor1</td>
<td>(1,1)</td>
</tr>
</tbody>
</table>
Outputs and States

- T is inductive in first argument, as
 \[T(c_0, \sigma_0) = \sigma_1; \ T(c_{i+1}, \sigma_{i+1}) = T(c_{i+1}, T(c_i, \sigma_i)) \]
- Let C^* be set of possible sequences of commands in C
- $T^* : C^* \times \Sigma \rightarrow \Sigma$ and
 \[c_s = c_0 \ldots c_n \Rightarrow T^*(c_s, \sigma_i) = T(c_n, \ldots, T(c_0, \sigma_i) \ldots) \]
- P similar; define P^* similarly
Projection

- $T^*(c_s, \sigma_i)$ sequence of state transitions
- $P^*(c_s, \sigma_i)$ corresponding outputs
- $proj(s, c_s, \sigma_i)$ set of outputs in $P^*(c_s, \sigma_i)$ that subject s authorized to see
 - In same order as they occur in $P^*(c_s, \sigma_i)$
 - Projection of outputs for s
- Intuition: list of outputs after removing outputs that s cannot see
Purge

- $G \subseteq S$, G a group of subjects
- $A \subseteq Z$, A a set of commands
- $\pi_G(c_s)$ subsequence of c_s with all elements (s,z), $s \in G$ deleted
- $\pi_A(c_s)$ subsequence of c_s with all elements (s,z), $z \in A$ deleted
- $\pi_{G,A}(c_s)$ subsequence of c_s with all elements (s,z), $s \in G$ and $z \in A$ deleted
Example: 2-bit Machine

- Let $\sigma_0 = (0,1)$
- 3 commands applied:
 - Heidi applies $xor0$
 - Lucy applies $xor1$
 - Heidi applies $xor1$
- $c_s = ((Heidi,xor0),(Lucy,xor1),(Heidi,xor0))$
- Output is 011001
 - Shorthand for sequence (0,1)(1,0)(0,1)
Example

- \(\text{proj}(\text{Heidi}, c_s, \sigma_0) = 011001 \)
- \(\text{proj}(\text{Lucy}, c_s, \sigma_0) = 101 \)
- \(\pi_{\text{Lucy}}(c_s) = (\text{Heidi}, \text{xor}0), (\text{Heidi}, \text{xor}1) \)
- \(\pi_{\text{Lucy}, \text{xor}1}(c_s) = (\text{Heidi}, \text{xor}0), (\text{Heidi}, \text{xor}1) \)
- \(\pi_{\text{Heidi}}(c_s) = (\text{Lucy}, \text{xor}1) \)
Example

- $\pi_{\text{Lucy,xor0}}(c_s) = (\text{Heidi,xor0}), (\text{Lucy,xor1}), (\text{Heidi,xor1})$
- $\pi_{\text{Heidi,xor0}}(c_s) = \pi_{\text{xor0}}(c_s) = (\text{Lucy,xor1}), (\text{Heidi,xor1})$
- $\pi_{\text{Heidi,xor1}}(c_s) = (\text{Heidi,xor0}), (\text{Lucy,xor1})$
- $\pi_{\text{xor1}}(c_s) = (\text{Heidi,xor0})$
Noninterference

- Intuition: Set of outputs Lucy can see corresponds to set of inputs she can see, there is no interference.
- Formally: $G, G' \subseteq S$, $G \neq G'$; $A \subseteq Z$; Users in G executing commands in A are noninterfering with users in G' iff for all $c_s \in C^*$, and for all $s \in G'$,
 \[\text{proj}(s, c_s, \sigma_i) = \text{proj}(s, \pi_{G,A}(c_s), \sigma_i) \]
 - Written $A,G :| G'$
Example

- Let $c_s = ((\text{Heidi}, \text{xor}0), (\text{Lucy}, \text{xor}1), (\text{Heidi}, \text{xor}1))$ and $\sigma_0 = (0, 1)$
- Take $G = \{ \text{Heidi} \}$, $G' = \{ \text{Lucy} \}$, $A = \emptyset$
- $\pi_{\text{Heidi}}(c_s) = (\text{Lucy}, \text{xor}1)$
 - So $\text{proj}(\text{Lucy}, \pi_{\text{Heidi}}(c_s), \sigma_0) = 0$
- $\text{proj}(\text{Lucy}, c_s, \sigma_0) = 101$
- So $\{ \text{Heidi} \} : \not\{ \text{Lucy} \}$ is false
 - Makes sense; commands issued to change H bit also affect L bit
Example

- Same as before, but Heidi’s commands affect H bit only, Lucy’s the L bit only
- Output is $0_H0_L1_H$
- $\pi_{Heidi}(c_s) = (Lucy, xor L)$
 - So $proj(Lucy, \pi_{Heidi}(c_s), \sigma_0) = 0$
- $proj(Lucy, c_s, \sigma_0) = 0$
- So $\{ Heidi \} :| \{ Lucy \}$ is true
 - Makes sense; commands issued to change H bit now do not affect L bit
Security Policy

