Confidentiality Policies

Chapter 5
Outline

• Overview
 • What is a confidentiality model

• Bell-LaPadula Model
 • General idea
 • Informal description of rules
 • Formal description of rules

• Tranquility

• Declassification

• Controversy
 • †-property
 • System Z
Confidentiality Policy

• Goal: prevent the unauthorized disclosure of information
 • Deals with information flow
 • Integrity incidental

• Multi-level security models are best-known examples
 • Bell-LaPadula Model basis for many, or most, of these
Bell-LaPadula Model, Step 1

- Security levels arranged in linear ordering
 - Top Secret: highest
 - Secret
 - Confidential
 - Unclassified: lowest

- Levels consist are called security clearance $L(s)$ for subjects and security classification $L(o)$ for objects
Example

<table>
<thead>
<tr>
<th>security level</th>
<th>subject</th>
<th>object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Secret</td>
<td>Tamara</td>
<td>Personnel Files</td>
</tr>
<tr>
<td>Secret</td>
<td>Samuel</td>
<td>E-Mail Files</td>
</tr>
<tr>
<td>Confidential</td>
<td>Claire</td>
<td>Activity Logs</td>
</tr>
<tr>
<td>Unclassified</td>
<td>Ulaley</td>
<td>Telephone Lists</td>
</tr>
</tbody>
</table>

- Tamara can read all files
- Claire cannot read Personnel or E-Mail Files
- Ulaley can only read Telephone Lists
Reading Information

• Information flows up, not down
 • “Reads up” disallowed, “reads down” allowed

• Simple Security Condition (Step 1)
 • Subject s can read object o iff, $L(o) \leq L(s)$ and s has permission to read o
 • Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 • Sometimes called “no reads up” rule
Writing Information

• Information flows up, not down
 • “Writes up” allowed, “writes down” disallowed

• *-Property (Step 1)
 • Subject s can write object o iff $L(s) \leq L(o)$ and s has permission to write o
 • Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 • Sometimes called “no writes down” rule
Basic Security Theorem, Step 1

• If a system is initially in a secure state, and every transition of the system satisfies the simple security condition, step 1, and the *-property, step 1, then every state of the system is secure
 • Proof: induct on the number of transitions
Bell-LaPadula Model, Step 2

- Expand notion of security level to include categories
- Security level is (*clearance*, *category set*)
- Examples
 - (Top Secret, {NUC, EUR, ASI})
 - (Confidential, {EUR, ASI})
 - (Secret, {NUC, ASI})
Levels and Lattices

• \((A, C) \) \textit{dom} \((A', C') \) iff \(A' \leq A \) and \(C' \subseteq C \)

• Examples
 • (Top Secret, \{NUC, ASI\}) \textit{dom} (Secret, \{NUC\})
 • (Secret, \{NUC, EUR\}) \textit{dom} (Confidential,\{NUC, EUR\})
 • (Top Secret, \{NUC\}) \neg \text{dom} (Confidential, \{EUR\})

• Let \(C \) be set of classifications, \(K \) set of categories. Set of security levels \(L = C \times K \), \textit{dom} form lattice
 • \(\text{lub}(L) = (\max(A), C) \)
 • \(\text{glb}(L) = (\min(A), \emptyset) \)
Levels and Ordering

• Security levels partially ordered
 • Any pair of security levels may (or may not) be related by dom
• “dominates” serves the role of “greater than” in step 1
 • “greater than” is a total ordering, though
Reading Information

• Information flows up, not down
 - “Reads up” disallowed, “reads down” allowed

• Simple Security Condition (Step 2)
 - Subject s can read object o iff $L(s) \text{ dom } L(o)$ and s has permission to read o
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called “no reads up” rule
Writing Information

• Information flows up, not down
 • “Writes up” allowed, “writes down” disallowed

• *-Property (Step 2)
 • Subject s can write object o iff $L(o)$ dom $L(s)$ and s has permission to write o
 • Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 • Sometimes called “no writes down” rule
Basic Security Theorem, Step 2

• If a system is initially in a secure state, and every transition of the system satisfies the simple security condition, step 2, and the *-property, step 2, then every state of the system is secure
 • Proof: induct on the number of transitions
 • In actual Basic Security Theorem, discretionary access control treated as third property, and simple security property and *-property phrased to eliminate discretionary part of the definitions — but simpler to express the way done here.
Problem

