Outline

• Propositional logic
 • Mathematical induction

• Predicate logic

• Temporal logic systems
 • CTL
Propositional Logic

• *Proposition* is an atomic, declarative sentence that can be shown to be true or false but not both
 • “There was not a cloud in the sky today”
• Represent as p or q, usually with subscripts
• Connectives:
 • \neg, or *negation* (not) [highest precedence]
 • \lor, or *disjunction* (and) [this and conjunction have the same precedence]
 • \land, or *conjunction* (or) [this and disjunction have the same precedence]
 • \rightarrow, or *implication* (if … then ...) [lowest precedence]
 • (,) group operands and operators in the usual way
Terms

• *Natural deduction*, a means of reasoning about propositions
• *Proof rules*, rules letting infer formulas from other formulas
• *Premises*, formulas we know or assume to be true to reach a conclusion (formula) we want to establish
• *Contradiction*, a formula that is always false; denoted by \(\bot \) (*bottom*)
• *Tautology*, a formula that is always true; denoted by \(\top \) (*top*)
Examples

• $p \land \neg p = \bot$
 • A contradiction, as p and $\neg p$ cannot both be true

• $p \lor \neg p = T$
 • A tautology, as either p or $\neg p$ will be true
Rules of Natural Deduction

1. If \(p \) and \(q \) are true, so is \(p \land q \) (*conjunction introduction* rule)

2. If \(p \land q \) is true, so is \(p \) and so is \(q \) (*conjunction elimination* rule)

3. If \(p \) is true, so is \(p \lor q \); if \(q \) is true, so is \(p \lor q \) (*disjunction introduction* rule)

4. If \(p \lor q \) is true, and we want to conclude \(Q \), we assume \(p \) and conclude \(Q \); then we assume \(q \) and conclude \(Q \). Given \(p \lor q \) and these two proofs, we can infer \(Q \) (*disjunction elimination* rule)
Rules of Natural Deduction

5. Assume p is true temporarily and based on this assumption prove q. Then we can conclude $p \rightarrow q$ (implication introduction)

6. If we can conclude p and $p \rightarrow q$, then we can conclude q. (modus ponens; also implication elimination)

7. If we assume p and conclude \bot, then we infer $\neg p$ (negation introduction)

8. If we assume p and $\neg p$, then we conclude \bot (negation elimination)
Rules of Natural Deduction

9. If we assume \(\bot \), then we can prove any \(p \). (*bottom elimination*)

10. If we have concluded \(p \), then we can also conclude \(\neg \neg p \) (*double negation introduction*)

11. If we have concluded \(\neg \neg p \), then we can also conclude \(p \) (*double negation elimination*)
Derived Rules

• If we have concluded \(\neg q \) and \(p \rightarrow q \), we can also conclude \(\neg p \) (modus tollens)

• Assume \(\neg q \) is true. Suppose we assume \(p \) and we can then prove \(p \rightarrow q \). Then \(q \) holds. But this is impossible, so our assumption (that \(p \) is true) must be false (reductio ad absurdum or proof by contradiction)
 • See the implication elimination rule above
Well-Formed Formulas

• A *word* is a set of symbols using symbols for propositions, connectors, parentheses

• Only some (*well-formed formulas* or *WFFs*) are meaningful; these are defined inductively
 • A propositional atom is a WFF
 • Negation of a WFF is a WFF
 • Conjunction of WFFs is a WFF
 • Disjunction of WFFs is a WFF
 • Implication between two WFFs is a WFF
Truth Tables

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>q</td>
<td>p ∧ q</td>
<td>p ∨ q</td>
<td>p → q</td>
<td>¬p</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
</tbody>
</table>

Equivalence of Formulas: Definitions

• **Sequent** is a set of formulas ϕ_1, \ldots, ϕ_n and a conclusion ψ; denoted $\phi_1, \ldots, \phi_n \vdash \psi$

• Sequent is **valid** if a proof of it can be found

• ϕ and ψ are **provably equivalent** if and only if both $\phi \vdash \psi$ and $\psi \vdash \phi$ hold

• Two formulas are **semantically equivalent** if they have the same truth table values. If ψ evaluates to true whenever ϕ_1, \ldots, ϕ_n evaluate to true, this is denoted $\phi_1, \ldots, \phi_n \models \psi$
Soundness and Completeness Theorems

Soundness Theorem: Let \(\phi_1, \ldots \phi_n \) and \(\psi \) be propositional logic formulas. If \(\phi_1, \ldots \phi_n \vdash \psi \), then \(\phi_1, \ldots \phi_n \vDash \psi \).

• If, given a set of premises, there is a proof of a conclusion, then the premises and conclusion are semantically equivalent.