- Partitions systems into authorized, unauthorized states
- Authorized states have no forbidden interferences
- Hence a security policy is a set of noninterference assertions
 - See previous definition
Alternative Development

• System X is a set of protection domains $D = \{ d_1, \ldots, d_n \}$

• When command c executed, it is executed in protection domain $dom(c)$

• Give alternate versions of definitions shown previously
Output-Consistency

- $c \in C$, $\text{dom}(c) \in D$
- $\sim_{\text{dom}(c)}$ equivalence relation on states of system X
- $\sim_{\text{dom}(c)}$ output-consistent if

$$\sigma_a \sim_{\text{dom}(c)} \sigma_b \Rightarrow P(c, \sigma_a) = P(c, \sigma_b)$$

- Intuition: states are output-consistent if for subjects in $\text{dom}(c)$, projections of outputs for both states after c are the same
Security Policy

- $D = \{ d_1, \ldots, d_n \}$, d_i a protection domain
- $r: D \times D$ a reflexive relation
- Then r defines a security policy
- Intuition: defines how information can flow around a system
 - $d_i r d_j$ means info can flow from d_i to d_j
 - $d_i r d_i$ as info can flow within a domain
Projection Function

- \(\pi' \) analogue of \(\pi \), earlier
- Commands, subjects absorbed into protection domains
- \(d \in D, c \in C, c_s \in C^* \)
- \(\pi'_d(\nu) = \nu \)
- \(\pi'_d(c_s c) = \pi'_d(c_s) c \) if \(dom(c) \cap d \)
- \(\pi'_d(c_s c) = \pi'_d(c_s) \) otherwise
- Intuition: if executing \(c \) interferes with \(d \), then \(c \) is visible; otherwise, as if \(c \) never executed
Noninterference-Secure

- System has set of protection domains D
- System is noninterference-secure with respect to policy r if
 \[P^*(c, T^*(c_s, \sigma_0)) = P^*(c, T^*(\pi_d'(c_s), \sigma_0)) \]
- Intuition: if executing c_s causes the same transitions for subjects in domain d as does its projection with respect to domain d, then no information flows in violation of the policy
Lemma

• Let $T^*(c_s, \sigma_0) \sim^d T^*(\pi'_d(c_s), \sigma_0)$ for $c \in C$
• If \sim^d output-consistent, then system is noninterference-secure with respect to policy r
Proof

• \(d = \text{dom}(c) \) for \(c \in C \)
• By definition of output-consistent,
 \[T^*(c_s, \sigma_0) \sim_d T^*(\pi'_d(c_s), \sigma_0) \]
 implies
 \[P^*(c, T^*(c_s, \sigma_0)) = P^*(c, T^*(\pi'_d(c_s), \sigma_0)) \]
• This is definition of noninterference-secure with respect to policy \(r \)
Unwinding Theorem

- Links security of sequences of state transition commands to security of individual state transition commands
- Allows you to show a system design is ML secure by showing it matches specs from which certain lemmata derived
 - Says *nothing* about security of system, because of implementation, operation, *etc.* issues
Locally Respects

• r is a policy
• System X locally respects r if $dom(c)$ being noninterfering with $d \in D$ implies $\sigma_a \sim^d T(c, \sigma_a)$
• Intuition: applying c under policy r to system X has no effect on domain d when X locally respects r
Transition-Consistent

• r policy, $d \in D$
• If $\sigma_a \sim^d \sigma_b$ implies $T(c, \sigma_a) \sim^d T(c, \sigma_b)$, system X transition-consistent under r
• Intuition: command c does not affect equivalence of states under policy r
Lemma

- $c_1, c_2 \in C, d \in D$
- For policy r, $\text{dom}(c_1)rd$ and $\text{dom}(c_2)rd$
- Then
 $$T^*(c_1c_2, \sigma) = T(c_1, T(c_2, \sigma)) = T(c_2, T(c_1, \sigma))$$
- Intuition: if info can flow from domains of commands into d, then order doesn’t affect result of applying commands
Unwinding Theorem

• Links security of sequences of state transition commands to security of individual state transition commands

• Allows you to show a system design is ML secure by showing it matches specs from which certain lemmata derived
 – Says *nothing* about security of system, because of implementation, operation, *etc.* issues
Locally Respects

- r is a policy
- System X locally respects r if $dom(c)$ being noninterfering with $d \in D$ implies $\sigma_a \sim^d T(c, \sigma_a)$
- Intuition: applying c under policy r to system X has no effect on domain d when X locally respects r
Transition-Consistent

- r policy, $d \in D$
- If $\sigma_a \sim^d \sigma_b$ implies $T(c, \sigma_a) \sim^d T(c, \sigma_b)$, system X transition-consistent under r
- Intuition: command c does not affect equivalence of states under policy r
Lemma

