Foundational Results

Chapter 3
Overview

• Safety Question
• HRU Model
• Take-Grant Protection Model
• SPM, ESPM
 • Multiparent joint creation
• Expressive power
• Typed Access Matrix Model
• Comparing properties of models
What Is “Secure”?

• Adding a generic right \(r \) where there was not one is “leaking”
 • In what follows, a right leaks if it was not present \textit{initially}
 • Alternately: not present \textit{in the previous state} (not discussed here)

• If a system \(S \), beginning in initial state \(s_0 \), cannot leak right \(r \), it is \textit{safe with respect to the right} \(r \)
 • Otherwise it is called \textit{unsafe with respect to the right} \(r \)
Safety Question

• Is there an algorithm for determining whether a protection system S with initial state s_0 is safe with respect to a generic right r?
 • Here, “safe” = “secure” for an abstract model
Mono-Operational Commands

• Answer: yes

• Sketch of proof:
 Consider minimal sequence of commands \(c_1, \ldots, c_k \) to leak the right.
 • Can omit delete, destroy
 • Can merge all creates into one

Worst case: insert every right into every entry; with \(s \) subjects and \(o \) objects initially, and \(n \) rights, upper bound is \(k \leq n(s+1)(o+1) \)
General Case

• Answer: no

• Sketch of proof:
 Reduce halting problem to safety problem
 Turing Machine review:
 • Infinite tape in one direction
 • States K, symbols M; distinguished blank b
 • Transition function $\delta(k, m) = (k', m', L)$ means in state k, symbol m on tape location replaced by symbol m', head moves to left one square, and enters state k'
 • Halting state is q_f, TM halts when it enters this state
Mapping

Current state is k

<table>
<thead>
<tr>
<th></th>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>s_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>A</td>
<td>own</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_2</td>
<td>B</td>
<td>own</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_3</td>
<td>C</td>
<td>own</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_4</td>
<td></td>
<td></td>
<td>D</td>
<td>end</td>
</tr>
</tbody>
</table>
Mapping

After $\delta(k, C) = (k_1, X, R)$ where k is the current state and k_1 the next state

\begin{align*}
1 & \quad 2 & \quad 3 & \quad 4 \\
A & \quad B & \quad X & \quad D & \quad \ldots
\end{align*}

\begin{tabular}{|c|c|c|c|}
\hline
s_1 & s_2 & s_3 & s_4 \\
\hline
s_1 & A & & own & \\
s_2 & & B & own & \\
s_3 & & X & own & \\
s_4 & & & D & \textit{k}_1 \text{ end} \\
\hline
\end{tabular}
Command Mapping

• $\delta(k, C) = (k_1, X, R)$ at intermediate becomes

```
command $c_{k,C}(s_3,s_4)$
if own in $A[s_3,s_4]$ and $k$ in $A[s_3,s_3]$
    and $C$ in $A[s_3,s_3]$
then
    delete $k$ from $A[s_3,s_3]$;
    delete $C$ from $A[s_3,s_3]$;
    enter $X$ into $A[s_3,s_3]$;
    enter $k_1$ into $A[s_4,s_4]$;
end
```
Mapping

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>X</td>
<td>Y</td>
<td>...</td>
</tr>
</tbody>
</table>

After $\delta(k_1, D) = (k_2, Y, R)$ where k_1 is the current state and k_2 the next state.

<table>
<thead>
<tr>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>s_4</th>
<th>s_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>A</td>
<td>own</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_2</td>
<td>B</td>
<td>own</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_3</td>
<td></td>
<td>X</td>
<td>own</td>
<td></td>
</tr>
<tr>
<td>s_4</td>
<td></td>
<td></td>
<td>Y</td>
<td>own</td>
</tr>
<tr>
<td>s_5</td>
<td></td>
<td></td>
<td></td>
<td>b k_2 end</td>
</tr>
</tbody>
</table>
Command Mapping

• $\delta(k_1, D) = (k_2, Y, R)$ at end becomes

 \[
 \begin{align*}
 \text{command} & \; \text{crightmost}_{k,c}(s_4,s_5) \\
 \text{if} & \; \text{end in } A[s_4,s_4] \; \text{and} \; k_1 \; \text{in } A[s_4,s_4] \\
 & \; \text{and} \; D \; \text{in } A[s_4,s_4] \\
 \text{then} \\
 & \; \text{delete} \; \text{end from } A[s_4,s_4]; \\
 & \; \text{delete} \; k_1 \; \text{from } A[s_4,s_4]; \\
 & \; \text{delete} \; D \; \text{from } A[s_4,s_4]; \\
 & \; \text{enter} \; Y \; \text{into } A[s_4,s_4]; \\
 & \; \text{create subject } s_5; \\
 & \; \text{enter} \; \text{own into } A[s_4,s_5]; \\
 & \; \text{enter} \; \text{end into } A[s_5,s_5]; \\
 & \; \text{enter} \; k_2 \; \text{into } A[s_5,s_5]; \\
 \text{end}
 \end{align*}
 \]
Rest of Proof

• Protection system exactly simulates a TM
 • Exactly 1 *end* right in ACM
 • 1 right in entries corresponds to state
 • Thus, at most 1 applicable command

• If TM enters state q_f, then right has leaked

• If safety question decidable, then represent TM as above and determine if q_f leaks
 • Implies halting problem decidable

• Conclusion: safety question undecidable
Other Results

• Set of unsafe systems is recursively enumerable
• Delete create primitive; then safety question is complete in P-SPACE
• Delete destroy, delete primitives; then safety question is undecidable
 • Systems are monotonic
• Safety question for biconditional protection systems is decidable
• Safety question for monoconditional, monotonic protection systems is decidable
• Safety question for monoconditional protection systems with create, enter, delete (and no destroy) is decidable.
Take-Grant Protection Model

• A specific (not generic) system
 • Set of rules for state transitions

• Safety decidable, and in time linear with the size of the system

• Goal: find conditions under which rights can be transferred from one entity to another in the system
System

- objects (files, ...)
- subjects (users, processes, ...)
- don't care (either a subject or an object)

\[G \vdash_x G' \] apply a rewriting rule \(x \) (witness) to \(G \) to get \(G' \)

\[G \vdash^* G' \] apply a sequence of rewriting rules (witness) to \(G \) to get \(G' \)

\(R = \{ t, g, r, w, ... \} \) set of rights
Rules

take

grant
More Rules

create

remove

These four rules are called the *de jure* rules
Symmetry

1. x creates (tg to new) v
2. z takes (g to v) from x
3. z grants (α to y) to v
4. x takes (α to y) from v

Similar result for grant
Islands

- \textit{tg}-path: path of distinct vertices connected by edges labeled \textit{t} or \textit{g}
 - Call them “\textit{tg}-connected”

- island: maximal \textit{tg}-connected subject-only subgraph
 - Any right one vertex has can be shared with any other vertex
Initial, Terminal Spans

• *initial span* from \(x \) to \(y \)
 • \(x \) subject
 • \(tg \)-path between \(x \), \(y \) with word in \(\{ t^{*}g \} \cup \{ \nu \} \)
 • Means \(x \) can give rights it has to \(y \)

• *terminal span* from \(x \) to \(y \)
 • \(x \) subject
 • \(tg \)-path between \(x \), \(y \) with word in \(\{ t^{*} \} \cup \{ \nu \} \)
 • Means \(x \) can acquire any rights \(y \) has
Bridges

• bridge: \(tg \)-path between subjects \(x, y \), with associated word in
 \[\{ \overrightarrow{t^*}, \overrightarrow{t^*}, \overrightarrow{t^*g}, \overrightarrow{t^*g}, \overrightarrow{t^*} \} \]
 • rights can be transferred between the two endpoints
 • \textit{not} an island as intermediate vertices are objects
Example

- islands \{ p, u \} \{ w \} \{ y, s' \}
- bridges uvw; wxy
- initial span p (associated word v)
- terminal span s's (associated word t)
can\•share Predicate

Definition:

• \textit{can\•share}(r, x, y, G_0) if, and only if, there is a sequence of protection graphs \(G_0, \ldots, G_n \) such that \(G_0 \vdash^* G_n \) using only \textit{de jure} rules and in \(G_n \) there is an edge from \(x \) to \(y \) labeled \(r \).
can•share Theorem

