

Basic Cryptography

Chapter 10

Overview

- Symmetric cryptography
 - Cæsar and Vigènere ciphers
 - DES, AES
- Public key (asymmetric) cryptography
 - El Gamal, RSA
 - Elliptic ciphers
- Cryptographic Checksums
 - HMAC
- Digital signatures

SECOND EDITION

Cryptosystem

- Quintuple (\mathcal{E} , \mathcal{D} , \mathcal{M} , \mathcal{K} , C)
 - \mathcal{M} set of plaintexts
 - \mathcal{K} set of keys
 - *C* set of ciphertexts
 - \mathcal{E} set of encryption functions $e: \mathcal{M} \times \mathcal{K} \rightarrow C$
 - \mathcal{D} set of decryption functions $d: C \times \mathcal{K} \rightarrow \mathcal{M}$

Example

- Example: Cæsar cipher
 - $\mathcal{M} = \{ \text{ sequences of letters } \}$
 - $\mathcal{K} = \{ i \mid i \text{ is an integer and } 0 \le i \le 25 \}$
 - $\mathcal{E} = \{ E_k \mid k \in \mathcal{K} \text{ and for all letters } m, E_k(m) = (m + k) \mod 26 \}$
 - $\mathcal{D} = \{ D_k \mid k \in \mathcal{K} \text{ and for all letters } c, D_k(c) = (26 + c k) \mod 26 \}$
 - $C = \mathcal{M}$

Attacks

- Opponent whose goal is to break cryptosystem is the *adversary*
 - Assume adversary knows algorithm used, but not key
- Three types of attacks:
 - *ciphertext only*: adversary has only ciphertext; goal is to find plaintext, possibly key
 - known plaintext: adversary has ciphertext, corresponding plaintext; goal is to find key
 - *chosen plaintext*: adversary may supply plaintexts and obtain corresponding ciphertext; goal is to find key

Basis for Attacks

- Mathematical attacks
 - Based on analysis of underlying mathematics
- Statistical attacks
 - Make assumptions about the distribution of letters, pairs of letters (digrams), triplets of letters (trigrams), etc.
 - Called models of the language
 - Examine ciphertext, correlate properties with the assumptions.

Symmetric Cryptography

- Sender, receiver share common key
 - Keys may be the same, or trivial to derive from one another
 - Sometimes called *secret key cryptography*
- Two basic types
 - Transposition ciphers
 - Substitution ciphers
 - Combinations are called *product ciphers*

Transposition Cipher

- Rearrange letters in plaintext to produce ciphertext
- Example (Rail-Fence Cipher)
 - Plaintext is HELLO WORLD
 - Rearrange as

HLOOL

ELWRD

• Ciphertext is HLOOL ELWRD

SECOND EDITION

Attacking the Cipher

- Anagramming
 - If 1-gram frequencies match English frequencies, but other *n*-gram frequencies do not, probably transposition
 - Rearrange letters to form *n*-grams with highest frequencies

Example

- Ciphertext: HLOOLELWRD
- Frequencies of 2-grams beginning with H
 - HE 0.0305
 - HO 0.0043
 - HL, HW, HR, HD < 0.0010
- Frequencies of 2-grams ending in H
 - WH 0.0026
 - EH, LH, OH, RH, DH ≤ 0.0002
- Implies E follows H

Example

• Arrange so the H and E are adjacent

HE LL OW OR LD

• Read across, then down, to get original plaintext

Substitution Ciphers

- Change characters in plaintext to produce ciphertext
- Example (Caesar cipher)
 - Plaintext is HELLO WORLD
 - Change each letter to the third letter following it (X goes to A, Y to B, Z to C)
 - Key is 3, usually written as letter 'D'
 - Ciphertext is KHOOR ZRUOG

Attacking the Cipher

- Exhaustive search
 - If the key space is small enough, try all possible keys until you find the right one
 - Caesar cipher has 26 possible keys
- Statistical analysis
 - Compare to 1-gram model of English

Statistical Attack

• Compute frequency of each letter in ciphertext:

G 0.1 H 0.1 K 0.1 O 0.3 R 0.2 U 0.1 Z 0.1

- Apply 1-gram model of English
 - Frequency of characters (1-grams) in English is on next slide

