Chapter 10: Key Management

e Session and Interchange Keys
 Key Exchange

* Key Generation

e Cryptographic Key Infrastructure
e Storing and Revoking Keys

e Digital Signatures

June 1, 2004 Computer Security: Art and Science Slide #10-1
©2002-2004 Matt Bishop



Overview

 Key exchange
— Session vs. interchange keys
— Classical, public key methods
— Key generation

e Cryptographic key infrastructure
— Certificates

 Key storage
— Key escrow
— Key revocation

e Digital signatures

June 1, 2004 Computer Security: Art and Science Slide #10-2
©2002-2004 Matt Bishop



Notation

« XY {ZIW}ky,

— X sends Y the message produced by concatenating Z
and W enciphered by key ky y, which 1s shared by users
XandY

° AeT{Z}kA”{W}kA,T

— A sends T a message consisting of the concatenation of
Z enciphered using k,, A’s key, and W enciphered
using k, ;, the key shared by A and T

* r,, I, nonces (nonrepeating random numbers)

June 1, 2004 Computer Security: Art and Science Slide #10-3
©2002-2004 Matt Bishop



Session, Interchange Keys

e Alice wants to send a message m to Bob
— Assume public key encryption

— Alice generates a random cryptographic key k. and
uses it to encipher m
e To be used for this message only
e Called a session key

— She enciphers k, with Bob;s public key &y

* kg enciphers all session keys Alice uses to communicate with
Bob

e Called an interchange key

— Alicesends { m } k. { k, } kg

June 1, 2004 Computer Security: Art and Science Slide #10-4
©2002-2004 Matt Bishop



Benefits

e Limits amount of traffic enciphered with single
key
— Standard practice, to decrease the amount of traffic an
attacker can obtain

* Prevents some attacks

— Example: Alice will send Bob message that 1s either
“BUY” or “SELL”. Eve computes possible ciphertexts
{“BUY” } kg and { “SELL” } k. Eve intercepts
enciphered message, compares, and gets plaintext at
once

June 1, 2004 Computer Security: Art and Science Slide #10-5
©2002-2004 Matt Bishop



Key Exchange Algorithms

e Goal: Alice, Bob get shared key

— Key cannot be sent in clear
e Attacker can listen in

» Key can be sent enciphered, or derived from exchanged data
plus data not known to an eavesdropper

— Alice, Bob may trust third party
— All cryptosystems, protocols publicly known

* Only secret data is the keys, ancillary information known only
to Alice and Bob needed to derive keys

* Anything transmitted 1s assumed known to attacker

June 1, 2004 Computer Security: Art and Science Slide #10-6
©2002-2004 Matt Bishop



Classical Key Exchange

* Bootstrap problem: how do Alice, Bob
begin?
— Alice can’t send it to Bob in the clear!
e Assume trusted third party, Cathy
— Alice and Cathy share secret key &,
— Bob and Cathy share secret key kg

e Use this to exchange shared key £,

June 1, 2004 Computer Security: Art and Science Slide #10-7
©2002-2004 Matt Bishop



Simple Protocol

request for session key to Bob } k
Alice L7 Y PR, Cathy

Lk F k1 Lk} kg

Alice < Cathy
Lk 3k
. B
Alice - » Bob
June 1, 2004 Computer Security: Art and Science Slide #10-8

©2002-2004 Matt Bishop



Problems

 How does Bob know he 1s talking to Alice?

— Replay attack: Eve records message from Alice
to Bob, later replays it; Bob may think he’s
talking to Alice, but he 1sn’t

— Session key reuse: Eve replays message from
Alice to Bob, so Bob re-uses session key

* Protocols must provide authentication and
defense against replay

June 1, 2004 Computer Security: Art and Science Slide #10-9
©2002-2004 Matt Bishop



Needham-Schroeder

Alice Il Bob Il r,

Alice » Cathy
{ Alice l Bob Il r{ 1 kIl { Alice Il k, } kg } k4

Alice < Cathy
{ Alice Il k, } kg

Alice » Bob

{ r 2 } ks

Alice < Bob
{r—1}k,

Alice » Bob

June 1, 2004 Computer Security: Art and Science Slide #10-10

©2002-2004 Matt Bishop



Argument: Alice talking to Bob

* Second message

— Enciphered using key only she, Cathy knows
* So Cathy enciphered it

— Response to first message

* As r, 1n it matches r, in first message

e Third message

— Alice knows only Bob can read it

e As only Bob can derive session key from message

— Any messages enciphered with that key are from Bob

June 1, 2004 Computer Security: Art and Science Slide #10-11
©2002-2004 Matt Bishop