- $c_1, c_2 \in C, d \in D$
- For policy r, $\text{dom}(c_1)rd$ and $\text{dom}(c_2)rd$
- Then
 \[
 T^*(c_1c_2, \sigma) = T(c_1, T(c_2, \sigma)) = T(c_2, T(c_1, \sigma))
 \]
- Intuition: if info can flow from domains of commands into d, then order doesn’t affect result of applying commands
Theorem

- r policy, X system that is output consistent, transition consistent, locally respects r
- X noninterference-secure with respect to policy r
- Significance: basis for analyzing systems claiming to enforce noninterference policy
 - Establish conditions of theorem for particular set of commands, states with respect to some policy, set of protection domains
 - Noninterference security with respect to r follows
Proof

• Must show $\sigma_{a} \sim^{d} \sigma_{b}$ implies
 $$T^*(c_s, \sigma_{a}) \sim^{d} T^*(\pi'_d(c_s), \sigma_{b})$$

• Induct on length of c_s

• Basis: $c_s = \nu$, so $T^*(c_s, \sigma) = \sigma; \pi'_d(\nu) = \nu$; claim holds

• Hypothesis: $c_s = c_1 \ldots c_n$; then claim holds
Induction Step

• Consider $c_s c_{n+1}$. Assume $\sigma_a \sim^d \sigma_b$ and look at $T^*(\pi'_d(c_s c_{n+1}), \sigma_b)$

• 2 cases:
 – $dom(c_{n+1})rd$ holds
 – $dom(c_{n+1})rd$ does not hold
\[\text{dom}(c_{n+1}) \text{rd} \text{ Holds} \]

\[
T^*(\pi'_d(c_sc_{n+1}), \sigma_b) = T^*(\pi'_d(c_s)c_{n+1}, \sigma_b) = T(c_{n+1}, T^*(\pi'_d(c_s), \sigma_b))
\]

– by definition of \(T^* \) and \(\pi'_d \)

• \(T(c_{n+1}, \sigma_a) \sim^d T(c_{n+1}, \sigma_b) \)
 – as \(X \) transition-consistent and \(\sigma_a \sim^d \sigma_b \)

• \(T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T(c_{n+1}, T^*(\pi'_d(c_s), \sigma_b)) \)
 – by transition-consistency and IH
\[\text{dom}(c_{n+1}) \text{rd}\] Holds

\[T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T(c_{n+1}, T^*(\pi'_d(c_s)c_{n+1}, \sigma_b)) \]
– by substitution from earlier equality

\[T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T(c_{n+1}, T^*(\pi'_d(c_s)c_{n+1}, \sigma_b)) \]
– by definition of \(T^* \)

• proving hypothesis
$dom(c_{n+1})rd$ Does Not Hold

\[T^*(\pi'_d(c_sc_{n+1}), \sigma_b) = T^*(\pi'_d(c_s), \sigma_b) \]
- by definition of π'_d
\[T^*(c_s, \sigma_b) = T^*(\pi'_d(c_sc_{n+1}), \sigma_b) \]
- by above and IH
\[T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T^*(c_s, \sigma_a) \]
- as X locally respects r, so $\sigma \sim^d T(c_{n+1}, \sigma)$ for any σ
\[T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T(c_{n+1}, T^*(\pi'_d(c_s)c_{n+1}, \sigma_b)) \]
- substituting back

• proving hypothesis
Finishing Proof

- Take $\sigma_a = \sigma_b = \sigma_0$, so from claim proved by induction,
 $$T^*(c_s, \sigma_0) \sim^d T^*(\pi'_d(c_s), \sigma_0)$$
- By previous lemma, as X (and so \sim^d) output consistent, then X is noninterference-secure with respect to policy r
Access Control Matrix

- Example of interpretation
- Given: access control information
- Question: are given conditions enough to provide noninterference security?
- Assume: system in a particular state
 - Encapsulates values in ACM
ACM Model

- **Objects** \(L = \{ l_1, \ldots, l_m \} \)
 - Locations in memory
- **Values** \(V = \{ v_1, \ldots, v_n \} \)
 - Values that \(L \) can assume
- **Set of states** \(\Sigma = \{ \sigma_1, \ldots, \sigma_k \} \)
- **Set of protection domains** \(D = \{ d_1, \ldots, d_j \} \)
Functions

• **value**: \(L \times \Sigma \rightarrow V \)
 - returns value \(v \) stored in location \(l \) when system in state \(\sigma \)

• **read**: \(D \rightarrow 2^V \)
 - returns set of objects observable from domain \(d \)

• **write**: \(D \rightarrow 2^V \)
 - returns set of objects observable from domain \(d \)
Interpretation of ACM

- Functions represent ACM
 - Subject s in domain d, object o
 - $r \in A[s, o]$ if $o \in \text{read}(d)$
 - $w \in A[s, o]$ if $o \in \text{write}(d)$

- Equivalence relation:
 \[
 [\sigma_a \sim^{\text{dom}(c)} \sigma_b] \iff \forall l_i \in \text{read}(d) \left[\text{value}(l_i, \sigma_a) = \text{value}(l_i, \sigma_b) \right]
 \]
 - You can read the exactly the same locations in both states
Enforcing Policy r

