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Chapter 17: Confinement
Problem

• What is the problem?
• Isolation: virtual machines, sandboxes
• Detecting covert channels
• Analyzing covert channels
• Mitigating covert channels
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Overview

• The confinement problem
• Isolating entities

– Virtual machines
– Sandboxes

• Covert channels
– Detecting them
– Analyzing them
– Mitigating them
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Example Problem

• Server balances bank accounts for clients
• Server security issues:

– Record correctly who used it
– Send only balancing info to client

• Client security issues:
– Log use correctly
– Do not save or retransmit data client sends
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Generalization

• Client sends request, data to server
• Server performs some function on data
• Server returns result to client
• Access controls:

– Server must ensure the resources it accesses on behalf
of client include only resources client is authorized to
access

– Server must ensure it does not reveal client’s data to
any entity not authorized to see the client’s data
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Confinement Problem

• Problem of preventing a server from leaking
information that the user of the service
considers confidential
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Total Isolation

• Process cannot communicate with any other
process

• Process cannot be observed

Impossible for this process to leak information
– Not practical as process uses observable

resources such as CPU, secondary storage,
networks, etc.
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Example

• Processes p, q not allowed to communicate
– But they share a file system!

• Communications protocol:
– p sends a bit by creating a file called 0 or 1, then a

second file called send
• p waits until send is deleted before repeating to send another

bit
– q waits until file send exists, then looks for file 0 or 1;

whichever exists is the bit
• q then deletes 0, 1, and send and waits until send is recreated

before repeating to read another bit
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Covert Channel

• A path of communication not designed to be
used for communication

• In example, file system is a (storage) covert
channel
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Rule of Transitive Confinement

• If p is confined to prevent leaking, and it
invokes q, then q must be similarly confined
to prevent leaking

• Rule: if a confined process invokes a second
process, the second process must be as
confined as the first
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Lipner’s Notes

• All processes can obtain rough idea of time
– Read system clock or wall clock time
– Determine number of instructions executed

• All processes can manipulate time
– Wait some interval of wall clock time
– Execute a set number of instructions, then

block
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Kocher’s Attack

• This computes x = az mod n, where z = z0 … zk–1

x := 1; atmp := a;
for i := 0 to k–1 do begin
if zi = 1 then

x := (x * atmp) mod n;
atmp := (atmp * atmp) mod n;

end
result := x;

• Length of run time related to number of 1 bits in z
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Isolation

• Present process with environment that appears to
be a computer running only those processes being
isolated
– Process cannot access underlying computer system, any

process(es) or resource(s) not part of that environment
– A virtual machine

• Run process in environment that analyzes actions
to determine if they leak information
– Alters the interface between process(es) and computer
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Virtual Machine

• Program that simulates hardware of a
machine
– Machine may be an existing, physical one or an

abstract one
• Why?

– Existing OSes do not need to be modified
• Run under VMM, which enforces security policy
• Effectively, VMM is a security kernel
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VMM as Security Kernel

• VMM deals with subjects (the VMs)
– Knows nothing about the processes within the VM

• VMM applies security checks to subjects
– By transitivity, these controls apply to processes on VMs

• Thus, satisfies rule of transitive confinement
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Example 1: KVM/370

• KVM/370 is security-enhanced version of
VM/370 VMM
– Goal: prevent communications between VMs of

different security classes
– Like VM/370, provides VMs with minidisks,

sharing some portions of those disks
– Unlike VM/370, mediates access to shared

areas to limit communication in accordance
with security policy
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Example 2: VAX/VMM

• Can run either VMS or Ultrix
• 4 privilege levels for VM system

– VM user, VM supervisor, VM executive, VM
kernel (both physical executive)

• VMM runs in physical kernel mode
– Only it can access certain resources

• VMM subjects: users and VMs
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Example 2

• VMM has flat file system for itself
– Rest of disk partitioned among VMs
– VMs can use any file system structure

• Each VM has its own set of file systems
– Subjects, objects have security, integrity classes

• Called access classes
– VMM has sophisticated auditing mechanism
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Problem

• Physical resources shared
– System CPU, disks, etc.