Argument: Bob talking to Alice

e Third message

— Enciphered using key only he, Cathy know
* So Cathy enciphered it

— Names Alice, session key
» Cathy provided session key, says Alice is other party

e Fourth message

— Uses session key to determine if it 1s replay from Eve
e If not, Alice will respond correctly in fifth message

» If so, Eve can’t decipher r, and so can’t respond, or responds
incorrectly

June 1, 2004 Computer Security: Art and Science Slide #10-12
©2002-2004 Matt Bishop



Denning-Sacco Modification

e Assumption: all keys are secret

* Question: suppose Eve can obtain session key.

How does that affect protocol?

— In what follows, Eve knows &,
{ Alice Il k, } kg

Eve » Bob
{ r 2 } ks
Eve < Bob
{r—1}k,
Eve > Bob
June 1, 2004 Computer Security: Art and Science Slide #10-13

©2002-2004 Matt Bishop



Solution

e In protocol above, Eve impersonates Alice
* Problem: replay in third step

— First 1n previous slide
e Solution: use time stamp 7 to detect replay

 Weakness: if clocks not synchronized, may either
reject valid messages or accept replays

— Parties with either slow or fast clocks vulnerable to
replay
— Resetting clock does not eliminate vulnerability

June 1, 2004 Computer Security: Art and Science Slide #10-14
©2002-2004 Matt Bishop



Needham-Schroeder with
Denning-Sacco Modification

Alice Il Bob Il r,

Alice » Cathy
{ Alice Il Bob Il , Il k, Il { Alice I Tl k, } ky } &,

Alice < Cathy
{ Alice I Tl k, } kg

Alice » Bob

{ r 2 } ks

Alice < Bob
{r—1}k,

Alice » Bob

June 1, 2004 Computer Security: Art and Science Slide #10-15

©2002-2004 Matt Bishop



Otway-Rees Protocol

e Corrects problem

— That 1s, Eve replaying the third message in the
protocol

e Does not use timestamps

— Not vulnerable to the problems that Denning-
Sacco modification has

* Uses integer n to associate all messages
with particular exchange

June 1, 2004 Computer Security: Art and Science Slide #10-16
©2002-2004 Matt Bishop



The Protocol

nll Alice [l Bob Il { r; I n |l Alice Il Bob } k,
Alice » Bob

nll Alice ll Bob Il { r; I n |l Alice Il Bob } k, |l

Cathy - {7, 11l Alice 1 Bob } &, Bob
Cathy nll {r Wk Yk N {7 Lk} kg . Bt
nll {r Ik Yk,

Alice < Bob
June 1, 2004 Computer Security: Art and Science Slide #10-17

©2002-2004 Matt Bishop



Argument: Alice talking to Bob

* Fourth message

— If n matches first message, Alice knows 1t 1s
part of this protocol exchange

— Cathy generated k. because only she, Alice
know k,

— Enciphered part belongs to exchange as r,
matches r, in encrypted part of first message

June 1, 2004 Computer Security: Art and Science Slide #10-18
©2002-2004 Matt Bishop



Argument: Bob talking to Alice

* Third message

— If n matches second message, Bob knows it 1s
part of this protocol exchange

— Cathy generated k, because only she, Bob
know kj

— Enciphered part belongs to exchange as r,
matches r, in encrypted part of second message

June 1, 2004 Computer Security: Art and Science Slide #10-19
©2002-2004 Matt Bishop



Replay Attack

* Eve acquires old k, message in third step
— ol {r Wk Yk, {1k, } kg
 Eve forwards appropriate part to Alice

— Alice has no ongoing key exchange with Bob: n
matches nothing, so 1s rejected

— Alice has ongoing key exchange with Bob: n does not
match, so 1s again rejected
 If replay is for the current key exchange, and Eve sent the

relevant part before Bob did, Eve could simply listen to
traffic; no replay involved

June 1, 2004 Computer Security: Art and Science Slide #10-20
©2002-2004 Matt Bishop