- can•share\((r, x, y, G_0)\) if, and only if, there is an edge from \(x\) to \(y\) labeled \(r\) in \(G_0\), or the following hold simultaneously:
 - There is an \(s\) in \(G_0\) with an \(s\)-to-\(y\) edge labeled \(r\)
 - There is a subject \(x' = x\) or initially spans to \(x\)
 - There is a subject \(s' = s\) or terminally spans to \(s\)
 - There are islands \(I_1, \ldots, I_k\) connected by bridges, and \(x'\) in \(I_1\) and \(s'\) in \(I_k\)
Outline of Proof

• s has r rights over y
• s' acquires r rights over y from s
 • Definition of terminal span
• x' acquires r rights over y from s'
 • Repeated application of sharing among vertices in islands, passing rights along bridges
• x' gives r rights over y to x
 • Definition of initial span
Example Interpretation

• ACM is generic
 • Can be applied in any situation
• Take-Grant has specific rules, rights
 • Can be applied in situations matching rules, rights
• Question: what states can evolve from a system that is modeled using the Take-Grant Model?
Take-Grant Generated Systems

• Theorem: G_0 protection graph with 1 vertex, no edges; R set of rights. Then $G_0 \vdash^* G$ iff:
 • G finite directed graph consisting of subjects, objects, edges
 • Edges labeled from nonempty subsets of R
 • At least one vertex in G has no incoming edges
Outline of Proof

⇒: By construction; G final graph in theorem
- Let \(x_1, \ldots, x_n \) be subjects in \(G \)
- Let \(x_1 \) have no incoming edges
- Now construct \(G' \) as follows:
 1. Do “\(x_1 \) creates (\(\alpha \cup \{ g \} \) to) new subject \(x_i \)”
 2. For all (\(x_i, x_j \)) where \(x_i \) has a rights over \(x_j \), do
 “\(x_1 \) grants (\(\alpha \) to \(x_j \)) to \(x_i \)”
 3. Let \(\beta \) be rights \(x_i \) has over \(x_j \) in \(G \). Do
 “\(x_1 \) removes ((\(\alpha \cup \{ g \} \) – \(\beta \) to) \(x_j \)”
- Now \(G' \) is desired \(G \)
Outline of Proof

$: \text{Let } v \text{ be initial subject, and } G_0 \vdash^* G$

• Inspection of rules gives:
 • G is finite
 • G is a directed graph
 • Subjects and objects only
 • All edges labeled with nonempty subsets of R

• Limits of rules:
 • None allow vertices to be deleted so v in G
 • None add incoming edges to vertices without incoming edges, so v has no incoming edges
Example: Shared Buffer

- Goal: \(p, q \) to communicate through shared buffer \(b \) controlled by trusted entity \(s \)
 1. \(s \) creates (\(\{r, w\} \) to new object) \(b \)
 2. \(s \) grants (\(\{r, w\} \) to \(b \)) to \(p \)
 3. \(s \) grants (\(\{r, w\} \) to \(b \)) to \(q \)
can\textbullet steal Predicate

Definition:

\[\text{can\textbullet steal}(r, x, y, G_0)\] if, and only if, there is no edge from \(x\) to \(y\) labeled \(r\) in \(G_0\), and the following hold simultaneously:

- There is edge from \(x\) to \(y\) labeled \(r\) in \(G_n\)
- There is a sequence of rule applications \(\rho_1, \ldots, \rho_n\) such that \(G_{i-1} \vdash G_i\) using \(\rho_i\)
- For all vertices \(v, w\) in \(G_{i-1}\), if there is an edge from \(v\) to \(y\) in \(G_0\) labeled \(r\), then \(\rho_i\) is \textit{not} of the form \(v\) grants \((r\ to \ y)\) to \(w\)\]
Example

can\textit{steal}(α, s, w, G₀):

1. u grants (t to v) to s
2. s takes (t to u) from v
3. s takes (α to w) from u
can\textbullet steal Theorem

- \textit{can\textbullet steal}(r, x, y, G_0) if, and only if, the following hold simultaneously:
 a) There is no edge from x to y labeled r in G_0
 b) There exists a subject x' such that x' = x or x' initially spans to x
 c) There exists a vertex s with an edge labeled \alpha to y in G_0
 d) \textit{can\textbullet share}(t, x', s, G_0) holds
Outline of Proof

⇒: Assume conditions hold

• x subject
 • x gets t rights to s, then takes α to y from s

• x object
 • can•share(t, x', s, G₀) holds
 • If x' has no α edge to y in G₀, x' takes (α to y) from s and grants it to x
 • If x' has a edge to y in G₀, x' creates surrogate x'', gives it (t to s) and (g to x''); then x'' takes (α to y) and grants it to x
Outline of Proof

\[\iff: \text{Assume } can\cdot\text{steal}(\alpha, x, y, G_0) \text{ holds} \]

- First two conditions immediate from definition of \textit{can\cdotsteal}, \textit{can\cdotshare}
- Third condition immediate from theorem of conditions for \textit{can\cdotshare}
- Fourth condition: \(\rho \) minimal length sequence of rule applications deriving \(G_n \) from \(G_0 \); \(i \) smallest index such that \(G_{i-1} \vdash G_i \) by rule \(\rho_i \) and adding \(\alpha \) from some \(p \) to \(y \) in \(G_i \)
 - What is \(\rho_i \)?
Outline of Proof

• Not remove or create rule
 • y exists already

• Not grant rule
 • G_i first graph in which edge labeled α to y is added, so by definition of $can\cdot share$, cannot be grant

• take rule: so $can\cdot share(t, p, s, G_0)$ holds
 • So is subject s' such that $s' = s$ or terminally spans to s
 • Sequence of islands with $x' \in I_1$ and $s' \in I_n$

• Derive witness to $can\cdot share(t, x', s, G_0)$ that does not use “s grants (α to y) to” anyone
Conspiracy

• Minimum number of actors to generate a witness for $\text{can•share}(\alpha, x, y, G_0)$

• Access set describes the “reach” of a subject

• Deletion set is set of vertices that cannot be involved in a transfer of rights

• Build conspiracy graph to capture how rights flow, and derive actors from it
Example

```
x  t  a  g  b  g  c  t  d  g  e  r  z
y  t  f  g  h  g  i  g  j
```
Access Set

• Access set $A(y)$ with focus y: set of vertices:
 • $\{y\}$
 • $\{x \mid y \text{ initially spans to } x\}$
 • $\{x' \mid y \text{ terminally spans to } x\}$

• Idea is that focus can give rights to, or acquire rights from, a vertex in this set
Example

- $A(x) = \{ x, a \}$
- $A(b) = \{ b, a \}$
- $A(c) = \{ c, b, d \}$
- $A(d) = \{ d \}$
- $A(e) = \{ e, d, i, j \}$
- $A(f) = \{ f, y \}$
- $A(h) = \{ h, f, i \}$
- $A(y) = \{ y \}$
Deletion Set

- Deletion set $\delta(y, y')$: contains those vertices in $A(y) \cap A(y')$ such that:
 - y initially spans to z and y' terminally spans to z;
 - y terminally spans to z and y' initially spans to z;
 - $z = y$
 - $z = y'$

- Idea is that rights can be transferred between y and y' if this set non-empty.
Example

- $\delta(x, b) = \{ a \}$
- $\delta(b, c) = \{ b \}$
- $\delta(c, d) = \{ d \}$
- $\delta(c, e) = \{ d \}$
- $\delta(d, e) = \{ d \}$
- $\delta(y, f) = \{ y \}$
- $\delta(h, f) = \{ f \}$
Conspiracy Graph

• Abstracted graph H from G_0:
 • Each subject $x \in G_0$ corresponds to a vertex $h(x) \in H$
 • If $\delta(x, y) \neq \emptyset$, there is an edge between $h(x)$ and $h(y)$ in H
• Idea is that if $h(x)$, $h(y)$ are connected in H, then rights can be transferred between x and y in G_0
Example
Results