• 5 requirements
 – 3 general ones describing dependence of commands on rights over input and output
 • Hold for all ACMs and policies
 – 2 that are specific to some security policies
 • Hold for most policies
Enforcing Policy r: First

- Output of command c executed in domain $\text{dom}(c)$ depends only on values for which subjects in $\text{dom}(c)$ have read access

\[
\sigma_a \sim^{\text{dom}(c)} \sigma_b \Rightarrow P(c, \sigma_a) = P(c, \sigma_b)
\]
Enforcing Policy r: Second

- If c changes l_i, then c can only use values of objects in $\text{read}(\text{dom}(c))$ to determine new value

\[
[\sigma_a \sim^{\text{dom}(c)} \sigma_b \text{ and } \\
(value(l_i, T(c, \sigma_a)) \neq value(l_i, \sigma_a) \text{ or } \\
value(l_i, T(c, \sigma_b)) \neq value(l_i, \sigma_b)) \Rightarrow \\
value(l_i, T(c, \sigma_a)) = value(l_i, T(c, \sigma_b))]
\]
Enforcing Policy r: Third

- If c changes l_i, then $\text{dom}(c)$ provides subject executing c with write access to l_i

$$\text{value}(l_i, T(c, \sigma_a)) \neq \text{value}(l_i, \sigma_a) \Rightarrow l_i \in \text{write}(\text{dom}(c))$$
Enforcing Policies r: Fourth

- If domain u can interfere with domain v, then every object that can be read in u can also be read in v.

- So if object o cannot be read in u, but can be read in v; and object o' in u can be read in v, then info flows from o to o', then to v.

Let $u, v \in D$; then $urv \Rightarrow \text{read}(u) \subseteq \text{read}(v)$.
Enforcing Policies r: Fifth

- Subject s can read object o in v, subject s' can read o in u, then domain v can interfere with domain u

$$l_i \in \text{read}(u) \text{ and } l_i \in \text{write}(v) \Rightarrow vru$$
Theorem

• Let X be a system satisfying the five conditions. The X is noninterference-secure with respect to r

• Proof: must show X output-consistent, locally respects r, transition-consistent
 – Then by unwinding theorem, theorem holds
Output-Consistent

• Take equivalence relation to be \sim^d, first condition is definition of output-consistent
Locally Respects r

- Proof by contradiction: assume $(\text{dom}(c), d) \notin r$ but $\sigma_a \sim^d T(c, \sigma_a)$ does not hold
- Some object has value changed by c:
 \[\exists l_i \in \text{read}(d) \ [\text{value}(l_i, \sigma_a) \neq \text{value}(l_i, T(c, \sigma_a)) \]
- Condition 3: $l_i \in \text{write}(d)$
- Condition 5: $\text{dom}(c)rd$, contradiction
- So $\sigma_a \sim^d T(c, \sigma_a)$ holds, meaning X locally respects r
Transition Consistency

- Assume $\sigma_a \sim_d \sigma_b$
- Must show $\text{value}(l_i, T(c, \sigma_a)) = \text{value}(l_i, T(c, \sigma_b))$ for $l_i \in \text{read}(d)$
- 3 cases dealing with change that c makes in l_i in states σ_a, σ_b
Case 1

- \(\text{value}(l_i, T(c, \sigma_a)) \neq \text{value}(l_i, \sigma_a) \)
- Condition 3: \(l_i \in \text{write}(\text{dom}(c)) \)
- As \(l_i \in \text{read}(d) \), condition 5 says \(\text{dom}(c) \text{rd} \)
- Condition 4 says \(\text{read}(\text{dom}(c)) \subseteq \text{read}(d) \)
- As \(\sigma_a \sim^d \sigma_b \), \(\sigma_a \sim^{\text{dom}(c)} \sigma_b \)
- Condition 2:
 - \(\text{value}(l_i, T(c, \sigma_a)) = \text{value}(l_i, T(c, \sigma_b)) \)
- So \(T(c, \sigma_a) \sim^{\text{dom}(c)} T(c, \sigma_b) \), as desired
Case 2

- \(\text{value}(l_i, T(c, \sigma_b)) \neq \text{value}(l_i, \sigma_b) \)
- Condition 3: \(l_i \in \text{write} \left(\text{dom} \left(c \right) \right) \)
- As \(l_i \in \text{read}(d) \), condition 5 says \(\text{dom}(c) \subseteq \text{read}(d) \)
- Condition 4 says \(\text{read} \left(\text{dom} \left(c \right) \right) \subseteq \text{read}(d) \)
- As \(\sigma_a \sim^d \sigma_b, \sigma_a \sim^{\text{dom}(c)} \sigma_b \)
- Condition 2:
 \[
 \text{value}(l_i, T(c, \sigma_a)) = \text{value}(l_i, T(c, \sigma_b))
 \]
- So \(T(c, \sigma_a) \sim^{\text{dom}(c)} T(c, \sigma_b) \), as desired
Case 3