• Colonel has (Secret, {NUC, EUR}) clearance
• Major has (Secret, {EUR}) clearance
 • Major can talk to colonel (“write up” or “read down”)
 • Colonel cannot talk to major (“read up” or “write down”)
• Clearly absurd!
Solution

• Define maximum, current levels for subjects
 • \(\text{maxlevel}(s) \) \(\text{dom curlevel}(s) \)

• Example
 • Treat Major as an object (Colonel is writing to him/her)
 • Colonel has \(\text{maxlevel} \) (Secret, \{ NUC, EUR \})
 • Colonel sets \(\text{curlevel} \) to (Secret, \{ EUR \})
 • Now \(L(\text{Major}) \) \(\text{dom curlevel} \)(Colonel)
 • Colonel can write to Major without violating “no writes down”
 • Does \(L(s) \) mean \(\text{curlevel}(s) \) or \(\text{maxlevel}(s) \)?
 • Formally, we need a more precise notation
Example: Trusted Solaris

• Provides mandatory access controls
 • Security level represented by sensitivity label
 • Least upper bound of all sensitivity labels of a subject called clearance
 • Default labels ADMIN_HIGH (dominates any other label) and ADMIN_LOW (dominated by any other label)

• S has controlling user U_S
 • S_L sensitivity label of subject
 • privileged(S, P) true if S can override or bypass part of security policy P
 • asserted (S, P) true if S is doing so
Rules

C_L clearance of S, S_L sensitivity label of S, U_S controlling user of S, and O_L sensitivity label of O

1. If ¬$\text{privileged}(S, \text{ “change } S_L\text{”})$, then no sequence of operations can change S_L to a value that it has not previously assumed

2. If ¬$\text{privileged}(S, \text{ “change } S_L\text{”})$, then ¬$\text{privileged}(S, \text{ “change } S_L\text{”})$

3. If ¬$\text{privileged}(S, \text{ “change } S_L\text{”})$, then no value of S_L can be outside the clearance of U_S

4. For all subjects S, named objects O, if ¬$\text{privileged}(S, \text{ “change } O_L\text{”})$, then no sequence of operations can change O_L to a value that it has not previously assumed
Rules (con’t)

C_L clearance of S, S_L sensitivity label of S, U_S controlling user of S, and O_L sensitivity label of O

5. For all subjects S, named objects O, if $¬privileged(S, \text{“override O’s mandatory read access control”})$, then write access to O is granted only if $S_L dom O_L$
 - Instantiation of simple security condition

6. For all subjects S, named objects O, if $¬privileged(S, \text{“override O’s mandatory write access control”})$, then read access to O is granted only if $O_L dom S_L$ and $C_L dom O_L$
 - Instantiation of *-property
Initial Assignment of Labels

• Each account is assigned a label range [clearance, minimum]

• On login, Trusted Solaris determines if the session is single-level
 • If clearance = minimum, single level and session gets that label
 • If not, multi-level; user asked to specify clearance for session
 • Must be in the label range
 • In multi-level session, can change to any label in the range of the session clearance to the minimum
Writing

• Allowed when subject, object labels are the same or file is in downgraded directory D with sensitivity label D_L and all the following hold:
 • $S_L dom D_L$
 • S has discretionary read, search access to D
 • $O_L dom S_L$ and $O_L \neq S_L$
 • S has discretionary write access to O
 • $C_L dom O_L$
• Note: subject cannot read object
Directory Problem

• Process p at MAC_A tries to create file /tmp/x
• /tmp/x exists but has MAC label MAC_B
 • Assume MAC_B dom MAC_A
• Create fails
 • Now p knows a file named x with a higher label exists
• Fix: only programs with same MAC label as directory can create files in the directory
 • Now compilation won’t work, mail can’t be delivered
Multilevel Directory

- Directory with a set of subdirectories, one per label
 - Not normally visible to user
 - `p` creating `/tmp/x` actually creates `/tmp/d/x` where `d` is directory corresponding to MAC_A
 - All `p`’s references to `/tmp` go to `/tmp/d`
- `p` cd’s to `/tmp`
 - System call `stat(".", &buf)` returns information about `/tmp/d`
 - System call `mldstat(".", &buf)` returns information about `/tmp`
Labeled Zones