• May share logical resources
– Depends on how system is implemented

• Allows covert channels
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Sandboxes

• An environment in which actions are
restricted in accordance with security policy
– Limit execution environment as needed

• Program not modified
• Libraries, kernel modified to restrict actions

– Modify program to check, restrict actions
• Like dynamic debuggers, profilers
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Examples Limiting Environment

• Java virtual machine
– Security manager limits access of downloaded

programs as policy dictates
• Sidewinder firewall

– Type enforcement limits access
– Policy fixed in kernel by vendor

• Domain Type Enforcement
– Enforcement mechanism for DTEL
– Kernel enforces sandbox defined by system

administrator
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Modifying Programs

• Add breakpoints or special instructions to
source, binary code
– On trap or execution of special instructions,

analyze state of process
• Variant: software fault isolation

– Add instructions checking memory accesses,
other security issues

– Any attempt to violate policy causes trap
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Example: Janus

• Implements sandbox in which system calls
checked
– Framework does runtime checking
– Modules determine which accesses allowed

• Configuration file
– Instructs loading of modules
– Also lists constraints
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Configuration File
# basic module
basic

# define subprocess environment variables
putenv IFS=”\t\n “ PATH=/sbin:/bin:/usr/bin TZ=PST8PDT

# deny access to everything except files under /usr
path deny read,write *
path allow read,write /usr/*
# allow subprocess to read files in library directories
# needed for dynamic loading
path allow read /lib/* /usr/lib/* /usr/local/lib/*
# needed so child can execute programs
path allow read,exec /sbin/* /bin/* /usr/bin/*
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How It Works

• Framework builds list of relevant system calls
– Then marks each with allowed, disallowed actions

• When monitored system call executed
– Framework checks arguments, validates that call is allowed for

those arguments
• If not, returns failure
• Otherwise, give control back to child, so normal system call proceeds
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Use

• Reading MIME Mail: fear is user sets mail reader to
display attachment using Postscript engine
– Has mechanism to execute system-level commands
– Embed a file deletion command in attachment …

• Janus configured to disallow execution of any
subcommands by Postscript engine
– Above attempt fails
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Sandboxes, VMs, and TCB

• Sandboxes, VMs part of trusted computing
bases
– Failure: less protection than security officers,

users believe
– “False sense of security”

• Must ensure confinement mechanism
correctly implements desired security policy
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Covert Channels
• Shared resources as communication paths
• Covert storage channel uses attribute of shared resource

– Disk space, message size, etc.
• Covert timing channel uses temporal or ordering relationship among

accesses to shared resource
– Regulating CPU usage, order of reads on disk
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Example Storage Channel
• Processes p, q not allowed to communicate

– But they share a file system!
• Communications protocol:

– p sends a bit by creating a file called 0 or 1, then a second file
called send

• p waits until send is deleted before repeating to send another bit
– q waits until file send exists, then looks for file 0 or 1; whichever

exists is the bit
• q then deletes 0, 1, and send and waits until send is recreated before

repeating to read another bit
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Example Timing Channel
• System has two VMs

– Sending machine S, receiving machine R
• To send:

– For 0, S immediately relinquishes CPU
• For example, run a process that instantly blocks

– For 1, S  uses full quantum
• For example, run a CPU-intensive process

• R measures how quickly it gets CPU
– Uses real-time clock to measure intervals between access to shared

resource (CPU)
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Example Covert Channel
• Uses ordering of events; does not use clock
• Two VMs sharing disk cylinders 100 to 200

– SCAN algorithm schedules disk accesses
– One VM is High (H), other is Low (L)

• Idea: L will issue requests for blocks on cylinders 139 and 161 to be
read
– If read as 139, then 161, it’s a 1 bit
– If read as 161, then 139, it’s a 0 bit
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How It Works
• L issues read for data on cylinder 150

– Relinquishes CPU when done; arm now at 150
• H runs, issues read for data on cylinder 140

– Relinquishes CPU when done; arm now at 140
• L runs, issues read for data on cylinders 139 and 161

– Due to SCAN, reads 139 first, then 161
– This corresponds to a 1

• To send a 0, H would have issued read for data on cylinder
160
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Analysis
• Timing or storage?

– Usual definition ⇒ storage (no timer, clock)
• Modify example to include timer

– L uses this to determine how long requests take to complete
– Time to seek to 139 < time to seek to 161 ⇒ 1; otherwise, 0

• Channel works same way
– Suggests it’s a timing channel; hence our definition
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Noisy vs. Noiseless

• Noiseless: covert channel uses resource
available only to sender, receiver

• Noisy: covert channel uses resource
available to others as well as to sender,
receiver
– Idea is that others can contribute extraneous

information that receiver must filter out to
“read” sender’s communication
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Key Properties
• Existence: the covert channel can be used to send/receive information
• Bandwidth: the rate at which information can be sent along the channel
• Goal of analysis: establish these properties for each channel

– If you can eliminate the channel, great!
– If not, reduce bandwidth as much as possible
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Step #1: Detection

• Manner in which resource is shared controls
who can send, receive using that resource
– Noninterference
– Shared Resource Matrix Methodology
– Information flow analysis
– Covert flow trees
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Noninterference

