Chapter 16: Information Flow

- Entropy and analysis
- Non-lattice information flow policies
- Compiler-based mechanisms
- Execution-based mechanisms
- Examples
Overview

• Basics and background
 – Entropy
• Nonlattice flow policies
• Compiler-based mechanisms
• Execution-based mechanisms
• Examples
 – Security Pipeline Interface
 – Secure Network Server Mail Guard
Basics

• Bell-LaPadula Model embodies information flow policy
 – Given compartments A, B, info can flow from A to B iff $B \text{ dom } A$

• Variables x, y assigned compartments x, y as well as values
 – If $x = A$ and $y = B$, and $A \text{ dom } B$, then $y := x$ allowed but not $x := y$
Entropy and Information Flow

- Idea: info flows from x to y as a result of a sequence of commands c if you can deduce information about x before c from the value in y after c
- Formally:
 - s time before execution of c, t time after
 - $H(x_s | y_t) < H(x_s | y_s)$
 - If no y at time s, then $H(x_s | y_t) < H(x_s)$
Example 1

- Command is $x := y + z$; where:
 - $0 \leq y \leq 7$, equal probability
 - $z = 1$ with prob. $1/2$, $z = 2$ or 3 with prob. $1/4$ each

- s state before command executed; t, after; so
 - $H(y_s) = H(y_t) = -8(1/8) \log_2 (1/8) = 3$
 - $H(z_s) = H(z_t) = -(1/2) \log_2 (1/2) -2(1/4) \log_2 (1/4) = 1.5$

- If you know x_t, y_s can have at most 3 values, so
 $H(y_s \mid x_t) = -3(1/3) \log_2 (1/3) = \log_3$
Example 2

• Command is
 – if $x = 1$ then $y := 0$ else $y := 1$;
where:
 – x, y equally likely to be either 0 or 1
• $H(x_s) = 1$ as x can be either 0 or 1 with equal probability
• $H(x_s \mid y_t) = 0$ as if $y_t = 1$ then $x_s = 0$ and vice versa
 – Thus, $H(x_s \mid y_t) = 0 < 1 = H(x_s)$
• So information flowed from x to y
Implicit Flow of Information

• Information flows from \(x \) to \(y \) without an explicit assignment of the form \(y := f(x) \)
 – \(f(x) \) an arithmetic expression with variable \(x \)

• Example from previous slide:
 – \texttt{if } \(x = 1 \) \texttt{ then } \(y := 0 \)
 \texttt{else } \(y := 1 \);

• So must look for implicit flows of information to analyze program
Notation

• x means class of x
 – In Bell-LaPadula based system, same as “label of security compartment to which x belongs”

• $x \leq y$ means “information can flow from an element in class of x to an element in class of y
 – Or, “information with a label placing it in class x can flow into class y”
Information Flow Policies

Information flow policies are usually:

• reflexive
 – So information can flow freely among members of a single class

• transitive
 – So if information can flow from class 1 to class 2, and from class 2 to class 3, then information can flow from class 1 to class 3
Non-Transitive Policies

- Betty is a confident of Anne
- Cathy is a confident of Betty
 - With transitivity, information flows from Anne to Betty to Cathy
- Anne confides to Betty she is having an affair with Cathy’s spouse
 - Transitivity undesirable in this case, probably
Non-Lattice Transitive Policies

• 2 faculty members co-PIs on a grant
 – Equal authority; neither can overrule the other
• Grad students report to faculty members
• Undergrads report to grad students
• Information flow relation is:
 – Reflexive and transitive
• But some elements (people) have no “least upper bound” element
 – What is it for the faculty members?
Confidentiality Policy Model

- Lattice model fails in previous 2 cases
- Generalize: policy \(I = (SC_I, \leq_I, join_I) \):
 - \(SC_I \) set of security classes
 - \(\leq_I \) ordering relation on elements of \(SC_I \)
 - \(join_I \) function to combine two elements of \(SC_I \)
- Example: Bell-LaPadula Model
 - \(SC_I \) set of security compartments
 - \(\leq_I \) ordering relation \(dom \)
 - \(join_I \) function \(lub \)
Confinement Flow Model