• Used in Trusted Solaris Extensions, various flavors of Linux

• Zone: virtual environment tied to a unique label
 • Each process can only access objects in its zone

• Global zone encompasses everything on system
 • Its label is ADMIN_HIGH
 • Only system administrators can access this zone

• Each zone has a unique root directory
 • All objects within the zone have that zone’s label
 • Each zone has a unique label
More about Zones

• Can import (mount) file systems from other zones provided:
 • If importing *read-only*, importing zone’s label must dominate imported zone’s label
 • If importing *read-write*, importing zone’s label must equal imported zone’s label
 • So the zones are the same; import unnecessary
 • Labels checked at time of import

• Objects in imported file system retain their labels
Example

- L_1 dom L_2
- L_3 dom L_2
- Process in L_1 can read any file in the export directory of L_2 (assuming discretionary permissions allow it)
- L_1, L_3 disjoint
 - Do not share any files
- System directories imported from global zone, at ADMIN_LOW
 - So can only be read
Formal Model Definitions

• S subjects, O objects, P rights
 • Defined rights: r read, a write, w read/write, e empty
• M set of possible access control matrices
• C set of clearances/classifications, K set of categories, L = C × K set of security levels
• F = { (f_s, f_o, f_c) }
 • f_s(s) maximum security level of subject s
 • f_c(s) current security level of subject s
 • f_o(o) security level of object o
More Definitions

• Hierarchy functions $H: O \rightarrow P(O)$

• Requirements

 1. $o_i \neq o_j \Rightarrow h(o_i) \cap h(o_j) = \emptyset$

 2. There is no set $\{ o_1, ..., o_k \} \subseteq O$ such that for $i = 1, ..., k$, $o_{i+1} \in h(o_i)$ and $o_{k+1} = o_1$.

• Example

 • Tree hierarchy; take $h(o)$ to be the set of children of o

 • No two objects have any common children (#1)

 • There are no loops in the tree (#2)
States and Requests

• \(V \) set of states
 • Each state is \((b, m, f, h)\)
 • \(b \) is like \(m \), but excludes rights not allowed by \(f \)

• \(R \) set of requests for access

• \(D \) set of outcomes
 • \(y \) allowed, \(n \) not allowed, \(i \) illegal, \(o \) error

• \(W \) set of actions of the system
 • \(W \subseteq R \times D \times V \times V \)
History

• $X = R^N$ set of sequences of requests
• $Y = D^N$ set of sequences of decisions
• $Z = V^N$ set of sequences of states

• Interpretation
 • At time $t \in N$, system is in state $z_{t-1} \in V$; request $x_t \in R$ causes system to make decision $y_t \in D$, transitioning the system into a (possibly new) state $z_t \in V$

• System representation: $\Sigma(R, D, W, z_0) \in X \times Y \times Z$
 • $(x, y, z) \in \Sigma(R, D, W, z_0)$ iff $(x_t, y_t, z_{t-1}, z_t) \in W$ for all t
 • (x, y, z) called an appearance of $\Sigma(R, D, W, z_0)$
Example

• $S = \{ s \}$, $O = \{ o \}$, $P = \{ r, w \}$
• $C = \{ \text{High, Low} \}$, $K = \{ \text{All} \}$
• For every $f \in F$, either $f_c(s) = (\text{High, All})$ or $f_c(s) = (\text{Low, All})$
• Initial State:
 • $b_1 = \{ (s, o, r) \}$, $m_1 \in M$ gives s read access over o, and for $f_1 \in F$, $f_{c,1}(s) = (\text{High, All})$, $f_{o,1}(o) = (\text{Low, All})$
 • Call this state $v_0 = (b_1, m_1, f_1, h_1) \in V$.
First Transition

• Now suppose in state \(v_0: S = \{ s, s' \} \)
• Suppose \(f_{c,1}(s') = (\text{Low}, \{\text{All}\}) \)
• \(m_1 \in M \) gives \(s \) and \(s' \) read access over \(o \)
• As \(s' \) not written to \(o \), \(b_1 = \{ (s, o, r) \} \)
• \(z_0 = v_0; \) if \(s' \) requests \(r_1 \) to write to \(o \):
 • System decides \(d_1 = y \)
 • New state \(v_1 = (b_2, m_1, f_1, h_1) \in V \)
 • \(b_2 = \{ (s, o, r), (s', o, w) \} \)
 • Here, \(x = (r_1), y = (y), z = (v_0, v_1) \)
Second Transition