• $I(x)$: $h(x)$, all vertices $h(y)$ such that y initially spans to x
• $T(x)$: $h(x)$, all vertices $h(y)$ such that y terminally spans to x
• Theorem: can•share(α, x, y, G_0) iff there exists a path from some $h(p)$ in $I(x)$ to some $h(q)$ in $T(y)$
• Theorem: l vertices on shortest path between $h(p)$, $h(q)$ in above theorem; l conspirators necessary and sufficient to witness
Example: Conspirators

\[l(x) = \{ h(x) \}, \quad T(z) = \{ h(e) \} \]

- Path between \(h(x) \), \(h(e) \) so can\textit{share}(r, x, z, G_0)
- Shortest path between \(h(x) \), \(h(e) \) has 4 vertices

\[\Rightarrow \text{Conspirators are e, c, b, x} \]
Example: Witness

1. e grants (r to z) to d
2. c takes (r to z) from d
3. c grants (r to z) to b
4. b grants (r to z) to a
5. x takes (r to z) from a
Key Question

• Characterize class of models for which safety is decidable
 • Existence: Take-Grant Protection Model is a member of such a class
 • Universality: In general, question undecidable, so for some models it is not decidable

• What is the dividing line?
Schematic Protection Model

• Type-based model
 • Protection type: entity label determining how control rights affect the entity
 • Set at creation and cannot be changed
 • Ticket: description of a single right over an entity
 • Entity has sets of tickets (called a *domain*)
 • Ticket is X/r, where X is entity and r right
 • Functions determine rights transfer
 • Link: are source, target “connected”?
 • Filter: is transfer of ticket authorized?
Link Predicate

• Idea: $\text{link}_i(X, Y)$ if X can assert some control right over Y

• Conjunction of disjunction of:
 • $X/z \in \text{dom}(X)$
 • $X/z \in \text{dom}(Y)$
 • $Y/z \in \text{dom}(X)$
 • $Y/z \in \text{dom}(Y)$
 • true
Examples

• Take-Grant:
 \[link(X, Y) = \frac{Y}{g} \in \text{dom}(X) \lor \frac{X}{t} \in \text{dom}(Y) \]

• Broadcast:
 \[link(X, Y) = \frac{X}{b} \in \text{dom}(X) \]

• Pull:
 \[link(X, Y) = \frac{Y}{p} \in \text{dom}(Y) \]
Filter Function

• Range is set of copyable tickets
 • Entity type, right
• Domain is subject pairs
• Copy a ticket $X/r:c$ from $\text{dom}(Y)$ to $\text{dom}(Z)$
 • $X/rc \in \text{dom}(Y)$
 • $\text{link}_i(Y, Z)$
 • $\tau(Y)/r:c \in f_i(\tau(Y), \tau(Z))$
• One filter function per link function
Example

• $f(\tau(Y), \tau(Z)) = T \times R$
 • Any ticket can be transferred (if other conditions met)

• $f(\tau(Y), \tau(Z)) = T \times RI$
 • Only tickets with inert rights can be transferred (if other conditions met)

• $f(\tau(Y), \tau(Z)) = \emptyset$
 • No tickets can be transferred
Example

• Take-Grant Protection Model
 • $TS = \{ \text{subjects} \}$, $TO = \{ \text{objects} \}$
 • $RC = \{ tc, gc \}$, $RI = \{ rc, wc \}$
 • $link(p, q) = p/t \in \text{dom}(q) \lor q/g \in \text{dom}(p)$
 • $f(\text{subject}, \text{subject}) = \{ \text{subject, object} \} \times \{ tc, gc, rc, wc \}$
Create Operation

- Must handle type, tickets of new entity
- Relation $cc(a, b)$ [cc for can-create]
 - Subject of type a can create entity of type b
- Rule of acyclic creates:

```
\[ \begin{array}{c}
a \quad \rightarrow \quad b \\
c \quad \rightarrow \quad d \\
\end{array} \quad \begin{array}{c}
a \quad \rightarrow \quad b \\
c \quad \rightarrow \quad d \\
\end{array} \]
```
Types

• \(cr(a, b) \): tickets created when subject of type \(a \) creates entity of type \(b \) [\(cr \) for \(create-rule \)]

• \(B \) object: \(cr(a, b) \subseteq \{ b/r:c \in RI \} \)
 • \(A \) gets \(B/r:c \) iff \(b/r:c \in cr(a, b) \)

• \(B \) subject: \(cr(a, b) \) has two subsets
 • \(cr_p(a, b) \) added to \(A \), \(cr_c(a, b) \) added to \(B \)
 • \(A \) gets \(B/r:c \) if \(b/r:c \in cr_p(a, b) \)
 • \(B \) gets \(A/r:c \) if \(a/r:c \in cr_c(a, b) \)
Non-Distinct Types

\(cr(a, a) \): who gets what?

- \(self/r:c \) are tickets for creator
- \(a/r:c \) tickets for created

\[cr(a, a) = \{ a/r:c, self/r:c \mid r:c \in R \} \]
Attenuating Create Rule

cr(a, b) attenuating if:

1. \(cr_C(a, b) \subseteq cr_P(a, b) \) and
2. \(a/r:c \in cr_P(a, b) \Rightarrow self/r:c \in cr_P(a, b) \)
Example: Owner-Based Policy

- Users can create files, creator can give itself any inert rights over file
 - $cc = \{ (\text{user}, \text{file}) \}$
 - $cr(\text{user}, \text{file}) = \{ \text{file}/r:c \mid r \in RI \}$
- Attenuating, as graph is acyclic, loop free
Example: Take-Grant

- Say subjects create subjects (type s), objects (type o), but get only inert rights over latter
 - \(cc = \{ (s, s), (s, o) \} \)
 - \(cr_c(a, b) = \emptyset \)
 - \(cr_p(s, s) = \{s/tc, s/gc, s/rc, s/wc\} \)
 - \(cr_p(s, o) = \{s/rc, s/wc\} \)
- Not attenuating, as no self tickets provided; subject creates subject
Safety Analysis

• Goal: identify types of policies with tractable safety analyses
• Approach: derive a state in which additional entries, rights do not affect the analysis; then analyze this state
 • Called a *maximal state*
Definitions

- System begins at initial state
- Authorized operation causes legal transition
- Sequence of legal transitions moves system into final state
 - This sequence is a history
 - Final state is derivable from history, initial state
More Definitions

• States represented by \(h \)
• Set of subjects \(SUB^h \), entities \(ENT^h \)
• Link relation in context of state \(h \) is \(link^h \)
• Dom relation in context of state \(h \) is \(dom^h \)
$path^h(X,Y)$

- X, Y connected by one link or a sequence of links
- Formally, either of these hold:
 - for some i, $link_i^h(X, Y)$; or
 - there is a sequence of subjects X_0, \ldots, X_n such that $link_i^h(X, X_0)$, $link_i^h(X_n, Y)$, and for $k = 1, \ldots, n$, $link_i^h(X_{k-1}, X_k)$
- If multiple such paths, refer to $path_j^h(X, Y)$
Capacity $cap(path^h(X,Y))$

• Set of tickets that can flow over $path^h(X,Y)$
 • If $link_i^h(X,Y)$: set of tickets that can be copied over the link (i.e., $f_i(\tau(X), \tau(Y)))$
 • Otherwise, set of tickets that can be copied over all links in the sequence of links making up the $path^h(X,Y)$

• Note: all tickets (except those for the final link) must be copyable
Flow Function

• Idea: capture flow of tickets around a given state of the system
• Let there be m $path^h$s between subjects X and Y in state h. Then flow function

$$flow^h: SUB^h \times SUB^h \rightarrow 2^{T \times R}$$

is:

$$flow^h(X,Y) = \bigcup_{i=1,...,m} cap(path^i_{h}(X,Y))$$
Properties of Maximal State

• Maximizes flow between all pairs of subjects
 • State is called *
 • Ticket in $\text{flow}^*(X,Y)$ means there exists a sequence of operations that can copy the ticket from X to Y

• Questions
 • Is maximal state unique?
 • Does every system have one?
Formal Definition