Completeness Theorem: Let \(\phi_1, \ldots \phi_n \) and \(\psi \) be propositional logic formulas. If \(\phi_1, \ldots \phi_n \vDash \psi \), then \(\phi_1, \ldots \phi_n \vdash \psi \).

• If a set of premises and a conclusion are semantically equivalent, then there is a natural deduction proof for the sequent.
Mathematical Induction

We want to prove a property $M(n)$ holds for all natural numbers n.

We proceed as follows:

- **BASIS**: prove that $M(1)$ holds
- **INDUCTION HYPOTHESIS**: assert that $M(n)$ holds for $n = 1, \ldots, k$
- **INDUCTION STEP**: prove that if $M(k)$ holds, then $M(k+1)$ holds

Then $M(n)$ is true for all natural numbers n.
Example

• Prove the sum of the first n natural numbers is $\frac{n(n+1)}{2}$.

BASIS: $M(1) = \frac{1(1+1)}{2} = \frac{1(2)}{2} = \frac{2}{2} = 1$, which is clearly true

INDUCTION HYPOTHESIS: For $n = 1, \ldots, k$, $M(k)$ is true

INDUCTION STEP: Consider $M(k+1) = 1 + \ldots + k + (k+1)$

$1 + \ldots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$ \hspace{1cm} \text{induction hypothesis}$

(continued on next slide)
Example (con’t)

\[1 + \ldots + k + (k+1) = \frac{k(k+1)}{2} + (k+1) \]

induction hypothesis

\[= \frac{k^2}{2} + \frac{k}{2} + \frac{2k}{2} + \frac{2}{2} \]

expanding terms

\[= \frac{k^2 + 3k + 2}{2} \]

combining terms

\[= \frac{(k+1)(k+2)}{2} \]

factoring the numerator

\[= \frac{(k+1)[(k+1)+1]}{2} \]

combining terms

which is \(M(k+1) \), completing the proof
Predicate Logic

• Logic using predicates and quantifiers
• Predicates describe something; quantifiers say what the description applies to

• Quantifiers
 • There exists an x: $\exists x$
 • For all x: $\forall x$
 • Can combine with \neg for negation

• Variables
 • *Bound* if quantified with either \exists or \forall
 • *Unbound* or *free* if not bound
Examples

• Define:
 • $F(x)$: x is a file
 • $D(y)$: y is a directory
 • $C(x, y)$: directory y contains file x

• Then:

$$\forall x F(x) \rightarrow (\exists y \ (D(y) \land C(x, y)))$$

says that “every file is contained in a directory”
Formula in Predicate Logic

• If \(p \) is a predicate of \(n \) arguments (\(1 \leq n \)) and the arguments are terms \(t_1, \ldots, t_n \) defined over the set of functions, then \(p(t_1, \ldots, t_n) \) is a formula.

• If \(\phi \) is a formula, then \(\neg\phi \) is also a formula.

• If \(\phi \) and \(\varphi \) are formulas, then \(\phi \land \varphi \), \(\phi \lor \varphi \), and \(\phi \rightarrow \varphi \) are also formulas.

• If \(\phi \) is a formula and \(x \) a variable, then \(\forall x\phi \) and \(\exists x\phi \) are also formulas.
Rules for Natural Deduction in Predicate Logic

- **Equality**: A term \(t \) is equal to itself
- **Substitution**: If \(t_1 = t_2 \) and \(x \) is a free variable in \(\phi(x) \), then \(f(t_1) = f(t_2) \)
- **Universal quantifier elimination**: If you have \(\forall x \phi(x) \), then you can replace the \(x \) in \(\phi(x) \) by any term \(t \) that is free in \(\phi(x) \)
- **Universal quantifier introduction**: If you can prove some formula \(\phi(x) \) with \(x \) a free variable, then you can derive \(\forall x \phi(x) \)
Temporal Logic Systems

Introduce notion of time into logic system

• *Linear time logic systems:* events are sequential

• *Branching time logic systems:* events are concurrent ("alternative universes")

Systems view time as:

• *continuous* flow of events

• *discrete* events
Example: Control Tree Logic (CTL)

• Begin with propositional logic

• Add temporal connectives; each uses 2 symbols
 • First symbol: “A”, along all paths; “E”: along at least one path
 • Second symbol: ”X”, the next state; “F”, some next state; “G”, all future states; “U”, until some future state

• Precedence rules (high to low)
 • ¬, AG, EG, AF, EF, AX, EX
 • ∧, ∨
 • →
 • AU, EU
Well-Formed Formulas in CTL

- \top (top), \bot (bottom) are formulas
- All atomic descriptions are formulas
- If ϕ and φ are formulas, then $\phi \land \varphi$, $\phi \lor \varphi$, $\phi \rightarrow \varphi$, $\neg \phi$, $AX\phi$, $EX\phi$, $A[\phi U \varphi]$, $E[\phi U \varphi]$, $AG\phi$, $EG\phi$, $AF\phi$, and $EF\phi$ are also formulas
Semantics of CTL