• View “read”, “write” as instances of
information transfer

• Then two processes can communicate if
information can be transferred between
them, even in the absence of a direct
communication path
– A covert channel
– Also sounds like interference …
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Example: SAT
• Secure Ada Target, multilevel security policy
• Approach:

– π(i, l) removes all instructions issued by subjects dominated by
level l from instruction stream i

– A(i, σ) state resulting from execution of i on state σ
– σ.v(s) describes subject s’s view of state σ

• System is noninterference-secure iff for all instruction
sequences i, subjects s with security level l(s), states σ,

A(π(i, l(s)), σ).v(s) = A(i, σ).v(s)
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Theorem
• Version of the Unwinding Theorem
• Let Σ be set of system states. A specification is

noninterference-secure if, for each subject s at security
level l(s), there exists an equivalence relation ≡: Σ×Σ such
that
– for σ1, σ2 ∈ Σ, when σ1 ≡ σ2, σ1.v(s) = σ2.v(s)
– for σ1, σ2 ∈ Σ and any instruction i, when σ1 ≡ σ2, A(i, σ1) ≡ A(i, σ

2)
– for σ ∈ Σ and instruction stream i, if π(i, l(s)) is empty, A(π(i, l(s)),

σ).v(s) = σ.v(s)
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Intuition

• System is noninterference-secure if:
– Equivalent states have the same view for each

subject
– View remains unchanged if any instruction is

executed
– Instructions from higher-level subjects do not

affect the state from the viewpoint of the lower-
level subjects
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Analysis of SAT

• Focus on object creation instruction and
readable object set

• In these specifications:
– s subject with security level l(s)
– o object with security level l(o), type τ(o)
– σ current state
– Set of existing objects listed in a global object

table T(σ)
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Specification 1
• object_create:

[ σ′ = object_create(s,o,l(o),τ(o),σ) ∧ σ′ ≠  σ ]
⇔

[ o ∉ T(σ) ∧ l(s) ≤ l(o) ]
• The create succeeds if, and only if, the object does not yet exist and the

clearance of the object will dominate the clearance of its creator
– In accord with the “writes up okay” idea
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Specification 2
• readable object set: set of existing objects that subject

could read
– can_read(s, o, σ) true if in state σ, o is of a type that s can read

(ignoring permissions)
• o ∉ readable(s, σ) ⇔ [ o ∉ T(σ) ∨

¬(l(o) ≤ l(s)) ∨ ¬(can_read(s, o, σ))]
• Can’t read a nonexistent object, one with a security level

that  the subject’s security level does not dominate, or
object of the wrong type
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Specification 3
• SAT enforces tranquility

– Adding object to readable set means creating new object
• Add to readable set:

[o ∉ readable(s, σ) ∧ o ∈ readable(s, σ′)] ⇔ [σ′ = object_create(s,o,l(o),τ
(o),σ) ∧ o ∉ T(σ) ∧ l(s′) ≤ l(o) ≤ l(s) ∧ can_read(s, o, σ′)]

• Says object must be created, levels and discretionary access controls
set properly
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Check for Covert Channels

• σ1, σ2 the same except:
– o exists only in latter
– ¬(l(o) ≤ l(s))

• Specification 2:
– o ∉ readable(s, σ1) { o doesn’t exist in σ1}
– o ∉ readable(s, σ2) { ¬(l(o) ≤ l(s)) }

• Thus σ1 ≡ σ2
– Condition 1 of theorem holds
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Continue Analysis

• s′ issues command to create o with:
– l(o) = l(s)
– of type with can_read(s, o, σ1′)

• σ1′ state after object_create(s′, o, l(o), τ(o), σ1)

• Specification 1
– σ1′ differs from σ1 with o in T(σ1)

• New entry satisfies:
– can_read(s, o, σ1′)
– l(s′) ≤ l(o) ≤ l(s), where s′ created o
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Continue Analysis

• o exists in σ2 so:
σ2′ = object_create(s′, o, σ2) = σ2

• But this means
¬[ A(object_create(s′, o, l(o), τ(o), σ2), σ2) ≡

A(object_create(s′, o, l(o), τ(o), σ1), σ1) ]
– Because create fails in σ2 but succeeds in σ1

• So condition 2 of theorem fails
• This implies a covert channel as system is not

noninterference-secure
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Example Exploit

• To send 1:
– High subject creates high object
– Recipient tries to create same object but at low

• Creation fails, but no indication given
– Recipient gives different subject type permission to read, write

object
• Again fails, but no indication given

– Subject writes 1 to object, reads it
• Read returns nothing
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Example Exploit

• To send 0:
– High subject creates nothing
– Recipient tries to create same object but at low