• Definition: $g \leq_0 h$ holds iff for all $X, Y \in SUB^0$, $\text{flow}^g(X,Y) \subseteq \text{flow}^h(X,Y)$.
 • Note: if $g \leq_0 h$ and $h \leq_0 g$, then g, h equivalent
 • Defines set of equivalence classes on set of derivable states

• Definition: for a given system, state m is maximal iff $h \leq_0 m$ for every derivable state h

• Intuition: flow function contains all tickets that can be transferred from one subject to another
 • All maximal states in same equivalence class
Maximal States

• Lemma. Given arbitrary finite set of states H, there exists a derivable state m such that for all $h \in H$, $h \leq_0 m$

• Outline of proof: induction
 • Basis: $H = \emptyset$; trivially true
 • Step: $|H'| = n + 1$, where $H' = G \cup \{h\}$. By IH, there is a $g \in G$ such that $x \leq_0 g$ for all $x \in G$.
Outline of Proof

• M interleaving histories of g, h which:
 • Preserves relative order of transitions in g, h
 • Omits second create operation if duplicated

• M ends up at state m

• If $path^g(X,Y)$ for $X, Y \in SUB^g$, $path^m(X,Y)$
 • So $g \leq_0 m$

• If $path^h(X,Y)$ for $X, Y \in SUB^h$, $path^m(X,Y)$
 • So $h \leq_0 m$

• Hence m maximal state in H'
Answer to Second Question

• Theorem: every system has a maximal state *

• Outline of proof: \(K \) is set of derivable states containing exactly one state from each equivalence class of derivable states

 • Consider \(X, Y \) in \(SUB^0 \). Flow function’s range is \(2^{T \times R} \), so can take at most \(2^{|T \times R|} \) values. As there are \(|SUB^0|^2 \) pairs of subjects in \(SUB^0 \), at most \(2^{|T \times R|} \cdot |SUB^0|^2 \) distinct equivalence classes; so \(K \) is finite

• Result follows from lemma
Safety Question

• In this model:
 Is it possible to have a derivable state with $X/r:c$ in $\text{dom}(A)$, or does there exist a subject B with ticket X/rc in the initial state or which can demand X/rc and $\tau(X)/r:c$ in $\text{flow}^*(B,A)$?

• To answer: construct maximal state and test
 • Consider acyclic attenuating schemes; how do we construct maximal state?
Intuition

• Consider state h.

• State u corresponds to h but with minimal number of new entities created such that maximal state m can be derived with no create operations
 • So if in history from h to m, subject X creates two entities of type a, in u only one would be created; surrogate for both

• m can be derived from u in polynomial time, so if u can be created by adding a finite number of subjects to h, safety question decidable.
Fully Unfolded State

• State u derived from state 0 as follows:
 • delete all loops in cc; new relation cc'
 • mark all subjects as folded
 • while any $X \in SUB^0$ is folded
 • mark it unfolded
 • if X can create entity Y of type y, it does so (call this the y-surrogate of X); if entity $Y \in SUB^g$, mark it folded
 • if any subject in state h can create an entity of its own type, do so

• Now in state u
Termination

• First loop terminates as SUB^0 finite

• Second loop terminates:
 • Each subject in SUB^0 can create at most $|TS|$ children, and $|TS|$ is finite
 • Each folded subject in $|SUB^i|$ can create at most $|TS| - i$ children
 • When $i = |TS|$, subject cannot create more children; thus, folded is finite
 • Each loop removes one element

• Third loop terminates as SUB^h is finite
Surrogate

• Intuition: surrogate collapses multiple subjects of same type into single subject that acts for all of them

• Definition: given initial state 0, for every derivable state \(h \) define surrogate function \(\sigma: \text{ENT}^h \rightarrow \text{ENT}^h \) by:

 • if \(X \) in \(\text{ENT}^0 \), then \(\sigma(X) = X \)

 • if \(Y \) creates \(X \) and \(\tau(Y) = \tau(X) \), then \(\sigma(X) = \sigma(Y) \)

 • if \(Y \) creates \(X \) and \(\tau(Y) \neq \tau(X) \), then \(\sigma(X) = \tau(Y) \)-surrogate of \(\sigma(Y) \)
Implications

- $\tau(\sigma(X)) = \tau(X)$
- If $\tau(X) = \tau(Y)$, then $\sigma(X) = \sigma(Y)$
- If $\tau(X) \neq \tau(Y)$, then
 - $\sigma(X)$ creates $\sigma(Y)$ in the construction of u
 - $\sigma(X)$ creates entities X' of type $\tau(X') = \tau(\sigma(X))$

- From these, for a system with an acyclic attenuating scheme, if X creates Y, then tickets that would be introduced by pretending that $\sigma(X)$ creates $\sigma(Y)$ are in $dom^u(\sigma(X))$ and $dom^u(\sigma(Y))$
Deriving Maximal State

• Idea
 • Reorder operations so that all creates come first and replace history with equivalent one using surrogates
 • Show maximal state of new history is also that of original history
 • Show maximal state can be derived from initial state
Reordering

• H legal history deriving state h from state 0
• Order operations: first create, then demand, then copy operations
• Build new history G from H as follows:
 • Delete all creates
 • “X demands $Y/r:c$” becomes “$\sigma(X)$ demands $\sigma(Y)/r:c$”
 • “Y copies $X/r:c$ from Y” becomes “$\sigma(Y)$ copies $\sigma(X)/r:c$ from $\sigma(Y)$”
Tickets in Parallel

• Lemma
 • All transitions in G legal; if $X/r:c \in \text{dom}^h(Y)$, then $\sigma(X)/r:c \in \text{dom}^h(\sigma(Y))$

• Outline of proof: induct on number of copy operations in H
Basis

• H has create, demand only; so G has demand only. s preserves type, so by construction every demand operation in G legal.

• 3 ways for $X/r:c$ to be in $\text{dom}^h(Y)$:
 • $X/r:c \in \text{dom}^0(Y)$ means $X, Y \in \text{ENT}^0$, so trivially $\sigma(X)/r:c \in \text{dom}^g(\sigma(Y))$ holds
 • A create added $X/r:c \in \text{dom}^h(Y)$: previous lemma says $\sigma(X)/r:c \in \text{dom}^g(\sigma(Y))$ holds
 • A demand added $X/r:c \in \text{dom}^h(Y)$: corresponding demand operation in G gives $\sigma(X)/r:c \in \text{dom}^g(\sigma(Y))$
Hypothesis

• Claim holds for all histories with k copy operations
• History H has $k+1$ copy operations
 • H' initial sequence of H composed of k copy operations
 • h' state derived from H'
Step

• G' sequence of modified operations corresponding to H'; g' derived state
 • G' legal history by hypothesis

• Final operation is “Z copied X/r:c from Y”
 • So h, h' differ by at most $X/r:c \in dom^h(Z)$
 • Construction of G means final operation is $\sigma(X)/r:c \in dom^g(\sigma(Y))$

• Proves second part of claim
Step

• H legal, so for H to be legal, we have:
 1. $X/rc \in dom^h(Y)$
 2. $link^h_i(Y, Z)$
 3. $\tau(X/r:c) \in f_i(\tau(Y), \tau(Z))$

• By IH, 1, 2, as $X/r:c \in dom^h(Y)$,
 $\sigma(X)/r:c \in dom^g(\sigma(Y))$ and $link^g_i(\sigma(Y), \sigma(Z))$

• As σ preserves type, IH and 3 imply
 $\tau(\sigma(X)/r:c) \in f_i(\tau((\sigma(Y)), \tau(\sigma(Z))))$

• IH says G legal, so G is legal
Corollary

• If $link^h_i(X, Y)$, then $link^g_i(\sigma(X), \sigma(Y))$
Main Theorem

• System has acyclic attenuating scheme

• For every history H deriving state h from initial state, there is a history G without create operations that derives g from the fully unfolded state u such that

$$\forall X, Y \in SUB^h [flow^h(X, Y) \subseteq flow^g(\sigma(X), \sigma(Y))]$$

• Meaning: any history derived from an initial state can be simulated by corresponding history applied to the fully unfolded state derived from the initial state
Proof

• Outline of proof: show that every $path^h(X,Y)$ has corresponding $path^g(\sigma(X), \sigma(Y))$ such that $cap(path^h(X,Y)) = cap(path^g(\sigma(X), \sigma(Y)))$
 • Then corresponding sets of tickets flow through systems derived from H and G
 • As initial states correspond, so do those systems

• Proof by induction on number of links
Basis and Hypothesis

• Length of $\text{path}^h(X, Y) = 1$. By definition of path^h, $\text{link}^h_i(X, Y)$, hence $\text{link}^g_i(\sigma(X), \sigma(Y))$. As σ preserves type, this means

$$\text{cap}(\text{path}^h(X, Y)) = \text{cap}(\text{path}^g(\sigma(X), \sigma(Y)))$$

• Now assume this is true when $\text{path}^h(X, Y)$ has length k
Step

• Let $\text{path}^h(X, Y)$ have length $k+1$. Then there is a Z such that $\text{path}^h(X, Z)$ has length k and $\text{link}^h_j(Z, Y)$.