- Current state $v_1 = (b_2, m_1, f_1, h_1) \in V$
 - $b_2 = \{ (s, o, r), (s', o, w) \}$
 - $f_{c,1}(s) = \text{High, } \{ \text{All} \}, f_{o,1}(o) = \text{Low, } \{ \text{All} \}$
- s' requests r_2 to write to o:
 - System decides $d_2 = n$ (as $f_{c,1}(s)$ dom $f_{o,1}(o)$)
 - New state $v_2 = (b_2, m_1, f_1, h_1) \in V$
 - $b_2 = \{ (s, o, r), (s', o, w) \}$
 - So, $x = (r_1, r_2), y = (y, n), z = (v_0, v_1, v_2)$, where $v_2 = v_1$
Basic Security Theorem

• Define action, secure formally
 • Using a bit of foreshadowing for “secure”
• Restate properties formally
 • Simple security condition
 • *-property
 • Discretionary security property
• State conditions for properties to hold
• State Basic Security Theorem
Action

• A request and decision that causes the system to move from one state to another
 • Final state may be the same as initial state
• \((r, d, v, v') \in R \times D \times V \times V\) is an action of \(\Sigma(R, D, W, z_0)\) iff there is an \((x, y, z) \in \Sigma(R, D, W, z_0)\) and a \(t \in N\) such that \((r, d, v, v') = (x_t, y_t, z_t, z_{t-1})\)
 • Request \(r\) made when system in state \(v\); decision \(d\) moves system into (possibly the same) state \(v'\)
 • Correspondence with \((x_t, y_t, z_t, z_{t-1})\) makes states, requests, part of a sequence
Simple Security Condition

• \((s, o, p) \in S \times O \times P\) satisfies the simple security condition relative to \(f\) (written \(ssc \ rel \ f\)) iff one of the following holds:
 1. \(p = e\) or \(p = a\)
 2. \(p = r\) or \(p = w\) and \(f_s(s) \ \text{dom} \ f_o(o)\)

• Holds vacuously if rights do not involve reading
• If all elements of \(b\) satisfy \(ssc \ rel \ f\), then state satisfies simple security condition
• If all states satisfy simple security condition, system satisfies simple security condition
Necessary and Sufficient

• $\Sigma(R, D, W, z_0)$ satisfies the simple security condition for any secure state z_0 iff for every action $(r, d, (b, m, f, h), (b', m', f', h'))$, W satisfies
 • Every $(s, o, p) \in b - b'$ satisfies $ssc \ rel \ f$
 • Every $(s, o, p) \in b'$ that does not satisfy $ssc \ rel \ f$ is not in b

• Note: “secure” means z_0 satisfies $ssc \ rel \ f$

• First says every (s, o, p) added satisfies $ssc \ rel \ f$; second says any (s, o, p) in b' that does not satisfy $ssc \ rel \ f$ is deleted
* - Property

- $b(s: p_1, ..., p_n)$ set of all objects that s has p_1, ..., p_n access to
- State (b, m, f, h) satisfies the *-property iff for each $s \in S$ the following hold:
 1. $b(s: a) \neq \emptyset \Rightarrow [\forall o \in b(s: a) [f_o(o) \text{ dom } f_c(s)]]$
 2. $b(s: w) \neq \emptyset \Rightarrow [\forall o \in b(s: w) [f_o(o) = f_c(s)]]$
 3. $b(s: r) \neq \emptyset \Rightarrow [\forall o \in b(s: r) [f_c(s) \text{ dom } f_o(o)]]$
- Idea: for writing, object dominates subject; for reading, subject dominates object
*-Property

• If all states satisfy simple security condition, system satisfies simple security condition

• If a subset S' of subjects satisfy *-property, then *-property satisfied relative to $S' \subseteq S$

• Note: tempting to conclude that *-property includes simple security condition, but this is false
 • See condition placed on w right for each
Necessary and Sufficient

• $\Sigma(R, D, W, z_0)$ satisfies the \ast-property relative to $S' \subseteq S$ for any secure state z_0 iff for every action $(r, d, (b, m, f, h), (b', m', f', h'))$, W satisfies the following for every $s \in S'$
 • Every $(s, o, p) \in b - b'$ satisfies the \ast-property relative to S'
 • Every $(s, o, p) \in b'$ that does not satisfy the \ast-property relative to S' is not in b