• A model is $M = (S, \Rightarrow, L)$, where S is a set of states, \Rightarrow is the transition operator on S such that $\forall s \in S \ (\exists s' \in S [s \Rightarrow s'])$, L is a labeling function, and $L : S \rightarrow \mathcal{P}(\text{atoms})$
 • $\mathcal{P}(\text{atoms})$ power set of the defined atoms

• Let $M = (S, \Rightarrow, L)$ be a model for CTL. Given any $s \in S$, if a CTL formula ϕ holds in state s, we write this as $M, s \models \phi$, and say that state s of model M satisfies formula ϕ.
 • $M, s \not\models \phi$ means state s in model M does not satisfy ϕ
Rules of CTL

\(M\) model, \(s, s_1, \ldots\) states of \(M\), \(p\) atomic proposition of \(M\), \(\phi, \phi_1, \phi_2\) CTL formulas

- \(\forall s \in S \ [\ M, s \models T \]\)
 - Tautologies hold in all states of \(M\)

- \(\forall s \in S \ [\ M, s \not\models \bot \]\)
 - Tautologies hold in all states of \(M\)

- \(M, s \models p\) if and only if \(p \in L(s)\)
 - \(P\) holds in state \(s\) of \(M\) whenever \(p\) is in the set of atoms that hold in state \(s\);
 conversely, if \(p\) not in that set, then \(p\) does not hold in state \(s\)
Rules of CTL

- If $M, s \not\models \phi$, then $M, s \models \neg \phi$
 - If a state does not satisfy a formula in the model then it satisfies the negation of the formula
- $M, s \models \phi_1 \land \phi_2$ if and only if $M, s \models \phi_1$ and $M, s \models \phi_2$
- $M, s \models \phi_1 \lor \phi_2$ if and only if $M, s \models \phi_1$ or $M, s \models \phi_2$
 - A state in M satisfies the \{and, or\} of two formulas if and only if it satisfies \{both formulas, either formula\} on the right
- $M, s \models \phi_1 \rightarrow \phi_2$ if and only if $M, s \not\models \phi_1$ or $M, s \models \phi_2$
 - A state in M satisfies the implication of two formulas if and only if it satisfies the second formula, or neither formula
Rules of CTL

• $M, s \models AX\phi$ if and only if $\forall s_1$ such that $s \rightarrow s_1$ then $M, s_1 \models \phi$
• $M, s \models EX\phi$ if and only if $\exists s_1$ such that $s \rightarrow s_1$ then $M, s_1 \models \phi$
 • A state satisfies a formula in some next state if and only if {every, at least one} state implied by the original state also satisfies the formula
• $M, s \models AG\phi$ if and only if, for all paths $s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \ldots$, where $s = s_1$ and $\forall s_i$ on the path, $[M, s_i \models \phi]$
 • A state satisfies a formula in some next state if and only if every state implied by the original state also satisfies the formula
• $M, s \models EG\phi$ if and only if there exists a path $s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \ldots$, where $s = s_1$ and $\forall s_i$ on the path, $[M, s_i \models \phi]$
 • A path with all states satisfying a formula exists if and only if every state on the path beginning at the original state satisfies the formula
Rules of CTL

• $M, s \models AF\phi$ if and only if for all paths $s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \ldots$, where $s = s_1$ and $\exists s_i [M, s_i \models \phi]$
 • On all paths, there will be a state satisfying the formula if and only if every path of transitions beginning at the original state contains at least one state that satisfies the formula

• $M, s \models EF\phi$ if and only for all paths $s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \ldots$, where $s = s_1$ and $\exists s_i$ on the path $[M, s_i \models \phi]$
 • There is a path with one state satisfying the formula if and only if a state on a path of transitions beginning at the original state satisfies the formula
Rules of CTL

• $M, s \models A[\phi U \phi]$ if and only if for all paths $s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \ldots$,

 $\exists i \ [i \geq 0 \land s_i \models \phi_2$ and $\forall j \ [0 \leq j < i \rightarrow s_j \models \phi_1]\]$

 • On all paths, there will be a state satisfying the formula if and only if every path of transitions beginning at the original state has a state satisfying the second formula and all previous states in that path satisfy the first formula

• $M, s \models E[\phi U \phi]$ if and only if for some path $s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \ldots$,

 $\exists i \ [i \geq 0 \land s_i \models \phi_2$ and $\forall j \ [0 \leq j < i \rightarrow s_j \models \phi_1]\]$

 • There is a path on which there is a state satisfying the formula if and only if every path of transitions beginning at the original state has a state satisfying the second formula and all previous states in that path satisfy the first formula