Character Frequencies

а	0.07984	h	0.06384	n	0.06876	t	0.09058
b	0.01511	i	0.07000	0	0.07691	u	0.02844
С	0.02504	j	0.00131	р	0.01741	V	0.01056
d	0.04260	k	0.00741	q	0.00107	W	0.02304
е	0.12452		0.03961	r	0.05912	x	0.00159
f	0.02262	m	0.02629	S	0.06333	У	0.02028
g	0.02013					Z	0.00057

Statistical Analysis

- *f*(*c*) frequency of character *c* in ciphertext
- φ(i) correlation of frequency of letters in ciphertext with corresponding letters in English, assuming key is i
 - $\varphi(i) = \sum_{0 \le c \le 25} f(c)p(c-i)$ so here, $\varphi(i) = 0.1 p(6-i) + 0.1 p(7-i) + 0.1 p(10-i) + 0.3 p(14-i) + 0.2 p(17-i) + 0.1 p(20-i) + 0.1 p(25-i)$
 - p(x) is frequency of character x in English

Correlation: $\varphi(i)$ for $0 \le i \le 25$

i	φ(<i>i</i>)	i	φ(<i>i</i>)	i	φ(<i>i</i>)	i	φ(<i>i</i>)
0	0.0469	7	0.0461	13	0.0505	19	0.0312
1	0.0393	8	0.0194	14	0.0561	20	0.0287
2	0.0396	9	0.0286	15	0.0215	21	0.0526
3	0.0586	10	0.0631	16	0.0306	22	0.0398
4	0.0259	11	0.0280	17	0.0386	23	0.0338
5	0.0165	12	0.0318	18	0.0317	24	0.0320
6	0.0676					25	0.0443

The Result

- Most probable keys, based on $\boldsymbol{\phi}$:
 - $i = 6, \varphi(i) = 0.0676$
 - plaintext EBIIL TLOLA
 - $i = 10, \varphi(i) = 0.0631$
 - plaintext AXEEH PHKEW
 - i = 14, $\varphi(i) = 0.0561$
 - plaintext WTAAD LDGAS
 - $i = 3, \varphi(i) = 0.0586$
 - plaintext HELLO WORLD
- Only English phrase is for *i* = 3
 - That's the key (3 or 'D')

Caesar's Problem

- Key is too short
 - Can be found by exhaustive search
 - Statistical frequencies not concealed well
 - They look too much like regular English letters
- So make it longer
 - Multiple letters in key
 - Idea is to smooth the statistical frequencies to make cryptanalysis harder

Vigènere Cipher

- Like Caesar cipher, but use a phrase
 - So it's effectively multiple Caesar ciphers
- Example
 - Message A LIMERICK PACKS LAUGHS ANATOMICAL
 - Key BENCH
 - Encipher using Caesar cipher for each letter:

keyBENCHBENCHBENCHBENCHBENCHBENCHplainALIMERICKPACKSLAUGHSANATOMICALcipherBPVOLSMPMWBGXUSBYTJZBRNVVNMPCS

Relevant Parts of Tableau

B	C	E	H
B	С	E	Η
D	E	G	J
F	G	I	L
H	I	K	N
I	J	${ m L}$	0
J	K	Μ	P
L	Μ	0	R
M	Ν	Р	S≁
N	0	Q	Т
0	Р	Ŕ	U
P	Q	S	V
Q	Ŕ	Т	W
Ŝ₊	Т	V	Y
Т	U	W	\mathbf{Z}
U	V	Х	A
V	W	Y	В
	BBDFHIJLMNOPQSTUV	B C B C D E F G H J K M N S F I J K M N O P Q R T U V W	$ \begin{array}{c cccc} B & C & E \\ B & C & E \\ D & E & G \\ F & G & I \\ H & I & K \\ I & J & L \\ J & K & M \\ I & J & L \\ J & K & M \\ I & J & L \\ J & K & M \\ I & J & L \\ J & K & M \\ I & J & L \\ J & K & M \\ I & J & L \\ J & K & M \\ I & J & L \\ J & K & M \\ I & J & L \\ I & I & I \\ I & I & I \\ I & I & I \\ I & I &$

- Tableau shown has relevant rows, columns only
 - Columns correspond to letters from the key
 - Rows correspond to letters from the message
- Example encipherments:
 - key B, letter R: follow B column down to R row (giving "S")
 - Key H, letter L: follow H column down to L row (giving "S")