• Note: “secure” means z_0 satisfies \ast-property relative to S'

• First says every (s, o, p) added satisfies the \ast-property relative to S'; second says any (s, o, p) in b' that does not satisfy the \ast-property relative to S' is deleted
Discretionary Security Property

- State \((b, m, f, h)\) satisfies the discretionary security property iff, for each \((s, o, p) \in b\), then \(p \in m[s, o]\)
- Idea: if \(s\) can read \(o\), then it must have rights to do so in the access control matrix \(m\)
- This is the discretionary access control part of the model
 - The other two properties are the mandatory access control parts of the model
Necessary and Sufficient

• $\Sigma(R, D, W, z_0)$ satisfies the ds-property for any secure state z_0 iff, for every action $(r, d, (b, m, f, h), (b', m', f', h'))$, W satisfies:
 • Every $(s, o, p) \in b - b'$ satisfies the ds-property
 • Every $(s, o, p) \in b'$ that does not satisfy the ds-property is not in b

• Note: “secure” means z_0 satisfies ds-property

• First says every (s, o, p) added satisfies the ds-property; second says any (s, o, p) in b' that does not satisfy the *-property is deleted
Secure

• A system is secure iff it satisfies:
 • Simple security condition
 • *-property
 • Discretionary security property

• A state meeting these three properties is also said to be secure
Basic Security Theorem

• \(\Sigma(R, D, W, z_0) \) is a secure system if \(z_0 \) is a secure state and \(W \) satisfies the conditions for the preceding three theorems
 • The theorems are on the slides titled “Necessary and Sufficient”
Rule

• $\rho: R \times V \rightarrow D \times V$

• Takes a state and a request, returns a decision and a (possibly new) state

• Rule ρ ssc-preserving if for all $(r, v) \in R \times V$ and v satisfying ssc rel f, $\rho(r, v) = (d, v')$ means that v' satisfies ssc rel f'.
 • Similar definitions for *-property, ds-property
 • If rule meets all 3 conditions, it is security-preserving
Unambiguous Rule Selection

• Problem: multiple rules may apply to a request in a state
 • if two rules act on a read request in state \(v \) ...

• Solution: define relation \(W(\omega) \) for a set of rules \(\omega = \{ \rho_1, \ldots, \rho_m \} \) such that a state \((r, d, v, v') \in W(\omega) \) iff either
 • \(d = i \); or
 • for exactly one integer \(j \), \(\rho_j(r, v) = (d, v') \)

• Either request is illegal, or only one rule applies
Rules Preserving SSC

• Let \(\omega \) be set of ssc-preserving rules. Let state \(z_0 \) satisfy simple security condition. Then \(\Sigma(R, D, W(\omega), z_0) \) satisfies simple security condition
 • Proof: by contradiction.
 • Choose \((x, y, z) \in \Sigma(R, D, W(\omega), z_0)\) as state not satisfying simple security condition; then choose \(t \in N \) such that \((x_t, y_t, z_t)\) is first appearance not meeting simple security condition
 • As \((x_t, y_t, z_t, z_{t-1}) \in W(\omega)\), there is unique rule \(\rho \in \omega \) such that \(\rho(x_t, z_{t-1}) = (y_t, z_t) \) and \(y_t \neq i \).
 • As \(\rho \) ssc-preserving, and \(z_{t-1} \) satisfies simple security condition, then \(z_t \) meets simple security condition, contradiction.
Adding States Preserving SSC

• Let $v = (b, m, f, h)$ satisfy simple security condition. Let $(s, o, p) \notin b$, $b' = b \cup \{(s, o, p)\}$, and $v' = (b', m, f, h)$. Then v' satisfies simple security condition iff:
 1. Either $p = e$ or $p = a$; or
 2. Either $p = r$ or $p = w$, and $f_c(s) \text{ dom } f_o(o)$
• Proof
 1. Immediate from definition of simple security condition and v' satisfying $ssc\ rel\ f$
 2. v' satisfies simple security condition means $f_c(s) \text{ dom } f_o(o)$, and for converse, $(s, o, p) \in b'$ satisfies $ssc\ rel\ f$, so v' satisfies simple security condition
Rules, States Preserving *-Property

• Let ω be a set of *-property-preserving rules, state z_0 satisfies the *-property. Then $\Sigma(R, D, W(\omega), z_0)$ satisfies *-property.

