Lattices

Appendix A
Outline

• Overview
• Definitions
• Lattices
• Examples
Overview

• Lattices used to analyze several models
 • Bell-LaPadula confidentiality model
 • Biba integrity model

• A lattice consists of a set and a relation

• Relation must partially order set
 • Relation orders some, but not all, elements of set
Sets and Relations

• S set, R: $S \times S$ relation
 • If $a, b \in S$, and $(a, b) \in R$, write aRb

• Example
 • $I = \{ 1, 2, 3 \}$; R is \leq
 • $R = \{ (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3) \}$
 • So we write $1 \leq 2$ and $3 \leq 3$ but not $3 \leq 2$
Relation Properties

• Reflexive
 • For all $a \in S$, aRa
 • On I, \leq is reflexive as $1 \leq 1$, $2 \leq 2$, $3 \leq 3$

• Antisymmetric
 • For all $a, b \in S$, $aRb \land bRa \Rightarrow a = b$
 • On I, \leq is antisymmetric as $1 \leq x$ and $x \leq 1$ means $x = 1$

• Transitive
 • For all $a, b, c \in S$, $aRb \land b Rc \Rightarrow a Rc$
 • On I, \leq is transitive as $1 \leq 2$ and $2 \leq 3$ means $1 \leq 3$
Example

• \(\mathbb{C} \) set of complex numbers
• \(a \in \mathbb{C} \Rightarrow a = a_R + a_I i \), where \(a_R, a_I \) integers
• \(a \leq_C b \) if, and only if, \(a_R \leq b_R \) and \(a_I \leq b_I \)
• \(a \leq_C b \) is reflexive, antisymmetric, transitive
 • As \(\leq \) is over integers, and \(a_R, a_I \) are integers
Partial Ordering

• Relation R orders some members of set S
 • If all ordered, it’s a total ordering

• Example
 • \leq on integers is total ordering
 • $\leq_{\mathbb{C}}$ is partial ordering on \mathbb{C}
 • Neither $3+5i \leq_{\mathbb{C}} 4+2i$ nor $4+2i \leq_{\mathbb{C}} 3+5i$ holds
Upper Bounds

• For $a, b \in S$, if u in S with aRu, bRu exists, then u is an upper bound
 • A least upper bound if there is no $t \in S$ such that aRt, bRt, and tRu
• Example
 • For $1 + 5i, 2 + 4i \in \mathbb{C}$
 • Some upper bounds are $2 + 5i, 3 + 8i$, and $9 + 100i$
 • Least upper bound is $2 + 5i$
Lower Bounds

• For $a, b \in S$, if l in S with lRa, lRb exists, then l is a lower bound
 • A greatest lower bound if there is no $t \in S$ such that tRa, tRb, and lRt

• Example
 • For $1 + 5i, 2 + 4i \in \mathbb{C}$
 • Some lower bounds are $0, -1 + 2i, 1 + 1i$, and $1+4i$
 • Greatest lower bound is $1 + 4i$
Lattices

• Set S, relation R
 • R is reflexive, antisymmetric, transitive on elements of S
 • For every $s, t \in S$, there exists a greatest lower bound under R
 • For every $s, t \in S$, there exists a least upper bound under R
Example

- $S = \{ 0, 1, 2 \}$; $R = \leq$ is a lattice
 - R is clearly reflexive, antisymmetric, transitive on elements of S
 - Least upper bound of any two elements of S is the greater of the elements
 - Greatest lower bound of any two elements of S is the lesser of the elements
Arrows represent ≤; this forms a total ordering
Example

• ℂ, ≤ℂ form a lattice
 • ≤ℂ is reflexive, antisymmetric, and transitive
 • Shown earlier
 • Least upper bound for a and b:
 • c_R = max(a_R, b_R), c_I = max(a_I, b_I); then c = c_R + c_I
 • Greatest lower bound for a and b:
 • c_R = min(a_R, b_R), c_I = min(a_I, b_I); then c = c_R + c_I
Arrows represent \(\leq \mathbb{C} \)