Kerberos

e Authentication system

— Based on Needham-Schroeder with Denning-Sacco
modification

— Central server plays role of trusted third party
(“Cathy,,)

e Ticket

— Issuer vouches for identity of requester of service

o Authenticator

— Identifies sender

June 1, 2004 Computer Security: Art and Science Slide #10-21
©2002-2004 Matt Bishop



Idea

e User u authenticates to Kerberos server
— Obtains ticket T, ;4 for ticket granting service (TGS)

e User u wants to use service s:

— User sends authenticator A,, ticket T, ;¢ to TGS
asking for ticket for service

— TGS sends ticket T, , to user

— User sends A, T, , to server as request to use s

e Details follow

June 1, 2004 Computer Security: Art and Science Slide #10-22
©2002-2004 Matt Bishop



Ticket

* Credential saying 1ssuer has identified ticket
requester

 Example ticket issued to user u for service s
T, =sll{ullu’saddress |l valid time Il k, ; } &,
where:
— k, , 1s session key for user and service
— Valid time 1s interval for which ticket valid

— u’s address may be IP address or something else

e Note: more fields, but not relevant here

June 1, 2004 Computer Security: Art and Science Slide #10-23
©2002-2004 Matt Bishop



Authenticator

e Credential containing identity of sender of ticket

— Used to confirm sender is entity to which ticket was
issued

 Example: authenticator user u generates for
service s
A, =1 ull generation time Il k, } k,
where:
— k, 18 alternate session key

— Generation time 1s when authenticator generated
e Note: more fields, not relevant here

June 1, 2004 Computer Security: Art and Science Slide #10-24
©2002-2004 Matt Bishop



Protocol

user || TGS
user » Cathy
Cathy < { ku,TGS } ku ” TM,TGS user
service l A, ;65 | T, 165
user » TGS
user W{ k, Yk, 7o | T,
user < TGS
Au,s ” Tu,s .
user » service
{t+1}k, .
user <« service
June 1, 2004 Computer Security: Art and Science Slide #10-25

©2002-2004 Matt Bishop



Analysis

e First two steps get user ticket to use TGS

— User u can obtain session key only if # knows
key shared with Cathy
e Next four steps show how u gets and uses
ticket for service s

— Service s validates request by checking sender
(using A, () 1s same as entity ticket issued to

— Step 6 optional; used when u requests
confirmation

June 1, 2004 Computer Security: Art and Science Slide #10-26
©2002-2004 Matt Bishop



Problems

e Relies on synchronized clocks

— If not synchronized and old tickets,
authenticators not cached, replay 1s possible

e Tickets have some fixed fields
— Dictionary attacks possible
— Kerberos 4 session keys weak (had much less
than 56 bits of randomness); researchers at
Purdue found them from tickets in minutes

June 1, 2004 Computer Security: Art and Science Slide #10-27
©2002-2004 Matt Bishop



Public Key Key Exchange

e Here interchange keys known
— e,, ez Alice and Bob’s public keys known to all

— d,, dy Alice and Bob’s private keys known only to
owner

e Simple protocol

— k, 1s desired session key

k Ye
Alice ks 3 e » Bob

June 1, 2004 Computer Security: Art and Science Slide #10-28
©2002-2004 Matt Bishop



Problem and Solution

* Vulnerable to forgery or replay

— Because ez known to anyone, Bob has no assurance
that Alice sent message

e Simple fix uses Alice’s private key

— k, 1s desired session key

k Yd,'e
Alice LUK 3 dad e » Bob

June 1, 2004 Computer Security: Art and Science Slide #10-29
©2002-2004 Matt Bishop



Notes

e Can include message enciphered with k_

* Assumes Bob has Alice’s public key, and vice
versa

— If not, each must get it from public server

— If keys not bound to identity of owner, attacker Eve
can launch a man-in-the-middle attack (next slide;
Cathy 1s public server providing public keys)

* Solution to this (binding identity to keys) discussed later as
public key infrastructure (PKI)

June 1, 2004 Computer Security: Art and Science Slide #10-30
©2002-2004 Matt Bishop



Man-in-the-Middle Attack

send Bob’s public key ‘ Eve intercepts request
|

Alice Cathy
Eve send Bob’s public key> Cathy
€p
Eve < Cathy
€E
Alice « Eve
{k}e '
Alice E } Eve intercepts message. Bob
{ ks } eB
Eve » Bob
June 1, 2004 Computer Security: Art and Science Slide #10-31