• Creation succeeds as object does not exist
– Recipient gives different subject type permission to read, write

object
• Again succeeds

– Subject writes 1 to object, reads it
• Read returns 1
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Use

• Can analyze covert storage channels
– Noninterference techniques reason in terms of

security levels (attributes of objects)
• Covert timing channels much harder

– You would have to make ordering an attribute
of the objects in some way
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SRMM

• Shared Resource Matrix Methodology
• Goal: identify shared channels, how they are

shared
• Steps:

– Identify all shared resources, their visible attributes
[rows]

– Determine operations that reference (read), modify
(write) resource [columns]

– Contents of matrix show how operation accesses the
resource
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Example
• Multilevel security model
• File attributes:

– existence, owner, label, size
• File manipulation operations:

– read, write, delete, create
– create succeeds if file does not exist; gets creator as owner,

creator’s label
– others require file exists, appropriate labels

• Subjects:
– High, Low
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Shared Resource Matrix

MMMRsize

MRRRlabel

MRowner

R, MR, MRRexistence

createdeletewriteread
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Covert Storage Channel

• Properties that must hold for covert storage
channel:
1. Sending, receiving processes have access to

same attribute of shared object;
2. Sender can modify that attribute;
3. Receiver can reference that attribute; and
4. Mechanism for starting processes, properly

sequencing their accesses to resource
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Example

• Consider attributes with both R, M in rows
• Let High be sender, Low receiver
• create operation both references, modifies existence

attribute
– Low can use this due to semantics of create

• Need to arrange for proper sequencing accesses to
existence attribute of file (shared resource)
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Use of Channel

– 3 files: ready, done, 1bit
– Low creates ready at High level
– High checks that file exists

– If so, to send 1, it creates 1bit; to send 0, skip
– Delete ready, create done at High level

– Low tries to create done at High level
– On failure, High is done
– Low tries to create 1bit at level High

– Low deletes done, creates ready at High level
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Covert Timing Channel

• Properties that must hold for covert timing
channel:
1. Sending, receiving processes have access to same

attribute of shared object;
2. Sender, receiver have access to a time reference (wall

clock, timer, event ordering, …);
3. Sender can control timing of detection of change to that

attribute by receiver; and
4. Mechanism for starting processes, properly sequencing

their accesses to resource
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Example

• Revisit variant of KVM/370 channel
– Sender, receiver can access ordering of requests by disk

arm scheduler (attribute)
– Sender, receiver have access to the ordering of the

requests (time reference)
– High can control ordering of requests of Low process

by issuing cylinder numbers to position arm
appropriately (timing of detection of change)

– So whether channel can be exploited depends on
whether there is a mechanism to (1) start sender,
receiver and (2) sequence requests as desired
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Uses of SRM Methodology

• Applicable at many stages of software life cycle
model
– Flexbility is its strength

• Used to analyze Secure Ada Target
– Participants manually constructed SRM from flow

analysis of SAT model
– Took transitive closure
– Found 2 covert channels

• One used assigned level attribute, another assigned type
attribute
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Summary

• Methodology comprehensive but incomplete
– How to identify shared resources?
– What operations access them and how?

• Incompleteness a benefit
– Allows use at different stages of software engineering life cycle

• Incompleteness a problem
– Makes use of methodology sensitive to particular stage of software

development
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Covert Channels
• Shared resources as communication paths
• Covert storage channel uses attribute of shared resource

– Disk space, message size, etc.
• Covert timing channel uses temporal or ordering relationship among

accesses to shared resource
– Regulating CPU usage, order of reads on disk
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Example Storage Channel
• Processes p, q not allowed to communicate

– But they share a file system!
• Communications protocol:

– p sends a bit by creating a file called 0 or 1, then a second file
called send

• p waits until send is deleted before repeating to send another bit
– q waits until file send exists, then looks for file 0 or 1; whichever

exists is the bit
• q then deletes 0, 1, and send and waits until send is recreated before

repeating to read another bit
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Example Timing Channel
• System has two VMs

– Sending machine S, receiving machine R
• To send:

– For 0, S immediately relinquishes CPU
• For example, run a process that instantly blocks

– For 1, S  uses full quantum
• For example, run a CPU-intensive process

• R measures how quickly it gets CPU
– Uses real-time clock to measure intervals between access to shared

resource (CPU)
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Example Covert Channel
• Uses ordering of events; does not use clock
• Two VMs sharing disk cylinders 100 to 200

– SCAN algorithm schedules disk accesses
– One VM is High (H), other is Low (L)

• Idea: L will issue requests for blocks on cylinders 139 and 161 to be
read
– If read as 139, then 161, it’s a 1 bit
– If read as 161, then 139, it’s a 0 bit
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How It Works
• L issues read for data on cylinder 150

– Relinquishes CPU when done; arm now at 150
• H runs, issues read for data on cylinder 140

– Relinquishes CPU when done; arm now at 140
• L runs, issues read for data on cylinders 139 and 161

– Due to SCAN, reads 139 first, then 161
– This corresponds to a 1

• To send a 0, H would have issued read for data on cylinder
160
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Analysis
• Timing or storage?

