Chapter 30: Lattices

• Overview
• Definitions
• Lattices
• Examples
Overview

- Lattices used to analyze Bell-LaPadula, Biba constructions
- Consists of a set and a relation
- Relation must partially order set
 - Partial ordering $<$ orders some, but not all, elements of set
Sets and Relations

• \(S \) set, \(R: S \times S \) relation
 – If \(a, b \in S \), and \((a, b) \in R\), write \(aRb \)
• Example
 – \(I = \{ 1, 2, 3 \} \); \(R \) is \(\leq \)
 – \(R = \{ (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3) \} \)
 – So we write \(1 \leq 2 \) and \(3 \leq 3 \) but not \(3 \leq 2 \)
Relation Properties

- **Reflexive**
 - For all $a \in S$, aRa
 - On I, \leq is reflexive as $1 \leq 1$, $2 \leq 2$, $3 \leq 3$

- **Antisymmetric**
 - For all $a, b \in S$, $aRb \land bRa \Rightarrow a = b$
 - On I, \leq is antisymmetric

- **Transitive**
 - For all $a, b, c \in S$, $aRb \land bRc \Rightarrow aRc$
 - On I, \leq is transitive as $1 \leq 2$ and $2 \leq 3$ means $1 \leq 3$
Bigger Example

- \(C \) set of complex numbers
- \(a \in C \implies a = a_R + a_I i \), \(a_R, a_I \) integers
- \(a \leq_C b \) if, and only if, \(a_R \leq b_R \) and \(a_I \leq b_I \)
- \(a \leq_C b \) is reflexive, antisymmetric, transitive
 - As \(\leq \) is over integers, and \(a_R, a_I \) are integers
Partial Ordering

• Relation R orders some members of set S
 – If all ordered, it’s total ordering

• Example
 – \leq on integers is total ordering
 – \leq_C is partial ordering on C (because neither $3+5i \leq_C 4+2i$ nor $4+2i \leq_C 3+5i$ holds)
Upper Bounds

• For $a, b \in S$, if u in S with aRu, bRu exists, then u is upper bound
 – Least upper if there is no $t \in S$ such that aRt, bRt, and tRu

• Example
 – For $1 + 5i, 2 + 4i \in C$, upper bounds include $2 + 5i, 3 + 8i$, and $9 + 100i$
 – Least upper bound of those is $2 + 5i$
Lower Bounds

• For $a, b \in S$, if l in S with lRa, lRb exists, then l is lower bound
 – Greatest lower if there is no $t \in S$ such that tRa, tRb, and lRt

• Example
 – For $1 + 5i, 2 + 4i \in C$, lower bounds include $0, -1 + 2i, 1 + 1i, \text{ and } 1 + 4i$
 – Greatest lower bound of those is $1 + 4i$
Lattices

- Set S, relation R
 - R is reflexive, antisymmetric, transitive on elements of S
 - For every $s, t \in S$, there exists a greatest lower bound under R
 - For every $s, t \in S$, there exists a least upper bound under R
Example

• $S = \{ 0, 1, 2 \}; \ R = \leq$ is a lattice
 – R is clearly reflexive, antisymmetric, transitive on elements of S
 – Least upper bound of any two elements of S is the greater
 – Greatest lower bound of any two elements of S is the lesser
Arrows represent \leq; total ordering
Example

• C, \leq_C form a lattice
 – \leq_C is reflexive, antisymmetric, and transitive
 • Shown earlier
 – Least upper bound for a and b:
 • $c_R = \max(a_R, b_R)$, $c_I = \max(a_I, b_I)$; then $c = c_R + c_I$
 – Greatest lower bound for a and b:
 • $c_R = \min(a_R, b_R)$, $c_I = \min(a_I, b_I)$; then $c = c_R + c_I$
Arrows represent \leq_C