• Let $v = (b, m, f, h)$ satisfy *-property. Let $(s, o, p) \not\in b, b' = b \cup \{ (s, o, p) \}$, and $v' = (b', m, f, h)$. Then v' satisfies *-property iff one of the following holds:
 1. $p = e$ or $p = a$
 2. $p = r$ or $p = w$ and $f_c(s) \text{ dom } f_o(o)$
Rules, States Preserving ds-Property

• Let ω be set of ds-property-preserving rules, state z_0 satisfies ds-property. Then $\Sigma(R, D, W(\omega), z_0)$ satisfies ds-property.

• Let $v = (b, m, f, h)$ satisfy ds-property. Let $(s, o, p) \notin b$, $b' = b \cup \{ (s, o, p) \}$, and $v' = (b', m, f, h)$. Then v' satisfies ds-property iff $p \in m[s, o]$.
Combining

Let ρ be a rule and $\rho(r, v) = (d, v')$, where $v = (b, m, f, h)$ and $v' = (b', m', f', h')$. Then:

1. If $b' \subseteq b$, $f' = f$, and v satisfies the simple security condition, then v' satisfies the simple security condition
2. If $b' \subseteq b$, $f' = f$, and v satisfies the $*$-property, then v' satisfies the $*$-property
3. If $b' \subseteq b$, $m'[s, o] \subseteq m'[s, o]$ for all $s \in S$ and $o \in O$, and v satisfies the ds-property, then v' satisfies the ds-property
Proof

1. Suppose v satisfies simple security property.
 a) $b' \subseteq b$ and $(s, o, r) \in b'$ implies $(s, o, r) \in b$
 b) $b' \subseteq b$ and $(s, o, w) \in b'$ implies $(s, o, w) \in b$
 c) So $f'(s) \in dom f_o(o)$
 d) But $f' = f$
 e) Hence $f'(s) \in dom f'_o(o)$
 f) So v' satisfies simple security condition

2, 3 proved similarly
Example Instantiation: Multics

• 11 rules affect rights:
 • set to request, release access
 • set to give, remove access to different subject
 • set to create, reclassify objects
 • set to remove objects
 • set to change subject security level

• Set of “trusted” subjects $S_T \subseteq S$
 • *-property not enforced; subjects trusted not to violate it

• $\Delta(\rho)$ domain
 • determines if components of request are valid
get-read Rule

- Request \(r = (get, s, o, r) \)
 - \(s \) gets (requests) the right to read \(o \)
- Rule is \(\rho_1(r, v) \):

 \[
 \text{if } (r \neq \Delta(\rho_1)) \text{ then } \rho_1(r, v) = (i, v); \\
 \text{else if } (f_s(s) \text{ dom } f_o(o) \text{ and } [s \in S_T \text{ or } f_c(s) \text{ dom } f_o(o)] \text{ and } r \in m[s, o]) \\
 \text{ then } \rho_1(r, v) = (y, (b \cup \{ (s, o, r) \}, m, f, h)); \\
 \text{else } \rho_1(r, v) = (n, v);
 \]
Security of Rule

• The get-read rule preserves the simple security condition, the *-property, and the ds-property

Proof:
• Let \(v \) satisfy all conditions. Let \(\rho_1(r, v) = (d, v') \). If \(v' = v \), result is trivial. So let \(v' = (b \cup \{ (s_2, o, r) \}, m, f, h) \).
Proof

• Consider the simple security condition.
 • From the choice of \(v'\), either \(b' - b = \emptyset\) or \(\{(s_2, o, r)\}\)
 • If \(b' - b = \emptyset\), then \(\{(s_2, o, r)\} \in b\), so \(v = v'\), proving that \(v'\) satisfies the simple security condition.
 • If \(b' - b = \{(s_2, o, r)\}\), because the get-read rule requires that \(f_c(s) \in dom f_o(o)\), an earlier result says that \(v'\) satisfies the simple security condition.
• Consider the *-property.
 • Either $s_2 \in S_T$ or $f_c(s) \text{ dom } f_o(o)$ from the definition of get-read
 • If $s_2 \in S_T$, then s_2 is trusted, so *-property holds by definition of trusted and S_T.
 • If $f_c(s) \text{ dom } f_o(o)$, an earlier result says that v' satisfies the simple security condition.
Proof