N

Ν

P R

T U

V

X Y Z A

BCEFGH

Useful Terms

- *period*: length of key
 - In earlier example, period is 3
- tableau: table used to encipher and decipher
 - Vigènere cipher has key letters on top, plaintext letters on the left
- *polyalphabetic*: the key has several different letters
 - Caesar cipher is monoalphabetic

Attacking the Cipher

- Approach
 - Establish period; call it n
 - Break message into n parts, each part being enciphered using the same key letter
 - Solve each part; you can leverage one part from another
- We will show each step

The Target Cipher

• We want to break this cipher:

ADQYS MIUSB OXKKT MIBHK IZOOO EQOOG IFBAG KAUMF VVTAA CIDTW MOCIO EQOOG BMBFV ZGGWP CIEKQ HSNEW VECNE DLAAV RWKXS VNSVP HCEUT QOIOF MEGJS WTPCH AJMOC HIUIX

Establish Period

• Kaskski: repetitions in the ciphertext occur when characters of the key appear over the same characters in the plaintext

• Example:

keyVIGVIGVIGVIGVIGVplainTHEBOYHASTHEBALLcipherOPKWWECIYOPKWIRG

Note the key and plaintext line up over the repetitions (underlined). As distance between repetitions is 9, the period is a factor of 9 (that is, 1, 3, or 9)

Repetitions in Example

Letters	Start	End	Gap Length	Gap Length Factors
OEQOOG	24	54	30	2, 3, 5
MOC	50	122	72	2, 2, 2, 3, 3

Estimate of Period

- OEQOOG is probably not a coincidence
 - It's too long for that
 - Period may be 1, 2, 3, 5, 6, 10, 15, or 30
- MOC is also probably not a coincidence
 - Period may be 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, or 72
- Period of 2 or 3 is probably too short (but maybe not)
- Begin with period of 6

Check on Period

- Index of coincidence is probability that two randomly chosen letters from ciphertext will be the same
- Tabulated for different periods:
 - 1 0.0660
 - 2 0.0520
 - 3 0.0473
 - 6 0.0427

Compute IC for an Alphabet

• IC =
$$[n (n-1)]^{-1} \sum_{0 \le i \le 25} [F_i (F_i - 1)]$$

- where *n* is length of ciphertext and *F_i* the number of times character *i* occurs in ciphertext
- For the given ciphertext, IC = 0.0433
 - Indicates a key of length 5 or 6
 - A statistical measure, so it can be in error, but it agrees with the previous estimate (which was 6)

Splitting Into Alphabets

alphabet 1: AIKHOIATTOBGEEERNEOSAI alphabet 2: DUKKEFUAWEMGKWDWSUFWJU alphabet 3: QSTIQBMAMQBWQVLKVTMTMI alphabet 4: YBMZOAFCOOFPHEAXPQEPOX alphabet 5: SOIOOGVICOVCSVASHOGCC alphabet 6: MXBOGKVDIGZINNVVCIJHH

ICs (#1, 0.0692; #2, 0.0779; #3, 0.0779; #4, 0.0562; #5, 0.1238; #6, 0.0429) indicate all alphabets have period 1, except #4 (between 1 and 2) and #6 (between 5 and 6); assume statistical variance

Frequency Examination

#	A	В	С	D	Ε	F	G	Η	Ι	J	K	\mathbf{L}	М	Ν	0	Ρ	Q	R	S	Т	U	V	W	Х	Y	\mathbf{Z}
1	3	1	0	0	4	0	1	1	3	0	1	0	0	1	3	0	0	1	1	2	0	0	0	0	0	0
2	1	0	0	2	2	2	1	0	0	1	3	0	1	0	0	0	0	0	1	0	4	0	4	0	0	0
3	1	2	0	0	0	0	0	0	2	0	1	1	4	0	0	0	4	0	1	3	0	2	1	0	0	0
4	2	1	1	0	2	2	0	1	0	0	0	0	1	0	4	3	1	0	0	0	0	0	0	2	1	1
5	1	0	5	0	0	0	2	1	2	0	0	0	0	0	5	0	0	0	3	0	0	2	0	0	0	0
6	0	1	1	1	0	0	2	2	3	1	1	0	1	2	1	0	0	0	0	0	0	3	0	1	0	1
	Η	М	М	М	Η	Μ	Μ	Η	Η	М	М	Μ	М	Η	Η	Μ	\mathbf{L}	Η	Η	Η	Μ	\mathbf{L}	\mathbf{L}	L	\mathbf{L}	\mathbf{L}
The	The last row has general letter frequencies (H high, M medium, L low)																									