• \((I, O, confine, \rightarrow)\)
 – \(I = (SC_I, \leq_I, join_I)\)
 – \(O\) set of entities
 – \(\rightarrow: O \times O\) with \((a, b) \in \rightarrow\) (written \(a \rightarrow b\)) iff information can flow from \(a\) to \(b\)
 – for \(a \in O\), \(confine(a) = (a_L, a_U) \in SC_I \times SC_I\) with \(a_L \leq_I a_U\)
 • Interpretation: for \(a \in O\), if \(x \leq_I a_U\), info can flow from \(x\) to \(a\), and if \(a_L \leq_I x\), info can flow from \(a\) to \(x\)
 • So \(a_L\) lowest classification of info allowed to flow out of \(a\), and \(a_U\) highest classification of info allowed to flow into \(a\)
Assumptions, etc.

• Assumes: object can change security classes
 – So, variable can take on security class of its data
• Object x has security class x currently
• Note transitivity *not* required
• If information can flow from a to b, then b dominates a under ordering of policy I:
 \[(\forall a, b \in O)[a \rightarrow b \Rightarrow a_L \leq_I b_U]\]
Example 1

- \(SC_I = \{ U, C, S, TS \} \), with \(U \leq_I C \), \(C \leq_I S \), and \(S \leq_I TS \)
- \(a, b, c \in O \)
 - \(\text{confine}(a) = [C, C] \)
 - \(\text{confine}(b) = [S, S] \)
 - \(\text{confine}(c) = [TS, TS] \)
- Secure information flows: \(a \rightarrow b \), \(a \rightarrow c \), \(b \rightarrow c \)
 - As \(a_L \leq_I b_U \), \(a_L \leq_I c_U \), \(b_L \leq_I c_U \)
 - Transitivity holds
Example 2

• SC_I, \leq_I as in Example 1
• $x, y, z \in O$
 - $\text{confine}(x) = [C, C]$
 - $\text{confine}(y) = [S, S]$
 - $\text{confine}(z) = [C, TS]$
• Secure information flows: $x \rightarrow y, x \rightarrow z, y \rightarrow z, z \rightarrow x, z \rightarrow y$
 - As $x_L \leq_I y_U, x_L \leq_I z_U, y_L \leq_I z_U, z_L \leq_I x_U, z_L \leq_I y_U$
 - Transitivity does not hold
 • $y \rightarrow z$ and $z \rightarrow x$, but $y \rightarrow z$ is false, because $y_L \leq_I x_U$ is false
Transitive Non-Lattice Policies

• $Q = (S_Q, \leq_Q)$ is a quasi-ordered set when \leq_Q is transitive and reflexive over S_Q

• How to handle information flow?
 – Define a partially ordered set containing quasi-ordered set
 – Add least upper bound, greatest lower bound to partially ordered set
 – It’s a lattice, so apply lattice rules!
In Detail …

• \(\forall x \in S_Q: \text{ let } f(x) = \{ y \mid y \in S_Q \land y \leq_Q x \} \)
 - Define \(S_{QP} = \{ f(x) \mid x \in S_Q \} \)
 - Define \(\leq_{QP} = \{ (x, y) \mid x, y \in S_Q \land x \subseteq y \} \)
 • \(S_{QP} \) partially ordered set under \(\leq_{QP} \)
 • \(f \) preserves order, so \(y \leq_Q x \text{ iff } f(x) \leq_{QP} f(y) \)

• Add upper, lower bounds
 - \(S_{QP}' = S_{QP} \cup \{ S_Q, \emptyset \} \)
 - Upper bound \(ub(x, y) = \{ z \mid z \in S_{QP} \land x \subseteq z \land y \subseteq z \} \)
 - Least upper bound \(lub(x, y) = \cap ub(x, y) \)
 • Lower bound, greatest lower bound defined analogously
And the Policy Is …

- Now \((S_{QP'}, \leq_{QP})\) is lattice
- Information flow policy on quasi-ordered set emulates that of this lattice!
Nontransitive Flow Policies

• Government agency information flow policy (on next slide)