• Consider the discretionary security property.
 • Conditions in the get-read rule require \(r \in m[s, o] \) and either \(b' - b = \emptyset \) or \(\{ (s_2, o, r) \} \)
 • If \(b' - b = \emptyset \), then \(\{ (s_2, o, r) \} \in b \), so \(v = v' \), proving that \(v' \) satisfies the simple security condition.
 • If \(b' - b = \{ (s_2, o, r) \} \), then \(\{ (s_2, o, r) \} \notin b \), an earlier result says that \(v' \) satisfies the ds-property.
give-read Rule

• Request $r = (s_1, \text{give}, s_2, o, r)$
 • s_1 gives (request to give) s_2 the (discretionary) right to read o
 • Rule: can be done if giver can alter parent of object
 • If object or parent is root of hierarchy, special authorization required

• Useful definitions
 • $\text{root}(o)$: root object of hierarchy h containing o
 • $\text{parent}(o)$: parent of o in h (so $o \in h(\text{parent}(o)))$
 • $\text{canallow}(s, o, v)$: s specially authorized to grant access when object or parent of object is root of hierarchy
 • $m \cup m[s, o] \leftarrow r$: access control matrix m with r added to $m[s, o]$
give-read Rule

• Rule is \(\rho_6(r, v) \):

 if \(r \neq \Delta(\rho_6) \) then \(\rho_6(r, v) = (i, v) \);
 else if \([o \neq \text{root}(o) \text{ and parent}(o) \neq \text{root}(o) \text{ and parent}(o) \in b(s_1:w)] \) or
 \([\text{parent}(o) = \text{root}(o) \text{ and canallow}(s_1, o, v)] \) or
 \([o = \text{root}(o) \text{ and canallow}(s_1, o, v)] \)
 then \(\rho_6(r, v) = (y, (b, m \wedge m[s_2, o] \leftarrow r, f, h)) \);
 else \(\rho_1(r, v) = (n, v) \);
Security of Rule

• The *give-read* rule preserves the simple security condition, the *-property, and the ds-property
 • Proof: Let v satisfy all conditions. Let $\rho_1(r, v) = (d, v')$. If $v' = v$, result is trivial. So let $v' = (b, m[s_2, o] \leftarrow r, f, h)$. So $b' = b, f' = f, m[x, y] = m'[x, y]$ for all $x \in S$ and $y \in O$ such that $x \neq s$ and $y \neq o$, and $m[s, o] \subseteq m'[s, o]$. Then by earlier result, v' satisfies the simple security condition, the *-property, and the ds-property.
Principle of Tranquility

• Raising object’s security level
 • Information once available to some subjects is no longer available
 • Usually assume information has already been accessed, so this does nothing

• Lowering object’s security level
 • The *declassification problem*
 • Essentially, a “write down” violating *-property
 • Solution: define set of trusted subjects that sanitize or remove sensitive information before security level lowered
Types of Tranquility

• Strong Tranquility
 • The clearances of subjects, and the classifications of objects, do not change during the lifetime of the system

• Weak Tranquility
 • The clearances of subjects, and the classifications of objects, do not change in a way that violates the simple security condition or the *-property during the lifetime of the system
Example: Trusted Solaris

• Security administrator can provide specific authorization for a user to change the MAC label of a file
 • “downgrade file label” authorization
 • “upgrade file label” authorization

• User requires additional authorization if not the owner of the file
 • “act as file owner” authorization
Principles of Declassification

• Principle of Semantic Consistency
 • As long as semantics of components that do not do declassification do not change, the components can be altered without affecting security

• Principle of Occlusion
 • A declassification operation cannot conceal an improper declassification

• Principle of Conservativity
 • Absent any declassification, the system is secure

• Principle of Monotonicity of Release
 • When declassification is performed in an authorized manner by authorized subjects, the system remains secure
Controversy

• McLean:
 • “value of the BST is much overrated since there is a great deal more to security than it captures. Further, what is captured by the BST is so trivial that it is hard to imagine a realistic security model for which it does not hold.”
 • Basis: given assumptions known to be non-secure, BST can prove a non-secure system to be secure
†-Property