©2002-2004 Matt Bishop



Key Generation

e Goal: generate keys that are difficult to guess
* Problem statement: given a set of K potential
keys, choose one randomly

— Equivalent to selecting a random number between O
and K—1 inclusive

* Why is this hard: generating random numbers

— Actually, numbers are usually pseudo-random, that is,
generated by an algorithm

June 1, 2004 Computer Security: Art and Science Slide #10-32
©2002-2004 Matt Bishop



What 1s “Random™?

e Sequence of cryptographically random numbers:
a sequence of numbers n, n,, ... such that for any
integer k > 0, an observer cannot predict n, even
it all of ny, ..., n,_, are known

— Best: physical source of randomness
* Random pulses
e Electromagnetic phenomena

* Characteristics of computing environment such as disk latency

* Ambient background noise

June 1, 2004 Computer Security: Art and Science Slide #10-33
©2002-2004 Matt Bishop



What 1s “Pseudorandom’?

e Sequence of cryptographically pseudorandom
numbers: sequence of numbers intended to
simulate a sequence of cryptographically random
numbers but generated by an algorithm

— Very difficult to do this well
* Linear congruential generators [n, = (an,_, + b) mod n] broken
* Polynomial congruential generators [n, = (an,_/ + ... + an;_,
a,) mod n] broken too

* Here, “broken” means next number in sequence can be
determined

June 1, 2004 Computer Security: Art and Science Slide #10-34
©2002-2004 Matt Bishop



Best Pseudorandom Numbers

o Strong mixing function: function of 2 or
more 1nputs with each bit of output
depending on some nonlinear function of
all input bits

— Examples: DES, MD5, SHA-1
— Use on UNIX-based systems:
(date; ps gaux) | md5

where “ps gaux” lists all information about all
processes on system

June 1, 2004 Computer Security: Art and Science Slide #10-35
©2002-2004 Matt Bishop



Cryptographic Key Infrastructure

* Goal: bind identity to key

* (lassical: not possible as all keys are shared

— Use protocols to agree on a shared key (see earlier)

e Public key: bind identity to public key

— Crucial as people will use key to communicate with
principal whose identity 1s bound to key

— Erroneous binding means no secrecy between
principals

— Assume principal 1dentified by an acceptable name

June 1, 2004 Computer Security: Art and Science Slide #10-36
©2002-2004 Matt Bishop



Certificates

* Create token (message) containing
— Identity of principal (here, Alice)
— Corresponding public key
— Timestamp (when 1ssued)

— Other information (perhaps i1dentity of signer)
signed by trusted authority (here, Cathy)
C,={e,lAlice I T } d

June 1, 2004 Computer Security: Art and Science Slide #10-37
©2002-2004 Matt Bishop



Use

 Bob gets Alice’s certificate

— If he knows Cathy’s public key, he can decipher the
certificate
e When was certificate issued?
* [s the principal Alice?

— Now Bob has Alice’s public key
* Problem: Bob needs Cathy’s public key to
validate certificate
— Problem pushed “up” a level
— Two approaches: Merkle’s tree, signature chains

June 1, 2004 Computer Security: Art and Science Slide #10-38
©2002-2004 Matt Bishop



Merkle’s Tree Scheme

e Keep certificates in a file
— Changing any certificate h(1,4)

changes the file / \

— Use crypto hash functions h(1,2) h(3,4)
to detect this
e Define hashes recursively / \ / \
— h 1s hash function h(1,1) h(2,2) h(3,3) h(4,4)
— C, 1s certificate i ‘ ‘ ‘
e Hash of file (#(1,4) in C, C, C, C,

example) known to all

June 1, 2004 Computer Security: Art and Science Slide #10-39
©2002-2004 Matt Bishop



Validation

* To validate C,:

ﬂ!!!!’ — Compute A(1, 1)
— Obtain h(2, 2)

@ h(3,4) — Compute (1, 2)
— Obtain /4(3, 4)

4.4) — Compute A(1,4)
’ — Compare to known A(1, 4)
e Need to know hashes of

children of nodes on path
that are not computed

=
~
o
\)
~
-
~
o
N
~"
-
~

June 1, 2004 Computer Security: Art and Science Slide #10-40
©2002-2004 Matt Bishop