- Neither of the previous two
 - \(\text{value}(l_i, T(c, \sigma_a)) = \text{value}(l_i, \sigma_a) \)
 - \(\text{value}(l_i, T(c, \sigma_b)) = \text{value}(l_i, \sigma_b) \)

- Interpretation of \(\sigma_a \sim^d \sigma_b \) is:
 for \(l_i \in \text{read}(d) \), \(\text{value}(l_i, \sigma_a) = \text{value}(l_i, \sigma_b) \)

- So \(T(c, \sigma_a) \sim^d T(c, \sigma_b) \), as desired

- In all 3 cases, \(X \) transition-consistent
Policies Changing Over Time

- Problem: previous analysis assumes static system
 - In real life, ACM changes as system commands issued
- Example: \(w \in C^* \) leads to current state
 - \(cando(w, s, z) \) holds if \(s \) can execute \(z \) in current state
 - Condition noninterference on \(cando \)
 - If \(\neg cando(w, \text{Lara, "write } f\text{"}) \), Lara can’t interfere with any other user by writing file \(f \)
Generalize Noninterference

- $G \subseteq S$ group of subjects, $A \subseteq Z$ set of commands, p predicate over elements of C^*
- $c_s = (c_1, \ldots, c_n) \in C^*$
- $\pi''(v) = v$
- $\pi''((c_1, \ldots, c_n)) = (c_1', \ldots, c_n')$
 - $c_i' = v$ if $p(c_1', \ldots, c_{i-1}')$ and $c_i = (s, z)$ with $s \in G$ and $z \in A$
 - $c_i' = c_i$ otherwise
Intuition

- $\pi''(c_s) = c_s$

- But if p holds, and element of c_s involves both command in A and subject in G, replace corresponding element of c_s with empty command ν
 - Just like deleting entries from c_s as $\pi_{A,G}$ does earlier
Noninterference

• $G, G' \subseteq S$ groups of subjects, $A \subseteq Z$ set of commands, p predicate over C^*

• Users in G executing commands in A are noninterfering with users in G' under condition p iff, for all $c_s \in C^*$, all $s \in G'$,

 $proj(s, c_s, \sigma_i) = proj(s, \pi''(c_s), \sigma_i)$

 – Written $A, G :| G'$ if p
Example

• From earlier one, simple security policy based on noninterference:

\[\forall (s \in S) \ \forall (z \in Z) \ \left[\{z\}, \{s\} : \{ \text{if } \neg \text{cando}(w, s, z) \} \right] \]

• If subject can’t execute command (the \(\neg \text{cando}\) part), subject can’t use that command to interfere with another subject
Policies Changing Over Time

• Problem: previous analysis assumes static system
 – In real life, ACM changes as system commands issued
• Example: \(w \in C^* \) leads to current state
 – \(cando(w, s, z) \) holds if \(s \) can execute \(z \) in current state
 – Condition noninterference on \(cando \)
 – If \(\neg cando(w, \text{Lara}, \text{“write } f \text{”}) \), Lara can’t interfere with any other user by writing file \(f \)
Generalize Noninterference

- $G \subseteq S$ group of subjects, $A \subseteq Z$ set of commands, p predicate over elements of C^*
- $c_s = (c_1, \ldots, c_n) \in C^*$
- $\pi''(v) = v$
- $\pi''((c_1, \ldots, c_n)) = (c_1', \ldots, c_n')$
 - $c_i' = v$ if $p(c_1', \ldots, c_{i-1}')$ and $c_i = (s, z)$ with $s \in G$ and $z \in A$
 - $c_i' = c_i$ otherwise
Intuition

- $\pi''(c_s) = c_s$
- But if p holds, and element of c_s involves both command in A and subject in G, replace corresponding element of c_s with empty command ν
 - Just like deleting entries from c_s as $\pi_{A,G}$ does earlier
Noninterference

- $G, G' \subseteq S$ groups of subjects, $A \subseteq Z$ set of commands, p predicate over C^*
- Users in G executing commands in A are noninterfering with users in G' under condition p iff, for all $c_s \in C^*$, all $s \in G'$, $\text{proj}(s, c_s, \sigma_i) = \text{proj}(s, p''(c_s), \sigma_i)$
 - Written $A, G :| G'$ if p
Example

• From earlier one, simple security policy based on noninterference:

\[\forall (s \in S) \forall (z \in Z) \]

\[[\{z\}, \{s\} :| S \textbf{ if } \neg \textit{cando}(w, s, z)] \]

• If subject can’t execute command (the \(\neg \textit{cando} \) part), subject can’t use that command to interfere with another subject
Another Example

- Consider system in which rights can be passed
 - \textit{pass}(s, z) gives s right to execute z
 - \(w_n = v_1, \ldots, v_n \) sequence of \(v_i \in C^* \)
 - \(\text{prev}(w_n) = w_{n-1}; \text{last}(wn) = v_n \)
Policy