– Usual definition ⇒ storage (no timer, clock)
• Modify example to include timer

– L uses this to determine how long requests take to complete
– Time to seek to 139 < time to seek to 161 ⇒ 1; otherwise, 0

• Channel works same way
– Suggests it’s a timing channel; hence our definition
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Noisy vs. Noiseless

• Noiseless: covert channel uses resource
available only to sender, receiver

• Noisy: covert channel uses resource
available to others as well as to sender,
receiver
– Idea is that others can contribute extraneous

information that receiver must filter out to
“read” sender’s communication
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Key Properties
• Existence: the covert channel can be used to send/receive information
• Bandwidth: the rate at which information can be sent along the channel
• Goal of analysis: establish these properties for each channel

– If you can eliminate the channel, great!
– If not, reduce bandwidth as much as possible
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Step #1: Detection

• Manner in which resource is shared controls
who can send, receive using that resource
– Noninterference
– Shared Resource Matrix Methodology
– Information flow analysis
– Covert flow trees
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Noninterference

• View “read”, “write” as instances of
information transfer

• Then two processes can communicate if
information can be transferred between
them, even in the absence of a direct
communication path
– A covert channel
– Also sounds like interference …
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Example: SAT
• Secure Ada Target, multilevel security policy
• Approach:

– π(i, l) removes all instructions issued by subjects dominated by
level l from instruction stream i

– A(i, σ) state resulting from execution of i on state σ
– σ.v(s) describes subject s’s view of state σ

• System is noninterference-secure iff for all instruction
sequences i, subjects s with security level l(s), states σ,

A(π(i, l(s)), σ).v(s) = A(i, σ).v(s)
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Theorem

• Version of the Unwinding Theorem
• Let Σ be set of system states. A specification is

noninterference-secure if, for each subject s at
security level l(s), there exists an equivalence
relation ≡: Σ×Σ such that
– for σ1, σ2 ∈ Σ, when σ1 ≡ σ2, σ1.v(s) = σ2.v(s)
– for σ1, σ2 ∈ Σ and any instruction i, when σ1 ≡ σ2, A(i,
σ1) ≡ A(i, σ2)

– for σ ∈ Σ and instruction stream i, if π(i, l(s)) is empty,
A(π(i, l(s)), σ).v(s) = σ.v(s)
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Intuition

• System is noninterference-secure if:
– Equivalent states have the same view for each

subject
– View remains unchanged if any instruction is

executed
– Instructions from higher-level subjects do not

affect the state from the viewpoint of the lower-
level subjects
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Analysis of SAT

• Focus on object creation instruction and
readable object set

• In these specifications:
– s subject with security level l(s)
– o object with security level l(o), type τ(o)
– σ current state
– Set of existing objects listed in a global object

table T(σ)
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Specification 1

• object_create:
[ σ′ = object_create(s,o,l(o),τ(o),σ) ∧ σ′ ≠  σ ]

⇔
[ o ∉ T(σ) ∧ l(s) ≤ l(o) ]

• The create succeeds if, and only if, the object does not yet
exist and the clearance of the object will dominate the
clearance of its creator
– In accord with the “writes up okay” idea
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Specification 2

• readable object set: set of existing objects that
subject could read
– can_read(s, o, σ) true if in state σ, o is of a type that s

can read (ignoring permissions)
• o ∉ readable(s, σ) ⇔ [ o ∉ T(σ) ∨

¬(l(o) ≤ l(s)) ∨ ¬(can_read(s, o, σ))]
• Can’t read a nonexistent object, one with a

security level that  the subject’s security level does
not dominate, or object of the wrong type
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Specification 3

• SAT enforces tranquility
– Adding object to readable set means creating new object

• Add to readable set:
[o ∉ readable(s, σ) ∧ o ∈ readable(s, σ′)] ⇔ [σ′ =

object_create(s,o,l(o),τ(o),σ) ∧ o ∉ T(σ) ∧ l(s′) ≤ l(o) ≤ l(s) ∧
can_read(s, o, σ′)]

• Says object must be created, levels and discretionary
access controls set properly
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Check for Covert Channels

• σ1, σ2 the same except:
– o exists only in latter
– ¬(l(o) ≤ l(s))

• Specification 2:
– o ∉ readable(s, σ1) { o doesn’t exist in σ1}
– o ∉ readable(s, σ2) { ¬(l(o) ≤ l(s)) }