Details

e f: DxD—D maps bit strings to bit strings
e h: NxN—D maps integers to bit strings
—ifi =, h(i, j) =fC;, C))
—1fi <,
h(i, j) = fhG, (G2 ), h(LG+)/2]+1, )

June 1, 2004 Computer Security: Art and Science Slide #10-41
©2002-2004 Matt Bishop



Problem

e File must be available for validation
— Otherwise, can’t recompute hash at root of tree
— Intermediate hashes would do

e Not practical in most circumstances

— Too many certificates and users

— Users and certificates distributed over widely
separated systems

June 1, 2004 Computer Security: Art and Science Slide #10-42
©2002-2004 Matt Bishop



Certificate Signature Chains

e (Create certificate
— Generate hash of certificate
— Encipher hash with issuer’s private key

e Validate

— Obtain 1ssuer’s public key
— Decipher enciphered hash
— Recompute hash from certificate and compare

* Problem: getting 1ssuer’s public key

June 1, 2004 Computer Security: Art and Science Slide #10-43
©2002-2004 Matt Bishop



X.509 Chains

e Some certificate components 1n X.509v3:
— Version
— Serial number
— Signature algorithm identifier: hash algorithm
— Issuer’s name; uniquely i1dentifies issuer
— Interval of validity
— Subject’s name; uniquely i1dentifies subject
— Subject’s public key
— Signature: enciphered hash

June 1, 2004 Computer Security: Art and Science Slide #10-44
©2002-2004 Matt Bishop



X.509 Certificate Validation

e Obtain 1ssuer’s public key

— The one for the particular signature algorithm

* Decipher signature

— @Gives hash of certificate

* Recompute hash from certificate and compare
— If they differ, there’s a problem

e Check interval of validity

— This confirms that certificate 1s current

June 1, 2004 Computer Security: Art and Science Slide #10-45
©2002-2004 Matt Bishop



Issuers

o Certification Authority (CA): entity that
1ssues certificates

— Multiple 1ssuers pose validation problem

— Alice’s CA 1s Cathy; Bob’s CA 1s Don; how
can Alice validate Bob’s certificate?

— Have Cathy and Don cross-certify

e Each issues certificate for the other

June 1, 2004 Computer Security: Art and Science Slide #10-46
©2002-2004 Matt Bishop



Validation and Cross-Certitfying

e Certificates:
— Cathy<<Alice>>
— Dan<<Bob>
— Cathy<<Dan>>
— Dan<<Cathy>>

e Alice validates Bob’s certificate
— Alice obtains Cathy<<Dan>>

— Alice uses (known) public key of Cathy to validate
Cathy<<Dan>>

— Alice uses Cathy<<Dan>> to validate Dan<<Bob>>

June 1, 2004 Computer Security: Art and Science Slide #10-47
©2002-2004 Matt Bishop



PGP Chains

* OpenPGP certificates structured into packets
— One public key packet
— Zero or more signature packets

e Public key packet:

— Version (3 or 4; 3 compatible with all versions of PGP,
4 not compatible with older versions of PGP)

— Creation time
— Validity period (not present in version 3)

— Public key algorithm, associated parameters
— Public key

June 1, 2004 Computer Security: Art and Science Slide #10-48
©2002-2004 Matt Bishop



OpenPGP Signature Packet

* Version 3 signature packet
— Version (3)
— Signature type (level of trust)
— Creation time (when next fields hashed)
— Signer’s key i1dentifier (1dentifies key to encipher hash)
— Public key algorithm (used to encipher hash)
— Hash algorithm
— Part of signed hash (used for quick check)
— Signature (enciphered hash)

e Version 4 packet more complex

June 1, 2004 Computer Security: Art and Science Slide #10-49
©2002-2004 Matt Bishop



Signing

* Single certificate may have multiple signatures

* Notion of “trust” embedded in each signature
— Range from “untrusted” to “ultimate trust”

— Signer defines meaning of trust level (no standards!)

e All version 4 keys signed by subject
— Called “self-signing”

June 1, 2004 Computer Security: Art and Science Slide #10-50
©2002-2004 Matt Bishop



Validating Certificates

e Alice needs to validate Arrows show signatures
Bob’s OpenPGP cert Self signatures not shown