- No subject s can use z to interfere if, in previous state, s did not have right to z, and no subject gave it to s

$$\{ z \}, \{ s \} :| S \text{ if}$$

$$[\neg \text{cando}(\text{prev}(w), s, z) \land$$

$$[\text{cando}(\text{prev}(w), s', \text{pass}(s, z)) \Rightarrow$$

$$\neg \text{last}(w) = (s', \text{pass}(s, z))]]$$
Effect

- Suppose $s_1 \in S$ can execute $\text{pass}(s_2, z)$
- For all $w \in C^*$, $\text{cando}(w, s_1, \text{pass}(s_2, z))$ true
- Initially, $\text{cando}(\nu, s_2, z)$ false
- Let $z' \in Z$ be such that (s_3, z') noninterfering with (s_2, z)
 - So for each w_n with $\nu_n = (s_3, z')$,

 $\text{cando}(w_n, s_2, z) = \text{cando}(w_{n-1}, s_2, z)$
Effect

• Then policy says for all $s \in S$

$$proj(s, ((s_2, z), (s_1, pass(s_2, z))), (s_3, z'), (s_2, z)), \sigma_i) =$$

$$proj(s, ((s_1, pass(s_2, z)), (s_3, z'), (s_2, z)), \sigma_i)$$

• So s_2’s first execution of z does not affect any subject’s observation of system
Policy Composition I

• Assumed: Output function of input
 – Means deterministic (else not function)
 – Means uninterruptability (differences in timings can cause differences in states, hence in outputs)

• This result for deterministic, noninterference-secure systems
Compose Systems

- Louie, Dewey LOW
- Hughie HIGH
- b_L output buffer
 - Anyone can read it
- b_H input buffer
 - From HIGH source
- Hughie reads from:
 - b_{LH} (Louie writes)
 - b_{LDH} (Louie, Dewey write)
 - b_{DH} (Dewey writes)
Systems Secure

- All noninterference-secure
 - Hughie has no output
 - So inputs don’t interfere with it
 - Louie, Dewey have no input
 - So (nonexistent) inputs don’t interfere with outputs
Security of Composition

• Buffers finite, sends/receives blocking: composition \textit{not} secure!
 – Example: assume b_{DH}, b_{LH} have capacity 1

• Algorithm:
 1. Louie (Dewey) sends message to $b_{LH}(b_{DH})$
 – Fills buffer
 2. Louie (Dewey) sends second message to $b_{LH}(b_{DH})$
 3. Louie (Dewey) sends a 0 (1) to b_{L}
 4. Louie (Dewey) sends message to b_{LDH}
 – Signals Hughie that Louie (Dewey) completed a cycle
Hughie

- Reads bit from b_H
 - If 0, receive message from b_{LH}
 - If 1, receive message from b_{DH}
- Receive on b_{LDH}
 - To wait for buffer to be filled
Example

- Hughie reads 0 from b_H
 - Reads message from b_{LH}
- Now Louie’s second message goes into b_{LH}
 - Louie completes setp 2 and writes 0 into b_L
- Dewey blocked at step 1
 - Dewey cannot write to b_L
- Symmetric argument shows that Hughie reading 1 produces a 1 in b_L
- So, input from b_H copied to output b_L
Nondeducibility

• Noninterference: do state transitions caused by high level commands interfere with sequences of state transitions caused by low level commands?

• Really case about inputs and outputs:
 – Can low level subject deduce anything about high level outputs from a set of low level outputs?
Example: 2-Bit System

• *High* operations change only *High* bit
 – Similar for *Low*

• $s_0 = (0, 0)$

• Commands (Heidi, xor1), (Lara, xor0), (Lara, xor1), (Lara, xor0), (Heidi, xor1), (Lara, xor0)
 – Both bits output after each command

• Output is: 00101011110101
Security

• Not noninterference-secure w.r.t. Lara
 – Lara sees output as 0001111
 – Delete *High* and she sees 00111
• But Lara still cannot deduce the commands deleted
 – Don’t affect values; only lengths
• So it is deducibly secure
 – Lara can’t deduce the commands Heidi gave
Event System

- 4-tuple \((E, I, O, T)\)
 - \(E\) set of events
 - \(I \subseteq E\) set of input events
 - \(O \subseteq E\) set of output events
 - \(T\) set of all finite sequences of events legal within system

- \(E\) partitioned into \(H, L\)
 - \(H\) set of \textit{High} events
 - \(L\) set of \textit{Low} events
More Events …

- $H \cap I$ set of High inputs
- $H \cap O$ set of High outputs
- $L \cap I$ set of Low inputs
- $L \cap O$ set of Low outputs
- T_{Low} set of all possible sequences of Low events that are legal within system
- $\pi_L: T \rightarrow T_{Low}$ projection function deleting all High inputs from trace
 - Low observer should not be able to deduce anything about High inputs from trace $t_{Low} \in T_{low}$
Deducibly Secure