Begin Decryption

- First matches characteristics of unshifted alphabet
- Third matches if I shifted to A
- Sixth matches if V shifted to A
- Substitute into ciphertext (bold are substitutions)

Look For Clues

- AJE in last line suggests "are", meaning second alphabet maps A into S:

Next Alphabet

• MICAX in last line suggests "mical" (a common ending for an adjective), meaning fourth alphabet maps O into A:

ALIMSRICKPOCKSLAIGHSANOTOMICOLINTOGPACETVATISQIITEECCNOMICOLBUTTVEGOODCNESIVSSEENSCSELDOAARECLSANANDHHECLEONONESGOSELDCMARECCMICALV

Got It!

• QI means that U maps into I, as Q is always followed by U: ALIME RICKP ACKSL AUGHS ANATO MICAL INTOS PACET HATIS QUITE ECONO MICAL BUTTH EGOOD ONESI VESEE NSOSE LDOMA RECLE ANAND THECL EANON ESSOS ELDOM ARECO MICAL

One-Time Pad

- A Vigenère cipher with a random key at least as long as the message
 - Provably unbreakable
 - Why? Look at ciphertext DXQR. Equally likely to correspond to plaintext DOIT (key AJIY) and to plaintext DONT (key AJDY) and any other 4 letters
 - Warning: keys *must* be random, or you can attack the cipher by trying to regenerate the key
 - Approximations, such as using pseudorandom number generators to generate keys, are *not* random

Overview of the DES

- A block cipher:
 - encrypts blocks of 64 bits using a 64 bit key
 - outputs 64 bits of ciphertext
- A product cipher
 - basic unit is the bit
 - performs both substitution and transposition (permutation) on the bits
- Cipher consists of 16 rounds (iterations) each with a 48 bit round key generated from the user-supplied key

Structure of the DES

- Input is first permuted, then split into left half (L) and right half (R), each 32 bits
- Round begins; R and round key run through function *f*, then xor'ed with L
 - *f* expands R to 48 bits, xors with round key, and then each 6 bits of this are run through S-boxes (substitution boxes), each of which gives 4 bits of output
 - Those 32 bits are permuted and this is the output of f
- R and L swapped, ending the round
 - Swapping does not occur in the last round
- After last round, L and R combined, permuted, forming DES output

Controversy

- Considered too weak
 - Diffie, Hellman said in a few years technology would allow DES to be broken in days
 - Design using 1999 technology published
- Design decisions not public
 - S-boxes may have backdoors

Undesirable Properties

- 4 weak keys
 - They are their own inverses
- 12 semi-weak keys
 - Each has another semi-weak key as inverse
- Complementation property
 - $DES_k(m) = c \Longrightarrow DES_k(m') = c'$
- S-boxes exhibit irregular properties
 - Distribution of odd, even numbers non-random
 - Outputs of fourth box depends on input to third box

Differential Cryptanalysis

- A chosen ciphertext attack
 - Requires 2⁴⁷ plaintext, ciphertext pairs
- Revealed several properties
 - Small changes in S-boxes reduced the number of pairs needed
 - Making every bit of the round keys independent did not impede attack
- Linear cryptanalysis improves result
 - Requires 2⁴³ plaintext, ciphertext pairs

DES Modes

- Electronic Code Book Mode (ECB)
 - Encipher each block independently
- Cipher Block Chaining Mode (CBC)
 - Xor each block with previous ciphertext block
 - Requires an initialization vector for the first one
- Encrypt-Decrypt-Encrypt (2 keys: k, k')
 - $c = DES_k(DES_k^{-1}(DES_k(m)))$
- Triple DES(3 keys: k, k', k'')
 - $c = DES_k(DES_{k'}(DES_{k'}(m)))$

Current Status of DES

- Design for computer system, associated software that could break any DES-enciphered message in a few days published in 1998
- Several challenges to break DES messages solved using distributed computing
- NIST selected Rijndael as Advanced Encryption Standard, successor to DES
 - Designed to withstand attacks that were successful on DES
- DES officially withdrawn in 2005