• Entities public relations officers PRO, analysts A, spymasters S
 – $\text{confine}(\text{PRO}) = \{ \text{public, analysis} \}$
 – $\text{confine}(A) = \{ \text{analysis, top-level} \}$
 – $\text{confine}(S) = \{ \text{covert, top-level} \}$
Information Flow

• By confinement flow model:
 – $\text{PRO} \leq A$, $A \leq \text{PRO}$
 – $\text{PRO} \leq S$
 – $A \leq S$, $S \leq A$

• Data cannot flow to public relations officers; not transitive
 – $S \leq A$, $A \leq \text{PRO}$
 – $S \leq \text{PRO}$ is $false$
Transforming Into Lattice

- Rough idea: apply a special mapping to generate a subset of the power set of the set of classes
 - Done so this set is partially ordered
 - Means it can be transformed into a lattice
- Can show this mapping preserves ordering relation
 - So it preserves non-orderings and non-transitivity of elements corresponding to those of original set
Dual Mapping

- \(R = (SC_R, \leq_R, join_R) \) reflexive info flow policy
- \(P = (S_P, \leq_P) \) ordered set
 - Define dual mapping functions \(l_R, h_R: SC_R \rightarrow S_P \)
 - \(l_R(x) = \{ x \} \)
 - \(h_R(x) = \{ y \mid y \in SC_R \land y \leq_R x \} \)
 - \(S_P \) contains subsets of \(SC_R; \leq_P \) subset relation
 - Dual mapping function order preserving iff
 \((\forall a, b \in SC_R)[a \leq_R b \iff l_R(a) \leq_P h_R(b)] \)
Theorem

Dual mapping from reflexive info flow policy R to ordered set P order-preserving

Proof sketch: all notation as before

(\Rightarrow) Let $a \leq_R b$. Then $a \in l_R(a)$, $a \in h_R(b)$, so $l_R(a) \subseteq h_R(b)$, or $l_R(a) \leq_P h_R(b)$

(\Leftarrow) Let $l_R(a) \leq_P h_R(b)$. Then $l_R(a) \subseteq h_R(b)$. But $l_R(a) = \{a\}$, so $a \in h_R(b)$, giving $a \leq_R b$
Info Flow Requirements

• Interpretation: let \(\text{confine}(x) = \{ x_L, x_U \} \), consider class \(y \)
 – Information can flow from \(x \) to element of \(y \) iff \(x_L \leq_R y \), or \(l_R(x_L) \subseteq h_R(y) \)
 – Information can flow from element of \(y \) to \(x \) iff \(y \leq_R x_U \), or \(l_R(y) \subseteq h_R(x_U) \)
Revisit Government Example

- Information flow policy is R
- Flow relationships among classes are:

 $\text{public} \leq_R \text{public}$

 $\text{public} \leq_R \text{analysis}$
 $\text{analysis} \leq_R \text{analysis}$

 $\text{public} \leq_R \text{covert}$
 $\text{covert} \leq_R \text{covert}$

 $\text{public} \leq_R \text{top-level}$
 $\text{covert} \leq_R \text{top-level}$

 $\text{analysis} \leq_R \text{top-level}$
 $\text{top-level} \leq_R \text{top-level}$
Dual Mapping of R

- Elements l_R, h_R:

 $l_R(\text{public}) = \{ \text{public} \}$

 $h_R(\text{public}) = \{ \text{public} \}$

 $l_R(\text{analysis}) = \{ \text{analysis} \}$

 $h_R(\text{analysis}) = \{ \text{public, analysis} \}$

 $l_R(\text{covert}) = \{ \text{covert} \}$

 $h_R(\text{covert}) = \{ \text{public, covert} \}$

 $l_R(\text{top-level}) = \{ \text{top-level} \}$

 $h_R(\text{top-level}) = \{ \text{public, analysis, covert, top-level} \}$
confine

- Let p be entity of type PRO, a of type A, s of type S
- In terms of P (not R), we get:
 - $confine(p) = [\{ \text{public} \}, \{ \text{public, analysis} \}]$
 - $confine(a) = [\{ \text{analysis} \},$
 $\{ \text{public, analysis, covert, top-level} \}]$
 - $confine(s) = [\{ \text{covert} \},$
 $\{ \text{public, analysis, covert, top-level} \}]$
And the Flow Relations Are …