— Does not know Fred,
Giselle, or Ellen

e Alice gets Giselle’s cert

— Knows Henry slightly, but
his signature 1s at “casual”
level of trust

e Alice gets Ellen’s cert

— Knows Jack, so uses his
cert to validate Ellen’s,
then hers to validate Bob’s

June 1, 2004 Computer Security: Art and Science Slide #10-51
©2002-2004 Matt Bishop



Storing Keys

e Multi-user or networked systems: attackers may
defeat access control mechanisms

— Encipher file containing key
e Attacker can monitor keystrokes to decipher files
» Key will be resident in memory that attacker may be able to
read
— Use physical devices like “smart card”
* Key never enters system

e Card can be stolen, so have 2 devices combine bits to make
single key

June 1, 2004 Computer Security: Art and Science Slide #10-52
©2002-2004 Matt Bishop



Key Escrow

e Key escrow system allows authorized third party
to recover key

— Useful when keys belong to roles, such as system
operator, rather than individuals

— Business: recovery of backup keys

— Law enforcement: recovery of keys that authorized
parties require access to

e Goal: provide this without weakening
cryptosystem

* Very controversial

June 1, 2004 Computer Security: Art and Science Slide #10-53
©2002-2004 Matt Bishop



Desirable Properties

e Escrow system should not depend on
encipherment algorithm

* Privacy protection mechanisms must work from
end to end and be part of user interface

e Requirements must map to key exchange protocol

e System supporting key escrow must require all
parties to authenticate themselves

* [f message to be observable for limited time, key
escrow system must ensure keys valid for that

period of time only

June 1, 2004 Computer Security: Art and Science Slide #10-54
©2002-2004 Matt Bishop



Components

e User security component
— Does the encipherment, decipherment

— Supports the key escrow component
e Key escrow component

— Manages storage, use of data recovery keys

e Data recovery component

— Does key recovery

June 1, 2004 Computer Security: Art and Science Slide #10-55
©2002-2004 Matt Bishop



Example: ESS, Clipper Chip

e Escrow Encryption Standard
— Set of interlocking components

— Designed to balance need for law enforcement access
to enciphered traffic with citizens’ right to privacy

e Clipper chip prepares per-message esCrow
information
— Each chip numbered uniquely by UID
— Special facility programs chip
 Key Escrow Decrypt Processor (KEDP)

— Available to agencies authorized to read messages

June 1, 2004 Computer Security: Art and Science Slide #10-56
©2002-2004 Matt Bishop



User Security Component

* Unique device key k

unique
* Non-unique family key k..,
e Cipher 1s Skipjack
— Classical cipher: 80 bit key, 64 bit input, output blocks

e Generates Law Enforcement Access Field
(LEAF) of 128 bits:

— { UID 11 { Kypsion ¥ Kumicnee I1 hih }

session amily

— hash: 16 bit authenticator from session key and
initialization vector

June 1, 2004 Computer Security: Art and Science Slide #10-57
©2002-2004 Matt Bishop



Programming User Components

* Done in a secure facility

 Two escrow agencies needed
— Agents from each present
— Each supplies a random seed and key number
— Family key components combined to get k,,

amily
— Key numbers combined to make key component
enciphering key k.,

— Random seeds mixed with other data to produce
sequence of unique keys k

unique

e Each chip imprinted with UID, k

unique?’ kfamily
June 1, 2004 Computer Security: Art and Science Slide #10-58
©2002-2004 Matt Bishop



The Escrow Components

e During initialization of user security
component, process creates k,, and k ,
where kum'que — kul @ ku2

— First escrow agency gets { k,; } k

comp

— Second escrow agency gets { k,, } k.

omp

June 1, 2004 Computer Security: Art and Science Slide #10-59
©2002-2004 Matt Bishop



Obtaining Access

* Alice obtains legal authorization to read message
* She runs message LEAF through KEDP
— LEAF is { UID Il { Kyssion 3 Kunigue 1 RSP Y Ky
* KEDP uses (known) k., to validate LEAF,
obtain sending device’s UID

amily

e Authorization, LEAF taken to escrow agencies

June 1, 2004 Computer Security: Art and Science Slide #10-60
©2002-2004 Matt Bishop



Agencies’ Role

e Each validates authorization

 Each supplies{ k, } k
key number

e KEDP takes these and LEAF:

— Key numbers produce k

corresponding

comp’

comp

— Keomp produces k , and &,
— k,; and k , produce k
—k

unique

and LEAF produce &

unique session

June 1, 2004 Computer Security: Art and Science Slide #10-61
©2002-2004 Matt Bishop



Problems

* hash too short

— LEAF 128 bits, so given a hash:
e 2112T EAFs show this as a valid hash
* 1 has actual session key, UID

e Takes about 42 minutes to generate a LEAF with a
valid hash but meaningless session key and UID

— Turns out deployed devices would prevent this attack

— Scheme does not meet temporal requirement
* As ki fixed for each unit, once message 1s read,
any future messages can be read

June 1, 2004 Computer Security: Art and Science Slide #10-62
©2002-2004 Matt Bishop



Yaksha Security System

e Key escrow system meeting all 5 criteria

e Based on RSA, central server

— Central server (Yaksha server) generates session key

e Each user has 2 private keys
— Alice’s modulus n,, public key e,
— First private key d, , known only to Alice

— Second private key d,, known only to Yaksha central
server

— dyy dyy = d, mod ¢(ny)

June 1, 2004 Computer Security: Art and Science Slide #10-63
©2002-2004 Matt Bishop



Alice and Bob

e Alice wants to send message to Bob
— Alice asks Yaksha server for session key

— Yaksha server generates k

session

— Yaksha server sends Alice the key as:
C,=(k

session

)ares mod 1,

— Alice computes

(Cp% modn, =k

session

June 1, 2004 Computer Security: Art and Science Slide #10-64
©2002-2004 Matt Bishop



Analysis

e Authority can read only one message per
escrowed key

— Meets requirement 5 (temporal one), because
“time” interpreted as “session”

* Independent of message enciphering key
— Meets requirement 1
— Interchange algorithm, keys fixed

e Others met by supporting infrastructure

June 1, 2004 Computer Security: Art and Science Slide #10-65
©2002-2004 Matt Bishop



Alternate Approaches

* Tie to time
— Session key not given as escrow key, but related key 1s

— To derive session key, must solve instance of discrete
log problem

* Tie to probability
— Oblivious transfer: message received with specified
probability

— Idea: translucent cryptography allows fraction f of
messages to be read by third party

— Not key escrow, but similar in spirit

June 1, 2004 Computer Security: Art and Science Slide #10-66
©2002-2004 Matt Bishop



Key Revocation

e Certificates invalidated before expiration
— Usually due to compromised key
— May be due to change in circumstance (e.g., someone
leaving company)
* Problems
— Entity revoking certificate authorized to do so

— Revocation information circulates to everyone fast
enough

e Network delays, infrastructure problems may delay
information

June 1, 2004 Computer Security: Art and Science Slide #10-67
©2002-2004 Matt Bishop



CRLs

e (ertificate revocation list lists certificates that are
revoked
e X.509: only certificate issuer can revoke certificate
— Added to CRL
* PGP: signers can revoke signatures; owners can
revoke certificates, or allow others to do so
— Revocation message placed in PGP packet and signed
— Flag marks it as revocation message

June 1, 2004 Computer Security: Art and Science Slide #10-68
©2002-2004 Matt Bishop



Digital Signature

e Construct that authenticated origin, contents of
message 1n a manner provable to a disinterested
third party (“judge”)

* Sender cannot deny having sent message (service
1s “nonrepudiation™)

— Limited to technical proofs
 Inability to deny one’s cryptographic key was used to sign

— One could claim the cryptographic key was stolen or
compromised
e Legal proofs, etc., probably required; not dealt with here

June 1, 2004 Computer Security: Art and Science Slide #10-69
©2002-2004 Matt Bishop



Common Error

e Classical: Alice, Bob share key &
— Alice sends m || { m } kto Bob

This 1s a digital signature
WRONG
This is not a digital signature

— Why? Third party cannot determine whether
Alice or Bob generated message

June 1, 2004 Computer Security: Art and Science Slide #10-70
©2002-2004 Matt Bishop



Classical Digital Signatures

* Require trusted third party
— Alice, Bob each share keys with trusted party Cathy
e To resolve dispute, judge gets { m } k4., 1 m } kg, and
has Cathy decipher them; if messages matched, contract
was signed

Alice SUBLIT > Bob
Cathy < LB Bob
Cathy LI g > Bob

June 1, 2004 Computer Security: Art and Science Slide #10-71

©2002-2004 Matt Bishop



Public Key Digital Signatures

e Alice’s keys are dj;.., €4;:.
e Alice sends Bob
ml{m?d,
* In case of dispute, judge computes
LM} dyjice I Colice
e and if it 1s m, Alice signed message

lice

— She’s the only one who knows d,

lice!