Advanced Encryption Standard

- Competition announces in 1997 to select successor to DES
 - Successor needed to be available for use without payment (no royalties, etc.)
 - Successor must encipher 128-bit blocks with keys of lengths 128, 192, and 256
- 3 workshops in which proposed successors were presented, analyzed
- Rijndael selected as successor to DES, called the Advanced Encryption Standard (AES
 - Other finalists were Twofish, Serpent, RC6, MARS

Overview of the AES

- A block cipher:
 - encrypts blocks of 128 bits using a 128, 192, or 256 bit key
 - outputs 128 bits of ciphertext
- A product cipher
 - basic unit is the bit
 - performs both substitution and transposition (permutation) on the bits
- Cipher consists of rounds (iterations) each with a round key generated from the user-supplied key
 - If 128 bit key, then 10 rounds
 - If 192 bit key, then 12 rounds
 - If 256 bit key, then 14 rounds

Structure of the AES: Encryption

- Input placed into a state array, which is then combined with zeroth round key
 - Treat state array as a 4x4 matrix, each entry being a byte
- Round begins; new values substituted for each byte of the state array
- Rows then cyclically shifted
- Each column independently altered
 - Not done in last round
- Result xor'ed with round key
- After last round, state array is the encrypted input

Structure of the AES: Decryption

- Round key schedule reversed
- Input placed into a state array, which is then combined with zeroth round key (of reversed schedule)
- Round begins; rows cyclically shifted, then new values substituted for each byte of the state array
 - Inverse rotation, substitution of encryption
- Result xor'ed with round key (of reversed schedule)
- Each column independently altered
 - Inverse of encryption; this is not done in last round
- After last round, state array is the decrypted input

Analysis of AES

- Designed to withstand attacks that the DES is vulnerable to
- All details of design made public, unlike with the DES
 - In particular, those of the substitutions (S-boxes) were described
- After 2 successive rounds, every bit in the state array depends an every bit in the state array 2 rounds ago
- No weak, semi-weak keys

AES Modes

- DES modes also work with AES
- EDE and "Triple-AES" not used
 - Extended block size makes this unnecessary
- New counter mode CTR added

Public Key Cryptography

• Two keys

- Private key known only to individual
- Public key available to anyone
 - Public key, private key inverses
- Idea
 - Confidentiality: encipher using public key, decipher using private key
 - Integrity/authentication: encipher using private key, decipher using public one

Requirements

- 1. It must be computationally easy to encipher or decipher a message given the appropriate key
- 2. It must be computationally infeasible to derive the private key from the public key
- 3. It must be computationally infeasible to determine the private key from a chosen plaintext attack

El Gamal Cryptosystem

- Based on discrete logarithm problem
 - Given integers n, g, and b with 0 ≤ a < n and 0 ≤ b < n; then find an integer k such that 0 ≤ k < n and a = g^k mod n
 - Choose *n* to be a prime *p*
 - Solutions known for small *p*
 - Solutions computationally infeasible as *p* grows large

Algorithm

- Choose prime p with p-1 having a large factor
- Choose generator g such that 1 < g < p
- Choose k_{priv} such that $1 < k_{priv} < p 1$
- Set $y = g^{k_{priv}} \mod p$
- Then public key $k_{pub} = (p, g, y)$ and private key is k_{priv}

Example

- Alice: *p* = 262643; *g* = 9563, *k*_{priv} = 3632
 - 262643 = 2 x 131321, also prime
- Alice's public key k_{pub} = (262643, 9563, 27459)
 - As $y = g^{k_{priv}} \mod p = 9563^{3632} \mod 262643 = 27459$

Enciphering and Deciphering

Encipher message *m*:

- Choose random integer k relatively prime to p-1
- Compute $c_1 = g^k \mod p$; $c_2 = my^k \mod p$
- Ciphertext is $c = (c_1, c_2)$

Decipher ciphertext (c_1, c_2)

- Compute $m = c_2 c_1^{-k_{priv}} \mod p$
- Message is *m*

Example Encryption

- Bob wants to send Alice PUPPIESARESMALL
- Message to send: 152015 150804 180017 041812 001111
- First block: choose *k* = 5
 - $c_{1,1} = 9563^5 \mod 262643 = 15653$
 - $c_{1,2} = (152015)27459^5 \mod 262643 = 923$
- Next block: choose *k* = 3230
 - $c_{2,1} = 9563^{3230} \mod 262643 = 46495$
 - $c_{2,2} = (150804)27459^{3230} \mod 262643 = 109351$
- Continuing, enciphered message is (15653,923), (46495,109351), (176489,208811), (88247,144749), (152432,5198)