- $p \rightarrow a$ as $l_R(p) \subseteq h_R(a)$
 - $l_R(p) = \{ \text{public} \}$
 - $h_R(a) = \{ \text{public, analysis, covert, top-level} \}$
- Similarly: $a \rightarrow p$, $p \rightarrow s$, $a \rightarrow s$, $s \rightarrow a$
- **But** $s \rightarrow p$ is false as $l_R(s) \nsubseteq h_R(p)$
 - $l_R(s) = \{ \text{covert} \}$
 - $h_R(p) = \{ \text{public, analysis} \}$
Analysis

- \((S_P, \leq_P)\) is a lattice, so it can be analyzed like a lattice policy

- Dual mapping preserves ordering, hence non-ordering and non-transitivity, of original policy
 - So results of analysis of \((S_P, \leq_P)\) can be mapped back into \((SC_R, \leq_R, join_R)\)
Compiler-Based Mechanisms

- Detect unauthorized information flows in a program during compilation
- Analysis not precise, but secure
 - If a flow could violate policy (but may not), it is unauthorized
 - No unauthorized path along which information could flow remains undetected
- Set of statements certified with respect to information flow policy if flows in set of statements do not violate that policy
Example

if \(x = 1 \) then \(y := a; \)
else \(y := b; \)

• Info flows from \(x \) and \(a \) to \(y \), or from \(x \) and \(b \) to \(y \)

• Certified only if \(x \leq y \) and \(a \leq y \) and \(b \leq y \)
 – Note flows for \textit{both} branches must be true unless compiler can determine that one branch will \textit{never} be taken
Declarations

• Notation:

\[x: \text{int class } \{ A, B \} \]

means \(x \) is an integer variable with security class at least \(\text{lub}\{ A, B \} \), so \(\text{lub}\{ A, B \} \leq x \)

• Distinguished classes \textit{Low}, \textit{High}
 – Constants are always \textit{Low}
Input Parameters

- Parameters through which data passed into procedure
- Class of parameter is class of actual argument

\[i_p : \text{type class} \{ i_p \} \]
Output Parameters

- Parameters through which data passed out of procedure
 - If data passed in, called input/output parameter
- As information can flow from input parameters to output parameters, class must include this:
 \[O_p : \text{type class} \{ r_1, \ldots, r_n \} \]
 where \(r_i \) is class of \(i \)th input or input/output argument
Example

\begin{verbatim}
proc sum(x: int class { A };
 var out: int class { A, B });
begin
 out := out + x;
end;
• Require $x \leq out$ and $out \leq out$
\end{verbatim}
Array Elements

• Information flowing out:
 \[... := a[i] \]
 Value of \(i \), \(a[i] \) both affect result, so class is \(\text{lub}\{ a[i], i \} \)

• Information flowing in:
 \[a[i] := ... \]

• Only value of \(a[i] \) affected, so class is \(a[i] \)
Assignment Statements

\[x := y + z; \]

- Information flows from \(y, z \) to \(x \), so this requires \(\text{lub}\{ y, z \} \leq x \)

More generally:

\[y := f(x_1, \ldots, x_n) \]

- the relation \(\text{lub}\{ x_1, \ldots, x_n \} \leq y \) must hold
Compound Statements

\[x := y + z; \ a := b \times c - x; \]

• First statement: \(\text{lub}\{ y, z \} \leq x \)
• Second statement: \(\text{lub}\{ b, c, x \} \leq a \)
• So, both must hold (i.e., be secure)

More generally:

\[S_1; \ \ldots \ \ldots \ S_n; \]

• Each individual \(S_i \) must be secure
Conditional Statements

```plaintext
if x + y < z then a := b else d := b * c - x; end
```

- The statement executed reveals information about x, y, z, so $\text{lub}\{x, y, z\} \leq \text{glb}\{a, d\}$