• Thus σ1 ≡ σ2
– Condition 1 of theorem holds
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Continue Analysis

• s′ issues command to create o with:
– l(o) = l(s)
– of type with can_read(s, o, σ1′)

• σ1′ state after object_create(s′, o, l(o), τ(o), σ1)

• Specification 1
– σ1′ differs from σ1 with o in T(σ1)

• New entry satisfies:
– can_read(s, o, σ1′)
– l(s′) ≤ l(o) ≤ l(s), where s′ created o
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Continue Analysis

• o exists in σ2 so:
σ2′ = object_create(s′, o, σ2) = σ2

• But this means
¬[ A(object_create(s′, o, l(o), τ(o), σ2), σ2) ≡

A(object_create(s′, o, l(o), τ(o), σ1), σ1) ]
– Because create fails in σ2 but succeeds in σ1

• So condition 2 of theorem fails
• This implies a covert channel as system is not

noninterference-secure
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Example Exploit

• To send 1:
– High subject creates high object
– Recipient tries to create same object but at low

• Creation fails, but no indication given
– Recipient gives different subject type permission to read, write

object
• Again fails, but no indication given

– Subject writes 1 to object, reads it
• Read returns nothing
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Example Exploit

• To send 0:
– High subject creates nothing
– Recipient tries to create same object but at low

• Creation succeeds as object does not exist
– Recipient gives different subject type permission to read, write

object
• Again succeeds

– Subject writes 1 to object, reads it
• Read returns 1
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Use

• Can analyze covert storage channels
– Noninterference techniques reason in terms of

security levels (attributes of objects)
• Covert timing channels much harder

– You would have to make ordering an attribute
of the objects in some way
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SRMM

• Shared Resource Matrix Methodology
• Goal: identify shared channels, how they are

shared
• Steps:

– Identify all shared resources, their visible attributes
[rows]

– Determine operations that reference (read), modify
(write) resource [columns]

– Contents of matrix show how operation accesses the
resource
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Example
• Multilevel security model
• File attributes:

– existence, owner, label, size
• File manipulation operations:

– read, write, delete, create
– create succeeds if file does not exist; gets creator as owner,

creator’s label
– others require file exists, appropriate labels

• Subjects:
– High, Low
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Shared Resource Matrix

MMMRsize

MRRRlabel

MRowner

R, MR, MRRexistence

createdeletewriteread
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Covert Storage Channel

• Properties that must hold for covert storage
channel:
1. Sending, receiving processes have access to

same attribute of shared object;
2. Sender can modify that attribute;
3. Receiver can reference that attribute; and
4. Mechanism for starting processes, properly

sequencing their accesses to resource
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Example

• Consider attributes with both R, M in rows
• Let High be sender, Low receiver
• create operation both references, modifies existence

attribute
– Low can use this due to semantics of create

• Need to arrange for proper sequencing accesses to
existence attribute of file (shared resource)
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Use of Channel

– 3 files: ready, done, 1bit
– Low creates ready at High level
– High checks that file exists

– If so, to send 1, it creates 1bit; to send 0, skip
– Delete ready, create done at High level

– Low tries to create done at High level
– On failure, High is done
– Low tries to create 1bit at level High

– Low deletes done, creates ready at High level
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Covert Timing Channel

• Properties that must hold for covert timing
channel:
1. Sending, receiving processes have access to same

attribute of shared object;
2. Sender, receiver have access to a time reference (wall

clock, timer, event ordering, …);
3. Sender can control timing of detection of change to that

attribute by receiver; and
4. Mechanism for starting processes, properly sequencing

their accesses to resource
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Example

• Revisit variant of KVM/370 channel
– Sender, receiver can access ordering of requests by disk

arm scheduler (attribute)
– Sender, receiver have access to the ordering of the

requests (time reference)
– High can control ordering of requests of Low process

by issuing cylinder numbers to position arm
appropriately (timing of detection of change)

– So whether channel can be exploited depends on
whether there is a mechanism to (1) start sender,
receiver and (2) sequence requests as desired
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Uses of SRM Methodology

• Applicable at many stages of software life cycle
model
– Flexbility is its strength

• Used to analyze Secure Ada Target
– Participants manually constructed SRM from flow

analysis of SAT model
– Took transitive closure
– Found 2 covert channels

• One used assigned level attribute, another assigned type
attribute
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Summary

• Methodology comprehensive but incomplete
– How to identify shared resources?
– What operations access them and how?