• By IH, there is a $\text{path}^g(\sigma(X), \sigma(Z))$ with same capacity as $\text{path}^h(X, Z)$

• By corollary, $\text{link}^g_j(\sigma(Z), \sigma(Y))$

• As σ preserves type, there is $\text{path}^g(\sigma(X), \sigma(Y))$ with

$$\text{cap}(\text{path}^h(X, Y)) = \text{cap}(\text{path}^g(\sigma(X), \sigma(Y)))$$
Implication

• Let maximal state corresponding to ν be #u
 • Deriving history has no creates
 • By theorem,
 \[(\forall X,Y \in SUB^h)[flow^h(X, Y) \subseteq flow^#u(\sigma(X), \sigma(Y))]\]
 • If X ∈ SUB^0, \(\sigma(X) = X\), so:
 \[(\forall X,Y \in SUB^0)[flow^h(X, Y) \subseteq flow^#u(X, Y)]\]
• So #u is maximal state for system with acyclic attenuating scheme
 • #u derivable from u in time polynomial to |SUB^u|
 • Worst case computation for flow^#u is exponential in |TS|
Safety Result

• If the scheme is acyclic and attenuating, the safety question is decidable
Expressive Power

• How do the sets of systems that models can describe compare?
 • If HRU equivalent to SPM, SPM provides more specific answer to safety question
 • If HRU describes more systems, SPM applies only to the systems it can describe
HRU vs. SPM

- SPM more abstract
 - Analyses focus on limits of model, not details of representation
- HRU allows revocation
 - SMP has no equivalent to delete, destroy
- HRU allows multiparent creates
 - SMP cannot express multiparent creates easily, and not at all if the parents are of different types because can\textit{\textbullet}create allows for only one type of creator
Multiparent Create

- Solves mutual suspicion problem
 - Create proxy jointly, each gives it needed rights
- In HRU:

 \[
 \text{command } \text{multicreate}(s_0, s_1, o) \\
 \text{if } r \text{ in } a[s_0, s1] \text{ and } r \text{ in } a[s_1, s_0] \\
 \text{then} \\
 \quad \text{create object } o; \\
 \quad \text{enter } r \text{ into } a[s_0, o]; \\
 \quad \text{enter } r \text{ into } a[s_1, o]; \\
 \text{end}
 \]
SPM and Multiparent Create

• *cc* extended in obvious way
 • $cc \subseteq TS \times ... \times TS \times T$

• Symbols
 • $X_1, ..., X_n$ parents, Y created
 • $R_{1,i}, R_{2,i}, R_{3}, R_{4,i} \subseteq R$

• Rules
 • $cr_{p,i}(\tau(X_1), ..., \tau(X_n)) = Y/R_{1,1} \cup X_i/R_{2,i}$
 • $cr_{C}(\tau(X_1), ..., \tau(X_n)) = Y/R_{3} \cup X_1/R_{4,1} \cup ... \cup X_n/R_{4,n}$
Example

• Anna, Bill must do something cooperatively
 • But they don’t trust each other

• Jointly create a proxy
 • Each gives proxy only necessary rights

• In ESPM:
 • Anna, Bill type a; proxy type p; right $x \in R$
 • $cc(a, a) = p$
 • $cr_{Anna}(a, a, p) = cr_{Bill}(a, a, p) = \emptyset$
 • $cr_{proxy}(a, a, p) = \{ Anna/x, Bill//x \}$
2-Parent Joint Create Suffices

• Goal: emulate 3-parent joint create with 2-parent joint create

• Definition of 3-parent joint create (subjects \(P_1, P_2, P_3 \); child \(C \)):

 - \(cc(\tau(P_1), \tau(P_2), \tau(P_3)) = Z \subseteq T \)
 - \(cr_{P_1}(\tau(P_1), \tau(P_2), \tau(P_3)) = C/R_{1,1} \cup P_1/R_{2,1} \)
 - \(cr_{P_2}(\tau(P_1), \tau(P_2), \tau(P_3)) = C/R_{2,1} \cup P_2/R_{2,2} \)
 - \(cr_{P_3}(\tau(P_1), \tau(P_2), \tau(P_3)) = C/R_{3,1} \cup P_3/R_{2,3} \)
General Approach

• Define agents for parents and child
 • Agents act as surrogates for parents
 • If create fails, parents have no extra rights
 • If create succeeds, parents, child have exactly same rights as in 3-parent creates
 • Only extra rights are to agents (which are never used again, and so these rights are irrelevant)
Entities and Types

• Parents P_1, P_2, P_3 have types p_1, p_2, p_3
• Child C of type c
• Parent agents A_1, A_2, A_3 of types a_1, a_2, a_3
• Child agent S of type s
• Type t is parentage
 • if $X/t \in \text{dom}(Y)$, X is Y's parent
• Types t, a_1, a_2, a_3, s are new types
can\(\cdot\)create

- Following added to \(\text{can}\cdot\text{create}\):
 - \(\text{cc}(p_1) = a_1\)
 - \(\text{cc}(p_2, a_1) = a_2\)
 - \(\text{cc}(p_3, a_2) = a_3\)
 - Parents creating their agents; note agents have maximum of 2 parents
 - \(\text{cc}(a_3) = s\)
 - Agent of all parents creates agent of child
 - \(\text{cc}(s) = c\)
 - Agent of child creates child
Creation Rules

• Following added to create rule:
 • \(cr_p(p_1, a_1) = \emptyset \)
 • \(cr_C(p_1, a_1) = p_1/Rtc \)
 • Agent’s parent set to creating parent; agent has all rights over parent
 • \(cr_{Pfirst}(p_2, a_1, a_2) = \emptyset \)
 • \(cr_{Psecond}(p_2, a_1, a_2) = \emptyset \)
 • \(cr_C(p_2, a_1, a_2) = p_2/Rtc \cup a_1/tc \)
 • Agent’s parent set to creating parent and agent; agent has all rights over parent (but not over agent)
Creation Rules

- $cr_{P_{\text{first}}}(p_3, a_2, a_3) = \emptyset$
- $cr_{P_{\text{second}}}(p_3, a_2, a_3) = \emptyset$
- $cr_C(p_3, a_2, a_3) = \frac{p_3}{Rtc} \cup \frac{a_2}{tc}$
 - Agent’s parent set to creating parent and agent; agent has all rights over parent (but not over agent)
- $cr_p(a_3, s) = \emptyset$
- $cr_C(a_3, s) = \frac{a_3}{tc}$
 - Child’s agent has third agent as parent $cr_p(a_3, s) = \emptyset$
- $cr_p(s, c) = C/Rtc$
- $cr_C(s, c) = c/R_3t$
 - Child’s agent gets full rights over child; child gets R_3 rights over agent
Link Predicates