Example Decryption

Alice receives (15653,923), (46495,109351), (176489,208811), (88247,144749), (152432,5198)

- First block: (923)15653⁻³⁶³² mod 262643 = 152015
- Second block: (109351)46495⁻³⁶³² mod 262643 = 150804
- Third block: (208811)176489⁻³⁶³² mod 262643 = 180017
- Fourth block: (144749) 88247⁻³⁶³² mod 262643 = 41812
- Fifth block: (5198) 152432⁻³⁶³² mod 262643 = 1111

So the message is 152015 150804 180017 041812 001111

• Which translates to "PUP PIE SAR ESM ALL" or PUPPIESARESMALL

Notes

- Same letter enciphered twice produces two different ciphertexts
 - Defeats replay attacks
- If the integer k is used twice, and an attacker has plaintext for one of those messages, deciphering the other is easy
- c_2 linear function of m, so forgery possible
 - *m* message, (c_1, c_2) ciphertext; then (c_1, nc_2) is ciphertext corresponding to message *nm*

RSA

- First described publicly in 1978
 - Unknown at the time: Clifford Cocks developed a similar cryptosystem in 1973, but it was classified until recently
- Exponentiation cipher
- Relies on the difficulty of determining the number of numbers relatively prime to a large integer *n*

Background

- Totient function $\phi(n)$
 - Number of positive integers less than *n* and relatively prime to *n*
 - *Relatively prime* means with no factors in common with *n*
- Example: $\phi(10) = 4$
 - 1, 3, 7, 9 are relatively prime to 10
- Example: $\phi(21) = 12$
 - 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20 are relatively prime to 21

Algorithm

- Choose two large prime numbers p, q
 - Let n = pq; then $\phi(n) = (p-1)(q-1)$
 - Choose e < n such that e is relatively prime to $\phi(n)$.
 - Compute *d* such that *ed* mod $\phi(n) = 1$
- Public key: (*e*, *n*); private key: *d*
- Encipher: $c = m^e \mod n$
- Decipher: $m = c^d \mod n$

Example: Confidentiality

- Take p = 181, q = 1451, so n = 262631 and $\phi(n) = 261000$
- Alice chooses *e* = 154993, making *d* = 95857
- Bob wants to send Alice secret message PUPPIESARESMALL (152015 150804 180017 041812 001111); encipher using public key
 - 152015¹⁵⁴⁹⁹³ mod 262631 = 220160
 - 150804¹⁵⁴⁹⁹³ mod 262631 = 135824
 - 180017¹⁵⁴⁹⁹³ mod 262631 = 252355
 - 041812¹⁵⁴⁹⁹³ mod 262631 = 245799
 - 001111₁₅₄₉₉₃ mod 262631 = 070707
- Bob sends 220160 135824 252355 245799 070707
- Alice uses her private key to decipher it

Example: Authentication/Integrity

- Alice wants to send Bob the message PUPPIESARESMALL in such a way that Bob knows it comes from her and nothing was changed during the transmission
 - Same public, private keys as before
- Encipher using private key:
 - 152015⁹⁵⁸⁵⁷ mod 262631 = 072798
 - 150804⁹⁵⁸⁵⁷ mod 262631 = 259757
 - 180017⁹⁵⁸⁵⁷ mod 262631 = 256449
 - 041812⁹⁵⁸⁵⁷ mod 262631 = 089234
 - 001111⁹⁵⁸⁵⁷ mod 262631 = 037974
- Alice sends 072798 259757 256449 089234 037974
- Bob receives, uses Alice's public key to decipher it

Example: Both (Sending)