More generally:
```plaintext
if f(x_1, ..., x_n) then S_1 else S_2; end
```

- S_1, S_2 must be secure
- $\text{lub}\{x_1, ..., x_n\} \leq \text{glb}\{y \mid y \text{ target of assignment in } S_1, S_2\}$
Iterative Statements

while \(i < n \) do begin \(a[i] := b[i]; \) \(i := i + 1; \) end

- Same ideas as for “if”, but must terminate

More generally:

while \(f(x_1, \ldots, x_n) \) do \(S; \)

- Loop must terminate;
- \(S \) must be secure
- \(\text{lub}\{x_1, \ldots, x_n\} \leq \text{glb}\{y \mid y \text{ target of assignment in } S\} \)
Iterative Statements

while $i < n$ do begin $a[i] := b[i]; i := i + 1;$ end

• Same ideas as for “if”, but must terminate

More generally:

while $f(x_1, ..., x_n)$ do S;

• Loop must terminate;
• S must be secure
• $\text{lub}\{ x_1, ..., x_n \} \leq \text{glb}\{ y \mid y \text{ target of assignment in } S \}$
Goto Statements

• No assignments
 – Hence no explicit flows
• Need to detect implicit flows
• Basic block is sequence of statements that have one entry point and one exit point
 – Control in block always flows from entry point to exit point
Example Program

```pascal
proc tm(x: array[1..10][1..10] of int class {x};
    var y: array[1..10][1..10] of int class {y});
var i, j: int {i};
begin
  b1 i := 1;
  b2 L2: if i > 10 goto L7;
  b3 j := 1;
  b4 L4: if j > 10 then goto L6;
  b5     y[j][i] := x[i][j]; j := j + 1; goto L4;
  b6 L6: i := i + 1; goto L2;
  b7 L7:
end;
```
Flow of Control

\[b_1 \rightarrow b_2 \quad i > n \quad b_2 \rightarrow b_7 \]

\[b_1 \rightarrow b_6 \quad i \leq n \quad b_6 \rightarrow b_4 \]

\[b_6 \rightarrow b_4 \quad j > n \]

\[b_4 \rightarrow b_5 \quad j \leq n \]

\[b_3 \rightarrow b_4 \]

\[b_4 \rightarrow b_3 \]
IFDs

• Idea: when two paths out of basic block, implicit flow occurs
 – Because information says \textit{which} path to take
• When paths converge, either:
 – Implicit flow becomes irrelevant; or
 – Implicit flow becomes explicit
• \textit{Immediate forward dominator} of basic block \(b \) (written IFD\((b)\)) is first basic block lying on all paths of execution passing through \(b \)
IFD Example

• In previous procedure:
 – IFD(b_1) = b_2 one path
 – IFD(b_2) = b_7 b_2→b_7 or b_2→b_3→b_6→b_2→b_7
 – IFD(b_3) = b_4 one path
 – IFD(b_4) = b_6 b_4→b_6 or b_4→b_5→b_6
 – IFD(b_5) = b_4 one path
 – IFD(b_6) = b_2 one path
Requirements

- \(B_i \) is set of basic blocks along an execution path from \(b_i \) to \(\text{IFD}(b_i) \)
 - Analogous to statements in conditional statement
- \(x_{i1}, \ldots, x_{in} \) variables in expression selecting which execution path containing basic blocks in \(B_i \) used
 - Analogous to conditional expression
- Requirements for secure:
 - All statements in each basic blocks are secure
 - \(\text{lub}\{ x_{i1}, \ldots, x_{in} \} \leq \text{glb}\{ y \mid y \text{ target of assignment in } B_i \} \)
Example of Requirements

- Within each basic block:
 \[b_1: \text{Low} \leq i \quad b_3: \text{Low} \leq j \quad b_6: \text{lub}\{ \text{Low}, i \} \leq i \]
 \[b_5: \text{lub}\{ x[i][j], i, j \} \leq y[j][i] \}; \text{lub}\{ \text{Low}, j \} \leq j \]
 - Combining, \text{lub}\{ x[i][j], i, j \} \leq y[j][i] \}
 - From declarations, true when \text{lub}\{ x, i \} \leq y