June 1, 2004 Computer Security: Art and Science
©2002-2004 Matt Bishop

Slide #10-72



RSA Digital Signatures

» Use private key to encipher message
— Protocol for use 1s critical
e Key points:
— Never sign random documents, and when

signing, always sign hash and never document

e Mathematical properties can be turned against
signer
— Sign message first, then encipher
e Changing public keys causes forgery

June 1, 2004 Computer Security: Art and Science Slide #10-73
©2002-2004 Matt Bishop



Attack #1

 Example: Alice, Bob communicating
-n,=95,¢,=59,d,=11
—ng=T1,e5=53,dz=17
e 26 contracts, numbered 00 to 25
— Alice has Bob sign 05 and 17:
e ¢ =m® mod ny =05" mod 77 =3
e c=m® modnz=17" mod 77 = 19

— Alice computes 05x17 mod 77 = 08; corresponding
signature 1s 03x19 mod 77 = 57; claims Bob signed 08

— Judge computes ¢ mod nz= 573 mod 77 = 08

e Signature validated; Bob is toast

June 1, 2004 Computer Security: Art and Science Slide #10-74
©2002-2004 Matt Bishop



Attack #2: Bob’s Revenge

 Bob, Alice agree to sign contract 06

e Alice enciphers, then signs:
(m¢ mod 77)% mod n, = (06> mod 77)!! mod 95 = 63

 Bob now changes his public key
— Computes r such that 13" mod 77 = 6; say, r = 59
— Computes rez mod ¢p(n5) = 59x53 mod 60 =7
— Replace public key e,z with 7, private key d; = 43
e Bob claims contract was 13. Judge computes:

— (63°° mod 95)** mod 77 =13

— Verified; now Alice 1s toast

June 1, 2004 Computer Security: Art and Science Slide #10-75
©2002-2004 Matt Bishop



El Gamal Digital Signature

e Relies on discrete log problem
e Choose p prime, g, d < p; compute y = g¢ mod p
e Public key: (y, g, p); private key: d
e To sign contract m:
— Choose k relatively prime to p—1, and not yet used
— Compute a = g mod p
— Find b such that m = (da + kb) mod p—1
— Signature 1s (a, b)
e To validate, check that
— y%a® mod p = g™ mod p

June 1, 2004 Computer Security: Art and Science Slide #10-76
©2002-2004 Matt Bishop



Example

e Alice choosesp=29,g=3,d=6
y=3°mod 29 =4
e Alice wants to send Bob signed contract 23
— Chooses k = 5 (relatively prime to 28)
— This gives a = gf mod p =3° mod 29 =11
— Then solving 23 = (6x11 + 5b) mod 28 gives b = 25
— Alice sends message 23 and signature (11, 25)

e Bob verifies signature: g” mod p = 32> mod 29 =
8 and y?a® mod p = 411112 mod 29 = 8
— They match, so Alice signed

June 1, 2004 Computer Security: Art and Science Slide #10-77
©2002-2004 Matt Bishop



Attack

* Eve learns k, corresponding message m,
and signature (a, b)

— Extended Euclidean Algorithm gives d, the
private key

 Example from above: Eve learned Alice
signed last message with k£ =5
m = (da + kb) mod p—1 = (11d + 5x25) mod 28
so Alice’s private key1s d =6

June 1, 2004 Computer Security: Art and Science Slide #10-78
©2002-2004 Matt Bishop



Key Points

 Key management critical to effective use of
cryptosystems
— Different levels of keys (session vs. interchange)
e Keys need infrastructure to identify holders,
allow revoking
— Key escrowing complicates infrastructure
e Digital signatures provide integrity of origin and
content
Much easier with public key cryptosystems than with
classical cryptosystems

June 1, 2004 Computer Security: Art and Science Slide #10-79
©2002-2004 Matt Bishop