• Idea: no tickets to parents until child created
 • Done by requiring each agent to have its own parent rights
 • $\text{link}_1(A_2, A_1) = A_1/t \in \text{dom}(A_2) \land A_2/t \in \text{dom}(A_2)$
 • $\text{link}_1(A_3, A_2) = A_2/t \in \text{dom}(A_3) \land A_3/t \in \text{dom}(A_3)$
 • $\text{link}_2(S, A_3) = A_3/t \in \text{dom}(S) \land C/t \in \text{dom}(C)$
 • $\text{link}_3(A_1, C) = C/t \in \text{dom}(A_1)$
 • $\text{link}_3(A_2, C) = C/t \in \text{dom}(A_2)$
 • $\text{link}_3(A_3, C) = C/t \in \text{dom}(A_3)$
 • $\text{link}_4(A_1, P_1) = P_1/t \in \text{dom}(A_1) \land A_1/t \in \text{dom}(A_1)$
 • $\text{link}_4(A_2, P_2) = P_2/t \in \text{dom}(A_2) \land A_2/t \in \text{dom}(A_2)$
 • $\text{link}_4(A_3, P_3) = P_3/t \in \text{dom}(A_3) \land A_3/t \in \text{dom}(A_3)$
Filter Functions

- \(f_1(a_2, a_1) = \frac{a_1}{t} + \frac{c}{Rtc} \)
- \(f_1(a_3, a_2) = \frac{a_2}{t} + \frac{c}{Rtc} \)
- \(f_2(s, a_3) = \frac{a_3}{t} + \frac{c}{Rtc} \)
- \(f_3(a_1, c) = \frac{p_1}{R_{4,1}} \)
- \(f_3(a_2, c) = \frac{p_2}{R_{4,2}} \)
- \(f_3(a_3, c) = \frac{p_3}{R_{4,3}} \)
- \(f_4(a_1, p_1) = \frac{c}{R_{1,1}} + \frac{p_1}{R_{2,1}} \)
- \(f_4(a_2, p_2) = \frac{c}{R_{1,2}} + \frac{p_2}{R_{2,2}} \)
- \(f_4(a_3, p_3) = \frac{c}{R_{1,3}} + \frac{p_3}{R_{2,3}} \)
Construction

Create A_1, A_2, A_3, S, C; then

- P_1 has no relevant tickets
- P_2 has no relevant tickets
- P_3 has no relevant tickets
- A_1 has P_1/Rtc
- A_2 has $P_2/Rtc \cup A_1/tc$
- A_3 has $P_3/Rtc \cup A_2/tc$
- S has $A_3/tc \cup C/Rtc$
- C has C/R_3t
Construction

• Only $\text{link}_2(S, A_3)$ true \Rightarrow apply f_2
 • A_3 has $P_3/Rtc \cup A_2/t \cup A_3/t \cup C/Rtc$

• Now $\text{link}_1(A_3, A_2)$ true \Rightarrow apply f_1
 • A_2 has $P_2/Rtc \cup A_1/tc \cup A_2/t \cup C/Rtc$

• Now $\text{link}_1(A_2, A_1)$ true \Rightarrow apply f_1
 • A_1 has $P_2/Rtc \cup A_1/t \cup C/Rtc$

• Now all link_3s true \Rightarrow apply f_3
 • C has $C/R_3 \cup P_1/R_{4,1} \cup P_2/R_{4,2} \cup P_3/R_{4,3}$
Finish Construction

• Now link_4 is true \Rightarrow apply f_4
 • P_1 has $C/R_{1,1} \cup P_1/R_{2,1}$
 • P_2 has $C/R_{1,2} \cup P_2/R_{2,2}$
 • P_3 has $C/R_{1,3} \cup P_3/R_{2,3}$

• 3-parent joint create gives same rights to P_1, P_2, P_3, C
• If create of C fails, link_2 fails, so construction fails
Theorem

• The two-parent joint creation operation can implement an \(n \)-parent joint creation operation with a fixed number of additional types and rights, and augmentations to the link predicates and filter functions.

• **Proof**: by construction, as above
 • Difference is that the two systems need not start at the same initial state
Theorems

- Monotonic ESPM and the monotonic HRU model are equivalent.
- Safety question in ESPM also decidable if acyclic attenuating scheme
 - Proof similar to that for SPM
Expressiveness

• Graph-based representation to compare models

• Graph
 • Vertex: represents entity, has static type
 • Edge: represents right, has static type

• Graph rewriting rules:
 • Initial state operations create graph in a particular state
 • Node creation operations add nodes, incoming edges
 • Edge adding operations add new edges between existing vertices
Example: 3-Parent Joint Creation

• Simulate with 2-parent
 • Nodes P_1, P_2, P_3 parents
 • Create node C with type c with edges of type e
 • Add node A_1 of type a and edge from P_1 to A_1 of type e'
Next Step

• A_1, P_2 create A_2; A_2, P_3 create A_3
• Type of nodes, edges are a and e'

![Diagram showing nodes A1, A2, A3, and edges P1, P2, P3]
Next Step

- A_3 creates S, of type a
- S creates C, of type c
Last Step

- Edge adding operations:
 - $P_1 \rightarrow A_1 \rightarrow A_2 \rightarrow A_3 \rightarrow S \rightarrow C$: P_1 to C edge type e
 - $P_2 \rightarrow A_2 \rightarrow A_3 \rightarrow S \rightarrow C$: P_2 to C edge type e
 - $P_3 \rightarrow A_3 \rightarrow S \rightarrow C$: P_3 to C edge type e
Definitions

- **Scheme**: graph representation as above
- **Model**: set of schemes
- Schemes A, B correspond if graph for both is identical when all nodes with types not in A and edges with types in A are deleted
Example

• Above 2-parent joint creation simulation in scheme TWO

• Equivalent to 3-parent joint creation scheme THREE in which P_1, P_2, P_3, C are of same type as in TWO, and edges from P_1, P_2, P_3 to C are of type e, and no types a and e' exist in TWO
Simulation

Scheme A simulates scheme B iff

• every state B can reach has a corresponding state in A that A can reach; and

• every state that A can reach either corresponds to a state B can reach, or has a successor state that corresponds to a state B can reach
 • The last means that A can have intermediate states not corresponding to states in B, like the intermediate ones in TWO in the simulation of $THREE$.
Expressive Power

• If there is a scheme in MA that no scheme in MB can simulate, MB less expressive than MA
• If every scheme in MA can be simulated by a scheme in MB, MB as expressive as MA
• If MA as expressive as MB and vice versa, MA and MB equivalent
Example

• Scheme A in model M
 • Nodes X_1, X_2, X_3
 • 2-parent joint create
 • 1 node type, 1 edge type
 • No edge adding operations
 • Initial state: X_1, X_2, X_3, no edges

• Scheme B in model N
 • All same as A except no 2-parent joint create
 • 1-parent create

• Which is more expressive?
Can A Simulate B?

• Scheme A simulates 1-parent create: have both parents be same node
 • Model M as expressive as model N
Can B Simulate A?

- Suppose X_1, X_2 jointly create Y in A
 - Edges from X_1, X_2 to Y, no edge from X_3 to Y
- Can B simulate this?
 - Without loss of generality, X_1 creates Y
 - Must have edge adding operation to add edge from X_2 to Y
 - One type of node, one type of edge, so operation can add edge between any 2 nodes
No

• All nodes in A have even number of incoming edges
 • 2-parent create adds 2 incoming edges

• Edge adding operation in B that can edge from \(X_2 \) to C can add one from \(X_3 \) to C
 • A cannot enter this state
 • B cannot transition to a state in which Y has even number of incoming edges
 • No remove rule

• So B cannot simulate A; N less expressive than M
Theorem

• Monotonic single-parent models are less expressive than monotonic multiparent models

• Proof by contradiction
 • Scheme A is multiparent model
 • Scheme B is single parent create
 • Claim: B can simulate A, without assumption that they start in the same initial state
 • Note: example assumed same initial state
Outline of Proof

- X_1, X_2 nodes in A
 - They create Y_1, Y_2, Y_3 using multiparent create rule
 - Y_1, Y_2 create Z, again using multiparent create rule
 - *Note*: no edge from Y_3 to Z can be added, as A has no edge-adding operation
Outline of Proof

- **W, X₁, X₂** nodes in **B**
 - **W** creates **Y₁, Y₂, Y₃** using single parent create rule, and adds edges for **X₁, X₂** to all using edge adding rule
 - **Y₁** creates **Z**, again using single parent create rule; now must add edge from **Y₂** to **Z** to simulate **A**
 - Use same edge adding rule to add edge from **Y₃** to **Z**: cannot duplicate this in scheme **A**!
Meaning