- \(B_2 = \{b_3, b_4, b_5, b_6\} \)
 - Assignments to \(i, j, y[j][i] \); conditional is \(i \leq 10 \)
 - Requires \(i \leq \text{glb}\{ i, j, y[j][i] \} \)
 - From declarations, true when \(i \leq y \)
Example (continued)

- $B_4 = \{ b_5 \}$
 - Assignments to j, $y[j][i]$; conditional is $j \leq 10$
 - Requires $j \leq \text{glb}\{ j, y[j][i] \}$
 - From declarations, means $i \leq y$

- Result:
 - Combine lub\{ x, i \} $\leq y$; $i \leq y$; $i \leq y$
 - Requirement is lub\{ x, i \} $\leq y$
Procedure Calls

tm(a, b);

From previous slides, to be secure, lub\{ x, i \} ≤ y must hold

- In call, x corresponds to a, y to b
- Means that lub\{ a, i \} ≤ b, or a ≤ b

More generally:

\[
\text{proc } pn(i_1, \ldots, i_m : \text{int}; \text{ var } o_1, \ldots, o_n : \text{int}) \begin{align*}
\text{begin } S \text{ end;}
\end{align*}
\]

- S must be secure
- For all j and k, if \(i_j \leq o_k \), then \(x_j \leq y_k \)
- For all j and k, if \(o_j \leq o_k \), then \(y_j \leq y_k \)
Exceptions

\begin{verbatim}
proc copy(x: int class { x };
 var y: int class Low);
var sum: int class { x };
 z: int class Low;
begin
 y := z := sum := 0;
 while z = 0 do begin
 sum := sum + x;
 y := y + 1;
 end
end
\end{verbatim}
Exceptions (cont)

• When sum overflows, integer overflow trap
 – Procedure exits
 – Value of \(x \) is \(\text{MAXINT}/y \)
 – Info flows from \(y \) to \(x \), but \(x \leq y \) never checked

• Need to handle exceptions explicitly
 – Idea: on integer overflow, terminate loop

 on integer_overflow_exception \(\text{sum} \) do \(z := 1 \);

 – Now info flows from \(\text{sum} \) to \(z \), meaning \(\text{sum} \leq z \)

 – This is false (\(\text{sum} = \{ x \} \) dominates \(z = \text{Low} \))
Infinite Loops

```plaintext
proc copy(x: int 0..1 class { x });
    var y: int 0..1 class Low)
begin
    y := 0;
    while x = 0 do
        (* nothing *);
        y := 1;
end
• If x = 0 initially, infinite loop
• If x = 1 initially, terminates with y set to 1
• No explicit flows, but implicit flow from x to y
```
Semaphores

Use these constructs:

\[
\text{wait}(x) : \text{ if } x = 0 \text{ then block until } x > 0; \ x := x - 1;
\]

\[
\text{signal}(x) : \ x := x + 1;
\]

- \(x \) is semaphore, a shared variable
- Both executed atomically

Consider statement

\[
\text{wait}(sem); \ x := x + 1;
\]

• Implicit flow from \(sem \) to \(x \)
 – Certification must take this into account!
Flow Requirements

- Semaphores in *signal* irrelevant
 - Don’t affect information flow in that process
- Statement S is a wait
 - $\text{shared}(S)$: set of shared variables read
 - Idea: information flows out of variables in $\text{shared}(S)$
 - $\text{fglb}(S)$: glb of assignment targets following S
 - So, requirement is $\text{shared}(S) \leq \text{fglb}(S)$
- $\text{begin } S_1; \ldots S_n \text{ end}$
 - All S_i must be secure
 - For all i, $\text{shared}(S_i) \leq \text{fglb}(S_i)$
Example

begin
 \begin{align*}
 x & := y + z; \quad (*) \quad S_1 \quad (*) \\
 \text{wait}(\text{sem}); \quad (*) \quad S_2 \quad (*) \\
 a & := b \ast c - x; \quad (*) \quad S_3 \quad (*)
 \end{align*}
end

- **Requirements:**
 - \text{lub}\{ y, z \} \leq x
 - \text{lub}\{ b, c, x \} \leq a
 - \text{sem} \leq a
 - Because \text{fglb}(S_2) = a \text{ and } \text{shared}(S_2) = \text{sem}
Concurrent Loops