• Incompleteness a benefit
– Allows use at different stages of software engineering life cycle

• Incompleteness a problem
– Makes use of methodology sensitive to particular stage of software

development
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Measuring Capacity

• Intuitively, difference between
unmodulated, modulated channel
– Normal uncertainty in channel is 8 bits
– Attacker modulates channel to send

information, reducing uncertainty to 5 bits
– Covert channel capacity is 3 bits

• Modulation in effect fixes those bits
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Formally

• Inputs:
– A input from Alice (sender)
– V input from everyone else
– X output of channel

• Capacity measures uncertainty in X given A
• In other terms: maximize

I(A; X) = H(X) – H(X | A)
with respect to A
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Example (continued)
• If A, V independent, p=p(A=0), q=p(V=0):

– p(A=0,V=0) = pq
– p(A=1,V=0) = (1–p)q
– p(A=0,V=1) = p(1–q)
– p(A=1,V=1) = (1–p)(1–q)

• So
– p(X=0) = p(A=0,V=0)+p(A=1,V=1)

= pq + (1–p)(1–q)
– p(X=1) = p(A=0,V=1)+p(A=1,V=0)

= (1–p)q + p(1–q)
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More Example

• Also:
– p(X=0|A=0) = q
– p(X=0|A=1) = 1–q
– p(X=1|A=0) = 1–q
– p(X=1|A=1) = q

• So you can compute:
– H(X) = –[(1–p)q + p(1–q)] lg [(1–p)q + p(1–q)]
– H(X|A) = –q lg q – (1–q) lg (1–q)
– I(A;X) = H(X)–H(X|A)
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I(A;X)
I(A; X) = – [pq + (1 – p)(1 – q)] lg [pq + (1 – p)(1 – q)] –

[(1 – p)q + p(1 – q)] lg [(1 – p)q + p(1 – q)] +
q lg q + (1 – q) lg (1 – q)

• Maximum when p = 0.5; then
I(A;X) = 1 + q lg q + (1–q) lg (1–q) = 1–H(V)

• So, if V constant, q = 0, and I(A;X) = 1
• Also, if q = p = 0.5, I(A;X) = 0
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Analyzing Capacity

• Assume a noisy channel
• Examine covert channel in MLS database

that uses replication to ensure availability
– 2-phase commit protocol ensures atomicity
– Coordinator process manages global execution
– Participant processes do everything else
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How It Works

• Coordinator sends message to each participant
asking whether to abort or commit transaction
– If any says “abort”, coordinator stops

• Coordinator gathers replies
– If all say “commit”, sends commit messages back to

participants
– If any says “abort”, sends abort messages back to

participants
– Each participant that sent commit waits for reply; on

receipt, acts accordingly
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Exceptions

• Protocol times out, causing party to act as if
transaction aborted, when:
– Coordinator doesn’t receive reply from

participant
– Participant who sends a commit doesn’t receive

reply from coordinator
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Covert Channel Here

• Two types of components
– One at Low security level, other at High

• Low component begins 2-phase commit
– Both High, Low components must cooperate in the 2-phase

commit protocol

• High sends information to Low by selectively aborting
transactions
– Can send abort messages
– Can just not do anything
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Note

• If transaction always succeeded except
when High component sending information,
channel not noisy
– Capacity would be 1 bit per trial
– But channel noisy as transactions may abort for

reasons other than the sending of information
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Analysis

• X random variable: what High user wants to send
– Assume abort is 1, commit is 0
– p = p(X=0) probability High sends 0

• A random variable: what Low receives
– For noiseless channel X = A

• n+2 users
– Sender, receiver, n others
– q probability of transaction aborting at any of these n

users
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Basic Probabilities

• Probabilities of receiving given sending
– p(A=0|X=0) = (1–q)n

– p(A=1|X=0) = 1–(1–q)n

– p(A=0|X=1) = 0
– p(A=1|X=1) = 1

• So probabilities of receiving values:
– p(A=0) = p(1–q)n

– p(A=1) = 1–p(1–q)n
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More Probabilities

• Given sending, what is receiving?
– p(X=0|A=0) = 1
– p(X=1|A=0) = 0
– p(X=0|A=1) = p[1–(1–q)n] / [1–p(1–q)n]
– p(X=1|A=1) = (1–p) / [1–p(1–q)n]
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Entropies

• H(X) = –p lg p – (1–p) lg (1–p)
• H(X|A) = –p[1–(1–q)n] lg p

– p[1–(1–q)n] lg [1–(1–q)n]
+ [1–p(1–q)n] lg [1–p(1–q)n]
– (1–p) lg (1–p)

• I(A;X) = –p(1–q)n lg p
+ p[1–(1–q)n] lg [1–(1–q)n]
– [1–p(1–q)n] lg [1–p(1–q)n]
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Capacity

• Maximize this with respect to p (probability
that High sends 0)
– Notation: m = (1–q)n, M = (1–m)(1–m)