• Scheme B cannot simulate scheme A, contradicting hypothesis
• ESPM more expressive than SPM
 • ESPM multiparent and monotonic
 • SPM monotonic but single parent
Typed Access Matrix Model

• Like ACM, but with set of types T
 • All subjects, objects have types
 • Set of types for subjects TS

• Protection state is (S, O, τ, A)
 • $\tau : O \rightarrow T$ specifies type of each object
 • If X subject, $\tau(X)$ in TS
 • If X object, $\tau(X)$ in $T - TS$
Create Rules

• Subject creation
 • create subject s of type ts
 • s must not exist as subject or object when operation executed
 • $ts \in TS$

• Object creation
 • create object o of type to
 • o must not exist as subject or object when operation executed
 • $to \in T - TS$
Create Subject

• Precondition: $s \notin S$
• Primitive command: create subject s of type t
• Postconditions:
 • $S' = S \cup \{s\}$, $O' = O \cup \{s\}$
 • $(\forall y \in O)[\tau'(y) = \tau(y)]$, $\tau'(s) = t$
 • $(\forall y \in O')[a'[s, y] = \emptyset]$, $(\forall x \in S')[a'[x, s] = \emptyset]$
 • $(\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]]$
Create Object

• Precondition: $o \notin O$

• Primitive command: **create object o of type t**

• Postconditions:
 • $S' = S$, $O' = O \cup \{ o \}$
 • $(\forall y \in O)[\tau'(y) = \tau(y)]$, $\tau'(o) = t$
 • $(\forall x \in S')[a'[x, o] = \emptyset]$
 • $(\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]]$
Definitions

• MTAM Model: TAM model without **delete, destroy**
 • MTAM is Monotonic TAM

• $\alpha(x_1:t_1, ..., x_n:t_n)$ create command
 • t_i child type in α if any of **create subject x_i of type t_i** or **create object x_i of type t_i** occur in α
 • t_i parent type otherwise
Cyclic Creates

\[\text{command } cry\cdot havoc(s_1 : u, s_2 : u, o_1 : v, o_2 : v, \]
\[\quad o_3 : w, o_4 : w) \]
\[\text{create subject } s_1 \text{ of type } u; \]
\[\text{create object } o_1 \text{ of type } v; \]
\[\text{create object } o_3 \text{ of type } w; \]
\[\text{enter } r \text{ into } a[s_2, s_1]; \]
\[\text{enter } r \text{ into } a[s_2, o_2]; \]
\[\text{enter } r \text{ into } a[s_2, o_4] \]
\[\text{end} \]
Creation Graph

- u, v, w child types
- u, v, w also parent types
- Graph: lines from parent types to child types
- This one has cycles
command cry•havoc($s_1 : u$, $s_2 : u$, $o_1 : v$, $o_3 : w$)

create object o_1 of type v;
create object o_3 of type w;
enter r into $a[s_2, s_1]$;
enter r into $a[s_2, o_1]$;
enter r into $a[s_2, o_3]$
end
Creation Graph

- v, w child types
- u parent type
- Graph: lines from parent types to child types
- This one has no cycles
Theorems

• Safety decidable for systems with acyclic MTAM schemes
 • In fact, it’s \(NP\)-hard

• Safety for acyclic ternary MATM decidable in time polynomial in the size of initial ACM
 • “Ternary” means commands have no more than 3 parameters
 • Equivalent in expressive power to MTAM
Security Properties

• Question: given two models, do they have the same security properties?
 • First comes theory
 • Then comes an example comparison

• Basic idea: view access request as query asking if subject has right to perform action on object
Alternate Definition of “Scheme”

- Σ set of states
- Q set of queries
- $e: \Sigma \times Q \rightarrow \{\text{true, false}\}$
 - Called entailment relation
- T set of state transition rules
- (Σ, Q, e, T) is an access control scheme
Alternate Definition of “Scheme”

• s tries to access o
 • Corresponds to query $q \in Q$

• If state $\sigma \in \Sigma$ allows access, then $e(\sigma, q) = true$; otherwise, $e(\sigma, q) = false$

• Write change of state from σ_0 to σ_1 as $\sigma_0 \mapsto \sigma_1$
 • Emphasizing we’re looking at permissions
 • Multiple transitions are $\sigma_0 \mapsto^* \sigma_n$
 • Σ_n said to be τ-reachable from σ_0
Example: Take-Grant

• Σ set of all possible protection graphs
• Q set of queries
 \{ can•share(α, v_1, v_2, G_0) \mid α ∈ R, v_1, v_2 ∈ G_0 \}
• e(σ_0, q) = true if q holds; e(σ_0, q) = false if not
• T set of sequences of take, grant, create, remove rules
Security Analysis Instance

• Let \((\Sigma, Q, e, T)\) be an access control scheme

• Tuple \((\sigma, q, \tau, \Pi)\) is security analysis instance, where:
 • \(\sigma \in \Sigma\) — \(\tau \in T\)
 • \(q \in Q\) — \(\Pi\) is \(\forall\) or \(\exists\)

• If \(\Pi\) is \(\exists\), existential security analysis
 • Is there a state \(\sigma'\) such that \(\sigma \mapsto_{\tau}^{*} \sigma'\), \(e(\sigma', q) = true\)?

• If \(\Pi\) is \(\forall\), universal security analysis
 • For all states \(\sigma'\) such that \(\sigma \mapsto_{\tau}^{*} \sigma'\), is \(e(\sigma', q) = true\)?
Example: Take-Grant

- \(\sigma_0 = G_0 \)
- \(q \) is can\(\cdot\)share(\(r, v_1, v_2, G_0\))
- \(\tau \) is sequence of take-grant rules
- \(\Pi \) is \(\exists \)
- Security analysis instance examines whether \(v_1 \) has \(r \) rights over \(v_2 \) in graph with initial state \(G_0 \)
- So safety question is security analysis instance
Comparing Two Models

• Each query in A corresponds to a query in B
• Each (state, state transition) in A corresponds to (state, state transition) in B

Formally:

• $A = (\Sigma^A, Q^A, e^A, T^A)$ and $B = (\Sigma^B, Q^B, e^B, T^B)$
• mapping from A to B is:
 • $f : (\Sigma^A \times T^A) \cup Q^A \rightarrow (\Sigma^B \times T^B) \cup Q^B$
Image of Instance

• \(f \) mapping from \(A \) to \(B \)

• *image of a security analysis instance*

 \((\sigma^A, q^A, \tau^A, \Pi)\) under \(f \) is \((\sigma^B, q^B, \tau^B, \Pi)\),

 where:

 • \(f((\sigma^A, \tau^A)) = (\sigma^B, \tau^B) \)
 • \(f(q^A) = q^B \)

• \(f \) is *security-preserving* if every security analysis instance in \(A \) is true iff its image is true
Composition of Queries

• Let \((\Sigma, Q, e, T)\) be an access control scheme

• Tuple \((\sigma, \phi, \tau, \Pi)\) is compositional security analysis instance, where \(\phi\) is propositional logic formula of queries from \(Q\)

• *image of compositional security analysis instance* defined similarly to previous

• \(f\) is *strongly security-preserving* if every compositional security analysis instance in \(A\) is true iff its image is true
State-Matching Reduction

• \(A = (\Sigma^A, Q^A, e^A, T^A) \), \(B = (\Sigma^B, Q^B, e^B, T^B) \), \(f \) mapping from \(A \) to \(B \)
• \(\sigma^A, \sigma^B \) equivalent under the mapping \(f \) when
 • \(e^A(\sigma^A, q^A) = e^B(\sigma^B, q^B) \)
• \(f \) state-matching reduction if for all \(\sigma^A \in S^A \), \(\tau^A \in T^A \),
 \((\sigma^B, \tau^B) = f((\sigma^A, \tau^A)) \) has the following properties:
Property 1

• For every state σ^A in scheme A such that $\sigma^A \xrightarrow{\tau^*} \sigma^A$, there is a state σ^B in scheme B such that $\sigma^B \xrightarrow{\tau^*} \sigma^B$, and σ^A and σ^B are equivalent under the mapping f