• Similar, but wait in loop affects *all* statements in loop
 – Because if flow of control loops, statements in loop before wait may be executed after wait

• Requirements
 – Loop terminates
 – All statements \(S_1, \ldots, S_n \) in loop secure
 – \(\text{lub}\{ \text{shared}(S_1), \ldots, \text{shared}(S_n) \} \leq \text{glb}(t_1, \ldots, t_m) \)
 • Where \(t_1, \ldots, t_m \) are variables assigned to in loop
Loop Example

\[
\text{while } i < n \text{ do begin} \\
\quad a[i] := \text{item}; \quad (* S_1 *) \\
\quad \text{wait}(sem); \quad (* S_2 *) \\
\quad i := i + 1; \quad (* S_3 *) \\
\text{end}
\]

• Conditions for this to be secure:
 – Loop terminates, so this condition met
 – \(S_1 \) secure if \(\text{lub}\{ i, \text{item} \} \leq a[i] \)
 – \(S_2 \) secure if \(\text{sem} \leq i \) and \(\text{sem} \leq a[i] \)
 – \(S_3 \) trivially secure
cobegin/coend

cobegin

\[
\begin{align*}
 x & := y + z; & (* S_1 *) \\
 a & := b \times c - y; & (* S_2 *)
\end{align*}
\]

coend

• No information flow among statements
 – For \(S_1 \), \(\text{lub}\{ y, z \} \leq x \)
 – For \(S_2 \), \(\text{lub}\{ b, c, y \} \leq a \)

• Security requirement is both must hold
 – So this is secure if \(\text{lub}\{ y, z \} \leq x \land \text{lub}\{ b, c, y \} \leq a \)
Soundness

• Above exposition intuitive
• Can be made rigorous:
 – Express flows as types
 – Equate certification to correct use of types
 – Checking for valid information flows same as checking types conform to semantics imposed by security policy
Execution-Based Mechanisms

- Detect and stop flows of information that violate policy
 - Done at run time, not compile time
- Obvious approach: check explicit flows
 - Problem: assume for security, \(x \leq y \)

 \[
 \text{if } x = 1 \text{ then } y := a;
 \]
 - When \(x \neq 1, x = \text{High}, y = \text{Low}, a = \text{Low}, \) appears okay— but implicit flow violates condition!
Fenton’s Data Mark Machine

- Each variable has an associated class
- Program counter (PC) has one too
- Idea: branches are assignments to PC, so you can treat implicit flows as explicit flows
- Stack-based machine, so everything done in terms of pushing onto and popping from a program stack
Instruction Description

- *skip* means instruction not executed
- *push*(x, x) means push variable x and its security class x onto program stack
- *pop*(x, x) means pop top value and security class from program stack, assign them to variable x and its security class x respectively
Instructions

• $x := x + 1$ (increment)
 - Same as:
 $\text{if } PC \leq x \text{ then } x := x + 1 \text{ else skip}$

• $\text{if } x = 0 \text{ then goto } n \text{ else } x := x - 1$ (branch and save PC on stack)
 - Same as:
 $\text{if } x = 0 \text{ then begin}
 \text{push}(PC, PC); \ PC := \text{lub}\{PC, x\}; \ PC := n;
 \text{end else if } PC \leq x \text{ then}
 x := x - 1
 \text{else skip;
More Instructions

- if \(x = 0 \) then goto \(n \) else \(x := x - 1 \)
 (branch without saving PC on stack)

 - Same as:

 if \(x = 0 \) then
 if \(x \leq PC \) then \(PC := n \) else skip
 else
 if \(PC \leq x \) then \(x := x - 1 \) else skip
More Instructions

• **return** (go to just after last *if*)
 – Same as:
 \[
 \text{pop}(PC, \ PC);
 \]

• **halt** (stop)
 – Same as:
 \[
 \text{if program stack empty then halt}
 \]
 – Note stack empty to prevent user obtaining information from it after halting
Example Program