– Maximum when p = M / (Mm+1)
• Capacity is:

I(A;X) = Mm lg p + M(1–m) lg (1–m) + lg (Mm+1)
(Mm+1)
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Mitigation of Covert Channels

• Problem: these work by varying use of shared
resources

• One solution
– Require processes to say what resources they need

before running
– Provide access to them in a way that no other process

can access them
• Cumbersome

– Includes running (CPU covert channel)
– Resources stay allocated for lifetime of process
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Alternate Approach

• Obscure amount of resources being used
– Receiver cannot distinguish between what the

sender is using and what is added
• How? Two ways:

– Devote uniform resources to each process
– Inject randomness into allocation, use of

resources
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Uniformity

• Variation of isolation
– Process can’t tell if second process using

resource
• Example: KVM/370 covert channel via

CPU usage
– Give each VM a time slice of fixed duration
– Do not allow VM to surrender its CPU time

• Can no longer send 0 or 1 by modulating CPU usage
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Randomness

• Make noise dominate channel
– Does not close it, but makes it useless

• Example: MLS database
– Probability of transaction being aborted by user other

than sender, receiver approaches 1
• q → 1

– I(A; X) → 0
– How to do this: resolve conflicts by aborting increases

q, or have participants abort transactions randomly
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Problem: Loss of Efficiency

• Fixed allocation, constraining use
– Wastes resources

• Increasing probability of aborts
– Some transactions that will normally commit

now fail, requiring more retries
• Policy: is the inefficiency preferable to the

covert channel?
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Example

• Goal: limit covert timing channels on VAX/VMM
• “Fuzzy time” reduces accuracy of system clocks

by generating random clock ticks
– Random interrupts take any desired distribution
– System clock updates only after each timer interrupt
– Kernel rounds time to nearest 0.1 sec before giving it to

VM
• Means it cannot be more accurate than timing of interrupts
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Example

• I/O operations have random delays
• Kernel distinguishes 2 kinds of time:

– Event time (when I/O event occurs)
– Notification time (when VM told I/O event occurred)

• Random delay between these prevents VM from figuring out
when event actually occurred)

• Delay can be randomly distributed as desired (in security
kernel, it’s 1–19ms)

– Added enough noise to make covert timing channels
hard to exploit
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Improvement

• Modify scheduler to run processes in
increasing order of security level
– Now we’re worried about “reads up”, so …

• Countermeasures needed only when
transition from dominating VM to
dominated VM
– Add random intervals between quanta for these

transitions
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The Pump

• Tool for controlling communications path between
High and Low

communications buffer

Low process High process

High
buffer

Low
buffer
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Details

• Communications buffer of length n
– Means it can hold up to n messages

• Messages numbered
• Pump ACKs each message as it is moved from

High (Low) buffer to communications buffer
• If pump crashes, communications buffer preserves

messages
– Processes using pump can recover from crash
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Covert Channel

• Low fills communications buffer
– Send messages to pump until no ACK
– If High wants to send 1, it accepts 1 message from

pump; if High wants to send 0, it does not
– If Low gets ACK, message moved from Low buffer to

communications buffer ⇒ High sent 1
– If Low doesn’t get ACK, no message moved  ⇒ High

sent 0
• Meaning: if High can control rate at which pump

passes messages to it, a covert timing channel
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Performance vs. Capacity

• Assume Low process, pump can process
messages more quickly than High process

• Li random variable: time from Low sending
message to pump to Low receiving ACK

• Hi random variable: average time for High
to ACK each of last n messages
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Case1: E(Li) > Hi

• High can process messages more quickly than Low can get
ACKs

• Contradicts above assumption
– Pump must be delaying ACKs
– Low waits for ACK whether or not communications buffer is full

• Covert channel closed
• Not optimal

– Process may wait to send message even when there is room
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Case 2: E(Li) < Hi

• Low sending messages faster than High can
remove them

• Covert channel open
• Optimal performance
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Case 3: E(Li) = Hi

• Pump, processes handle messages at same
rate

• Covert channel open
– Bandwidth decreased from optimal case (can’t

send messages over covert channel as fast)
• Performance not optimal
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Adding Noise

• Shown: adding noise to approximate case 3
– Covert channel capacity reduced to 1/nr where r time from Low

sending message to pump to Low receiving ACK when
communications buffer not full

– Conclusion: use of pump substantially reduces capacity of covert
channel between High, Low processes when compared to direct
connection
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Key Points

• Confinement problem central to computer
security
– Arises in many contexts

• VM, sandboxes basic ways to handle it
– Each has benefits and drawbacks

• Covert channels are hard to close
– But their capacity can be measured and reduced