 • That is, for every reachable state in A, a matching state in B gives the same answer for every query
Property 2

• For every state σ^B in scheme B such that $\sigma^B \xrightarrow{\tau}^* \sigma'^B$, there is a state σ'^A in scheme A such that $\sigma^A \xrightarrow{\tau}^* \sigma'^A$, and σ'^A and σ'^B are equivalent under the mapping f
 • That is, for every reachable state in B, a matching state in A gives the same answer for every query
Theorem

Mapping f from scheme A to B is strongly security-preserving iff f is a state-matching reduction
Proof (\equiv)

- Must show $(\sigma^A, \phi^A, \tau^A, \Pi) \text{ true iff } (\sigma^B, \phi^B, \tau^B, \Pi) \text{ true}$
- Π is \exists: assume τ^A-reachable state σ'^A from σ^A in which ϕ^A true
 - By property 1, there is a state σ'^B corresponding to σ'^A in which ϕ^B holds
- Π is \forall: assume τ^A-reachable state σ'^A from σ^A in which ϕ^A false
 - By property 1, there is a state σ'^B corresponding to σ'^A in which ϕ^B false
- Same for ϕ^B with τ^B-reachable state σ'^B from σ^B
- So $(\sigma^A, \phi^A, \tau^A, \Pi) \text{ true iff } (\sigma^B, \phi^B, \tau^B, \Pi) \text{ true}
Proof (⇐)

• Let \(f \) be a map from \(A \) to \(B \) but not state-matching reduction. Then there are \(\sigma^A \in S^A, \tau^A \in T^A, (\sigma^B, \tau^B) = f((\sigma^A, \tau^A)) \) violating at least one of the properties.

• Assume it’s property 1; \(\sigma^A, \sigma^B \) corresponding states. There is a \(\tau^A \)-reachable state \(\sigma^A' \) from \(\sigma^A \) such that no \(\tau^B \)-reachable state from \(\sigma^B \) is equivalent to \(\sigma^A' \).

• Generate \(\varphi^A \) and \(\varphi^B \) such that the existential compositional security analysis in \(A \) is true but in \(B \) is false.
 • To do this, look at each \(q^A \in Q^A \)
 • If \(e(\sigma^A', q^A) = true \), conjoin \(q^A \) to \(\varphi^A \); otherwise, conjoin \(\neg q^A \) to \(\varphi^A \)
 • Then \(e(\sigma^A', q^A) = true \) but for \(\varphi^B = f(\varphi^A) \) and all states \(\sigma^B' \) that are \(\tau^B \)-reachable from \(\sigma^B \), \(e(\sigma^B', q^B) = false \)

• Thus, \(f \) is not strongly security-preserving.

• Argument for property 2 is similar.
Expressive Power

If access control model MA has a scheme that cannot be mapped into a scheme in access control model MB using a state-matching reduction, then model MB is \textit{less expressive than} model MA.

If every scheme in model MA can be mapped into a scheme in model MB using a state-matching reduction, then model MB is \textit{as expressive as} model MA.

If MA is as expressive as MB, and MB is as expressive as MA, the models are \textit{equivalent}

\begin{itemize}
 \item Note this does not assume monotonicity, unlike earlier definition
\end{itemize}
Augmented Typed Access Control Matrix

• Add a test for the absence of rights to TAM

```plaintext
command add\cdot right(s\!:\!u, o\!:\!v)
    if own in a[s,o] and r not in a[s,o]
    then
        enter r into a[s,o]
    end
```

• How does this affect the answer to the safety question?
Safety Question

• ATAM can be mapped onto TAM
• But will the mapping, or any such mapping, preserve security properties?
• Approach: consider TAM as an access control model
TAM as Access Control Model

• S set of subjects; S_σ subjects in state σ
• O set of objects; O_σ objects in state σ
• R set of rights; R_σ rights in state σ
• T set of types; T_σ subjects in state σ
• $t : S_\sigma \cup O_\sigma \rightarrow T_\sigma$ gives type of any subject or object
• State σ defined as $(S_\sigma, O_\sigma, R_\sigma, T_\sigma, t)$
• In TAM, query is of form “is $r \in a[s,o]$”, and $e(s, r \in a[s,o])$ true iff $s \in S_\sigma, o \in O_\sigma, r \in R_\sigma, r \in a_\sigma[s,o]$ are true
ATAM as Access Control Model

Same as TAM with one addition:

• ATAM also allows queries of form “is $r \notin a[s,o]$”, and $e(s, r \notin a[s,o])$
 true iff $s \in S_\sigma$, $o \in O_\sigma$, $r \in R_\sigma$, $r \notin a_\sigma[s,o]$ are true
Theorem

A state-matching reduction from ATAM to Tam does not exist.

Outline of proof: by contradiction

• Consider two state transitions, one that creates subject and one that adds right r to an element of the matrix

• Can determine an upper bound on the number of answers to TAM query a command can change; depends on state and commands
Proof

• Assume f is state-matching reduction from ATAM to TAM

• Consider simple ATAM scheme:
 • Initial state σ_0 has no subjects, objects
 • All entities have type t
 • Only one right r
 • Query $q_{ij} = r \in a[s,o]$; query $q_{ij} = r \notin a[s,o]$
 • 2 state transition rules
 • $make\cdotsubj(s : t)$ creates subject s of type t
 • $add\cdotright(x : t, y : t)$ adds right r to $a[x, y]$
Proof

• TAM: superscript T represents components of that system
 • So initial state is $\sigma_0^T = f(\sigma_0)$, transitions are $\tau^T = f(\tau)$
• By definition of state-matching reduction, how f maps queries does not depend on initial state or state transitions of a model
• Let p, q be queries in ATAM and p^T, q^T the corresponding queries in TAM; if $p \neq q$, then $p^T \neq q^T$
• As commands in TAM execute, they can change the value (response) of q_{ij}
• Upper bound on the number of values of queries a single command can change is m (number of enter or add_right operations)
Proof

- Choose $n > m$

- In ATAM, construct state σ_k such that:
 - $\sigma_0 \rightarrow^* \sigma_k$; and
 - $e(\sigma_k, \neg q_{1,1} \land q_{1,1} \land \ldots \land \neg q_{n,n} \land q_{n,n})$ is true

- So $e(\sigma_k, q_{i,j})$ is false, $e(\sigma_k, q_{i,j})$ is true for all $1 \leq i, j \leq n$

- As f is a state-matching reduction, there is a state σ_k^T in TAM that causes the corresponding queries to be answered the same way

- Consider $\sigma_0^T \rightarrow \sigma_1^T \rightarrow \ldots \rightarrow \sigma_k^T$; choose first state σ_C^T such that $e(\sigma_C^T, q_{i,j}^T \lor q_{i,j}^T)$ is true for all $1 \leq i, j \leq n$
Proof

• In σ_{C-1}^T, $e(\sigma_{C-1}^T, q_v, w^T \lor \overline{q_v, w^T})$ is false for some $1 \leq v, w \leq n$, so $e(\sigma_{C-1}^T, \neg q_v, w^T \land \neg \overline{q_v, w^T})$ is true

• State σ in ATAM for which $e(\sigma, \neg q_v, w \land \neg \overline{q_v, w})$ is true is one in which either s_v or s_w or both does not exist

• Thus in that state, one of the following 2 queries holds:
 • $Q_1 = \neg q_{v,1} \land \neg \overline{q_{v,1}} \land \ldots \land \neg q_{n,v} \land \neg \overline{q_{n,v}}$
 • $Q_1 = \neg q_{w,1} \land \neg \overline{q_{w,1}} \land \ldots \land \neg q_{n,w} \land \neg \overline{q_{n,w}}$

• So in TAM, $e(\sigma_{C-1}^T, Q_1^T \land Q_2^T)$ is true
Proof

• Now consider the transition from $\sigma_{C-1}T$ to σ_C^T
• Values of at least n queries in Q_1 or Q_2 must change from false to true
• But each command can change at most $m < n$ queries
• This is a contradiction
• So no such f can exist, proving the result

Thus, ATAM can express security properties that TAM cannot
Key Points

• Safety problem undecidable
• Limiting scope of systems can make problem decidable
• Types critical to safety problem’s analysis