- System deducibly secure if, for every trace $t_{Low} \in T_{Low}$, the corresponding set of high level traces contains every possible trace $t \in T$ for which $\pi_L(t) = t_{Low}$
 - Given any t_{Low}, the trace $t \in T$ producing that t_{Low} is equally likely to be any trace with $\pi_L(t) = t_{Low}$
Example

• Back to our 2-bit machine
 – Let xor0, xor1 apply to both bits
 – Both bits output after each command
• Initial state: (0, 1)
• Inputs: $1_H^0 L^1 L^0 H^1 L^0_L$
• Outputs: 10 10 01 01 10 10
• Lara (at Low) sees: 001100
 – Does not know initial state, so does not know first input; but can deduce fourth input is 0
• Not deducibly secure
Example

• Now $xor0$, $xor1$ apply only to state bit with same level as user
• Inputs: $1_H0_L1_L0_H1_L0_L$
• Outputs: 1011111011
• Lara sees: 01101
• She cannot deduce *anything* about input
 – Could be $0_H0_L1_L0_H1_L0_L$ or $0_L1_H1_L0_H1_L0_L$ for example
• Deducibly secure
Security of Composition

• In general: deducibly secure systems not composable

• *Strong noninterference*: deducible security + requirement that no *High* output occurs unless caused by a *High* input
 – Systems meeting this property *are* composable
Example

• 2-bit machine done earlier does not exhibit strong noninterference
 – Because it puts out *High* bit even when there is no *High* input

• Modify machine to output only state bit at level of latest input
 – *Now* it exhibits strong noninterference
Problem

- Too restrictive; it bans some systems that are *obviously* secure
- Example: System *upgrade* reads *Low* inputs, outputs those bits at *High*
 - Clearly deducibly secure: low level user sees no outputs
 - Clearly does not exhibit strong noninterference, as no high level inputs!
Remove Determinism

• Previous assumption
 – Input, output synchronous
 – Output depends only on commands triggered by input
 • Sometimes absorbed into commands …
 – Input processed one datum at a time
• Not realistic
 – In real systems, lots of asynchronous events
Generalized Noninterference

• Nondeterministic systems meeting noninterference property meet generalized noninterference-secure property
 – More robust than nondeducible security because minor changes in assumptions affect whether system is nondeducibly secure
Example

- System with High Holly, Low Lucy, text file at High
 - File fixed size, symbol b marks empty space
 - Holly can edit file, Lucy can run this program:

```plaintext
while true do begin
    n := read_integer_from_user;
    if n > file_length or char_in_file[n] = b then
        print random_character;
    else
        print char_in_file[n];
end;
```
Security of System

• Not noninterference-secure
 – High level inputs—Holly’s changes—affect low level outputs

• *May* be deducibly secure
 – Can Lucy deduce contents of file from program?
 – If output meaningful (“This is right”) or close (“Thes is riqht”), yes
 – Otherwise, no

• So deducibly secure depends on which inferences are allowed
Composition of Systems

• Does composing systems meeting generalized noninterference-secure property give you a system that also meets this property?
• Define two systems (*cat*, *dog*)
• Compose them
First System: *cat*

- Inputs, outputs can go left or right
- After some number of inputs, *cat* sends two outputs
 - First `stop_count`
 - Second parity of *High* inputs, outputs
Noninterference-Secure?

- If even number of *High* inputs, output could be:
 - 0 (even number of outputs)
 - 1 (odd number of outputs)
- If odd number of *High* inputs, output could be:
 - 0 (odd number of outputs)
 - 1 (even number of outputs)
- High level inputs do not affect output
 - So noninterference-secure
Second System: *dog*

- High outputs to left
- Low outputs of 0 or 1 to right
- *stop_count* input from the left
 - When it arrives, *dog* emits 0 or 1
Noninterference-Secure?

- When \textit{stop_count} arrives:
 - May or may not be inputs for which there are no corresponding outputs
 - Parity of \textit{High} inputs, outputs can be odd or even
 - Hence \textit{dog} emits 0 or 1

- High level inputs do not affect low level outputs
 - So noninterference-secure
Compose Them

- Once sent, message arrives
 - But `stop_count` may arrive before all inputs have generated corresponding outputs
 - If so, even number of `High` inputs and outputs on `cat`, but odd number on `dog`
- Four cases arise
The Cases

- *cat*, odd number of inputs, outputs; *dog*, even number of inputs, odd number of outputs
 - Input message from *cat* not arrived at *dog*, contradicting assumption

- *cat*, even number of inputs, outputs; *dog*, odd number of inputs, even number of outputs
 - Input message from *dog* not arrived at *cat*, contradicting assumption
The Cases

• cat, odd number of inputs, outputs; dog, odd number of inputs, even number of outputs
 - dog sent even number of outputs to cat, so cat has had at least one input from left

• cat, even number of inputs, outputs; dog, even number of inputs, odd number of outputs
 - dog sent odd number of outputs to cat, so cat has had at least one input from left
The Conclusion