1 if $x = 0$ then goto 4 else $x := x - 1$
2 if $z = 0$ then goto 6 else $z := z - 1$
3 halt
4 $z := z - 1$
5 return
6 $y := y - 1$
7 return

• Initially $x = 0$ or $x = 1$, $y = 0$, $z = 0$
• Program copies value of x to y
Example Execution

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>PC</th>
<th>PC</th>
<th>stack</th>
<th>check</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Low</td>
<td>—</td>
<td>Low \leq x</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>Low</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>_</td>
<td>(3, Low)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>7</td>
<td>_</td>
<td>(3, Low)</td>
<td>PC \leq y</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>Low</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>
Handling Errors

• Ignore statement that causes error, but continue execution
 – If aborted or a visible exception taken, user could deduce information
 – Means errors cannot be reported unless user has clearance at least equal to that of the information causing the error
Variable Classes

• Up to now, classes fixed
 – Check relationships on assignment, etc.

• Consider variable classes
 – Fenton’s Data Mark Machine does this for PC
 – On assignment of form \(y := f(x_1, \ldots, x_n), \ y \)
 changed to lub\{ \ x_1, \ldots, x_n \ }
 – Need to consider implicit flows, also
Example Program

(* Copy value from x to y
* Initially, x is 0 or 1 *)
proc copy(x: int class { x });
 var y: int class { y }
var z: int class variable { Low };
begin
 y := 0;
 z := 0;
 if x = 0 then z := 1;
 if z = 0 then y := 1;
end;

• z changes when z assigned to
• Assume y < x

July 1, 2004
Computer Security: Art and Science
©2002-2004 Matt Bishop
Analysis of Example

• $x = 0$
 - $z := 0$ sets z to Low
 - if $x = 0$ then $z := 1$ sets z to 1 and z to x
 - So on exit, $y = 0$

• $x = 1$
 - $z := 0$ sets z to Low
 - if $z = 0$ then $y := 1$ sets y to 1 and checks that
 lub$\{Low, z\} \leq y$
 - So on exit, $y = 1$

• Information flowed from x to y even though $y < x$
Handling This (1)

- Fenton’s Data Mark Machine detects implicit flows violating certification rules
Handling This (2)

- Raise class of variables assigned to in conditionals even when branch not taken
- Also, verify information flow requirements even when branch not taken
- Example:
 - In `if x = 0 then z := 1`, `z` raised to `x` whether or not `x = 0`
 - Certification check in next statement, that `z ≤ y`, fails, as `z = x` from previous statement, and `y ≤ x`
Handling This (3)

• Change classes only when explicit flows occur, but all flows (implicit as well as explicit) force certification checks

• Example
 – When $x = 0$, first “if” sets z to Low then checks $x \leq z$
 – When $x = 1$, first “if” checks that $x \leq z$
 – This holds if and only if $x = \text{Low}$
 • Not possible as $y < x = \text{Low}$ and there is no such class
Example Information Flow
Control Systems

• Use access controls of various types to inhibit information flows

• Security Pipeline Interface
 – Analyzes data moving from host to destination

• Secure Network Server Mail Guard
 – Controls flow of data between networks that have different security classifications
Security Pipeline Interface

- SPI analyzes data going to, from host
 - No access to host main memory
 - Host has no control over SPI
Use

- Store files on first disk
- Store corresponding crypto checksums on second disk
- Host requests file from first disk
 - SPI retrieves file, computes crypto checksum
 - SPI retrieves file’s crypto checksum from second disk
 - If a match, file is fine and forwarded to host
 - If discrepancy, file is compromised and host notified
- Integrity information flow restricted here
 - Corrupt file can be seen but will not be trusted
Secure Network Server Mail Guard (SNSMG)

- Filters analyze outgoing messages
 - Check authorization of sender
 - Sanitize message if needed (words and viruses, etc.)

- Uses type checking to enforce this
 - Incoming, outgoing messages of different type
 - Only appropriate type can be moved in or out
Key Points

• Both amount of information, direction of flow important
 – Flows can be explicit or implicit

• Analysis assumes lattice model
 – Non-lattices can be embedded in lattices

• Compiler-based checks flows at compile time

• Execution-based checks flows at run time