• State \((b, m, f, h)\) satisfies the †-property iff for each \(s \in S\) the following hold:

1. \(b(s: a) \neq \emptyset \Rightarrow [\forall o \in b(s: a) [f_c(s) \text{ dom } f_o(o)]]\)
2. \(b(s: w) \neq \emptyset \Rightarrow [\forall o \in b(s: w) [f_o(o) = f_c(s)]]\)
3. \(b(s: r) \neq \emptyset \Rightarrow [\forall o \in b(s: r) [f_c(s) \text{ dom } f_o(o)]]\)

• Idea: for writing, subject dominates object; for reading, subject also dominates object

• Differs from \(*\)-property in that the mandatory condition for writing is reversed
 • For \(*\)-property, it’s object dominates subject
Analogues

The following two theorems can be proved

• $\Sigma(R, D, W, z_0)$ satisfies the \dagger-property relative to $S' \subseteq S$ for any secure state z_0 iff for every action $(r, d, (b, m, f, h), (b', m', f', h'))$, W satisfies the following for every $s \in S'$
 • Every $(s, o, p) \in b - b'$ satisfies the \dagger-property relative to S'
 • Every $(s, o, p) \in b'$ that does not satisfy the \dagger-property relative to S' is not in b

• $\Sigma(R, D, W, z_0)$ is a secure system if z_0 is a secure state and W satisfies the conditions for the simple security condition, the \dagger-property, and the ds-property.
Problem

• This system is *clearly* non-secure!
 • Information flows from higher to lower because of the †-property
Discussion

• Role of Basic Security Theorem is to demonstrate that rules preserve security

• Key question: what is security?
 • Bell-LaPadula defines it in terms of 3 properties (simple security condition, *-property, discretionary security property)
 • Theorems are assertions about these properties
 • Rules describe changes to a particular system instantiating the model
 • Showing system is secure requires proving rules preserve these 3 properties
Rules and Model

• Nature of rules is irrelevant to model
• Model treats “security” as axiomatic
• Policy defines “security”
 • This instantiates the model
 • Policy reflects the requirements of the systems
• McLean’s definition differs from Bell-LaPadula
 • ... and is not suitable for a confidentiality policy
• Analysts cannot prove “security” definition is appropriate through the model
System Z

• System supporting weak tranquility

• On *any* request, system downgrades *all* subjects and objects to lowest level and adds the requested access permission
 • Let initial state satisfy all 3 properties
 • Successive states also satisfy all 3 properties

• Clearly not secure
 • On first request, everyone can read everything
Reformulation of Secure Action

• Given state that satisfies the 3 properties, the action transforms the system into a state that satisfies these properties and eliminates any accesses present in the transformed state that would violate the property in the initial state, then the action is secure

• BST holds with these modified versions of the 3 properties
Reconsider System Z

• Initial state:
 • subject s, object o
 • $C = \{\text{High, Low}\}$, $K = \{\text{All}\}$

• Take:
 • $f_c(s) = (\text{Low, } \{\text{All}\})$, $f_o(o) = (\text{High, } \{\text{All}\})$
 • $m[s, o] = \{w\}$, and $b = \{(s, o, w)\}$.

• s requests r access to o

• Now:
 • $f'_o(o) = (\text{Low, } \{\text{All}\})$
 • $(s, o, r) \in b'$, $m'[s, o] = \{r, w\}$
Non-Secure System Z

• As \((s, o, r) \in b' - b\) and \(f_o(o) \text{ dom } f_c(s)\), access added that was illegal in previous state
 • Under the new version of the Basic Security Theorem, System Z is not secure
 • Under the old version of the Basic Security Theorem, as \(f'_c(s) = f'_o(o)\), System Z is secure
Response: What Is Modeling?

• Two types of models
 1. Abstract physical phenomenon to fundamental properties
 2. Begin with axioms and construct a structure to examine the effects of those axioms

• Bell-LaPadula Model developed as a model in the first sense
 • McLean assumes it was developed as a model in the second sense
Reconciling System Z

• Different definitions of security create different results
 • Under one (original definition in Bell-LaPadula Model), System Z is secure
 • Under other (McLean’s definition), System Z is not secure
Key Points

• Confidentiality models restrict flow of information
• Bell-LaPadula models multilevel security
 • Cornerstone of much work in computer security
• Controversy over meaning of security
 • Different definitions produce different results