• Composite system catdog emits 0 to left, 1 to right (or 1 to left, 0 to right)
 – Must have received at least one input from left
• Composite system catdog emits 0 to left, 0 to right (or 1 to left, 1 to right)
 – Could not have received any from left
• So, High inputs affect Low outputs
 – Not noninterference-secure
Feedback-Free Systems

- System has n distinct components
- Components c_i, c_j connected if any output of c_i is input to c_j
- System is feedback-free if for all c_i connected to c_j, c_j not connected to any c_i
 - Intuition: once information flows from one component to another, no information flows back from the second to the first
Feedback-Free Security

• *Theorem*: A feedback-free system composed of noninterference-secure systems is itself noninterference-secure
Some Feedback

• **Lemma**: A noninterference-secure system can feed a high level output o to a high level input i if the arrival of o at the input of the next component is delayed until *after* the next low level input or output.

• **Theorem**: A system with feedback as described in the above lemma and composed of noninterference-secure systems is itself noninterference-secure.
Why Didn’t They Work?

- For compositions to work, machine must act same way regardless of what precedes low level input (high, low, nothing)
 - *dog* does not meet this criterion
 - If first input is *stop_count*, *dog* emits 0
 - If high level input precedes *stop_count*, *dog* emits 0 or 1
State Machine Model

• 2-bit machine, levels *High*, *Low*, meeting 4 properties:

1. For every input i_k, state σ_j, there is an element $c_m \in C^*$ such that $T^*(c_m, \sigma_j) = \sigma_n$, where $\sigma_n \neq \sigma_j$

 – T^* is total function, inputs and commands always move system to a different state
Property 2

• There is an equivalence relation \equiv such that:
 – If system in state σ_i and high level sequence of inputs causes transition from σ_i to σ_j, then $\sigma_i \equiv \sigma_j$
 – If $\sigma_i \equiv \sigma_j$ and low level sequence of inputs i_1, \ldots, i_n causes system in state σ_i to transition to σ_i', then there is a state σ_j' such that $\sigma_i' \equiv \sigma_j'$ and the inputs i_1, \ldots, i_n cause system in state σ_j to transition to σ_j'
• \equiv holds if low level projections of both states are same
Property 3

- Let $\sigma_i \equiv \sigma_j$. If high level sequence of outputs o_1, \ldots, o_n indicate system in state σ_i transitioned to state σ_i', then for some state σ_j' with $\sigma_j' \equiv \sigma_i'$, high level sequence of outputs o_1', \ldots, o_m' indicates system in σ_j transitioned to σ_j'
 - High level outputs do not indicate changes in low level projection of states
Property 4

- Let $\sigma_i \equiv \sigma_j$, let c, d be high level output sequences, e a low level output. If ced indicates system in state σ_i transitions to σ_i', then there are high level output sequences c' and d' and state σ_j' such that $c'ed'$ indicates system in state σ_j transitions to state σ_j'
 - Intermingled low level, high level outputs cause changes in low level state reflecting low level outputs only
Restrictiveness

- System is *restrictive* if it meets the preceding 4 properties
Composition

• Intuition: by 3 and 4, high level output followed by low level output has same effect as low level input, so composition of restrictive systems should be restrictive
Composite System

- System M_1’s outputs are M_2’s inputs
- μ_{1i}, μ_{2i} states of M_1, M_2
- States of composite system pairs of M_1, M_2 states (μ_{1i}, μ_{2i})
- e event causing transition
- e causes transition from state (μ_{1a}, μ_{2a}) to state (μ_{1b}, μ_{2b}) if any of 3 conditions hold
Conditions

1. M_1 in state μ_{1a} and e occurs, M_1 transitions to μ_{1b}; e not an event for M_2; and $\mu_{2a} = \mu_{2b}$

2. M_2 in state μ_{2a} and e occurs, M_2 transitions to μ_{2b}; e not an event for M_1; and $\mu_{1a} = \mu_{1b}$

3. M_1 in state μ_{1a} and e occurs, M_1 transitions to μ_{1b}; M_2 in state μ_{2a} and e occurs, M_2 transitions to μ_{2b}; e is input to one machine, and output from other
Intuition

• Event causing transition in composite system causes transition in at least 1 of the components
• If transition occurs in exactly one component, event must not cause transition in other component when not connected to the composite system
Equivalence for Composite

• Equivalence relation for composite system
 \((\sigma_a, \sigma_b) \equiv_C (\sigma_c, \sigma_d)\) iff \(\sigma_a \equiv \sigma_c\) and \(\sigma_b \equiv \sigma_d\)
• Corresponds to equivalence relation in property 2 for component system
Key Points

• Composing secure policies does not always produce a secure policy
 – The policies must be restrictive

• Noninterference policies prevent HIGH inputs from affecting LOW outputs
 – Prevents “writes down” in broadest sense

• Nondeducibility policies prevent the inference of HIGH inputs from LOW outputs
 – Prevents “reads up” in broadest sense