- Same *n* as for Alice; Bob chooses *e* = 45593, making *d* = 235457
- Alice wants to send PUPPIESARESMALL (152015 150804 180017 041812 001111) confidentially and authenticated
- Encipher:
 - (152015⁹⁵⁸⁵⁷ mod 262631)⁴⁵⁵⁹³ mod 262631 = 249123
 - (150804⁹⁵⁸⁵⁷ mod 262631)⁴⁵⁵⁹³ mod 262631 = 166008
 - (180017⁹⁵⁸⁵⁷ mod 262631)⁴⁵⁵⁹³ mod 262631 = 146608
 - (041812⁹⁵⁸⁵⁷ mod 262631)⁴⁵⁵⁹³ mod 262631 = 092311
 - (001111⁹⁵⁸⁵⁷ mod 262631)⁴⁵⁵⁹³ mod 262631 = 096768
- So Alice sends 249123 166008 146608 092311 096768

Example: Both (Receiving)

- Bob receives 249123 166008 146608 092311 096768
- Decipher:
 - (249123²³⁵⁴⁵⁷ mod 262631)¹⁵⁴⁹⁹³ mod 262631 = 152012
 - (166008²³⁵⁴⁵⁷ mod 262631)¹⁵⁴⁹⁹³ mod 262631 = 150804
 - (146608²³⁵⁴⁵⁷ mod 262631)¹⁵⁴⁹⁹³ mod 262631 = 180017
 - $(092311^{235457} \mod 262631)^{154993} \mod 262631 = 041812$
 - (096768²³⁵⁴⁵⁷ mod 262631)¹⁵⁴⁹⁹³ mod 262631 = 001111
- So Alice sent him 152015 150804 180017 041812 001111
 - Which translates to PUP PIE SAR ESM ALL or PUPPIESARESMALL

Security Services

- Confidentiality
 - Only the owner of the private key knows it, so text enciphered with public key cannot be read by anyone except the owner of the private key
- Authentication
 - Only the owner of the private key knows it, so text enciphered with private key must have been generated by the owner

More Security Services

- Integrity
 - Enciphered letters cannot be changed undetectably without knowing private key
- Non-Repudiation
 - Message enciphered with private key came from someone who knew it

Warnings

- Encipher message in blocks considerably larger than the examples here
 - If only characters per block, RSA can be broken using statistical attacks (just like symmetric cryptosystems)
- Attacker cannot alter letters, but can rearrange them and alter message meaning
 - Example: reverse enciphered message of text ON to get NO

Elliptic Curve Ciphers

- Miller and Koblitz proposed this
- *Elliptic curve* is a curve of the form $y^2 = x^3 + ax + b$
 - Curve $y^2 = x^3 + 4x + 10$ plotted at right
- Can be applied to any cryptosystem depending on discrete log problem
- Advantage: keys shorter than other forms of public key cryptosystems, so computation time shorter

Basics

- Take 2 points on the elliptic curve P_1 , P_2
 - If $P_1 \neq P_2$, draw line through them
 - If $P_1 = P_2$, draw a tangent to curve there
- If line intersects curve at $P_3 = (x_3, y_3)$
 - Take the sum of P_1 , P_2 to be P4 = (x_3 , $-y_3$)
- Otherwise, line is vertical, so take $P_1 = (x, y)$; treat ∞ as another point of intersection; third point of intersection is $P_2 = (x, -y)$
 - Given above definition of addition, $P_1 + \infty = (x, y) = P_1$
 - So ∞ is additive identity

The Math

- $P_1 = (x_1, y_1); P_2 = (x_2, y_2)$
- Then if $P_1 \neq P_2$, $m = (y_2 y_1) / (x_2 x_1)$
- Otherwise, $m = (3x_1^2 + a) / y_1$
- Next, $P_3 = P_1 + P_2 = (m^2 x_1 x_2, m(x_1 x_3) y_1) = (x_3, y_3)$
- And $P_4 = (x_{4,}, y_4)$, where $x_4 = x_3, y_4 = -y_3$
 - P_4 defined to be sum of P_1 , P_2

Basis for the Cryptosystem

- Curve: $y^2 = x^3 + ax + b \mod p$, where $4a^3 + 27b^2 \neq 0$ and p prime
- Pick a point *P* and add it to itself *n* times; call this *Q*, so *Q* = *nP*
 - If *n* is large, generally very hard to compute *n* from *P* and *Q*
- So, elliptic curve cryptosystem has 4 parameters (*a*, *b*, *p*, *P*)
- Private key k_{priv} chosen randomly such that $k_{priv} < p$
 - In practice, choose k_{priv} to be less than number of integer points on curve
- Public key $k_{pub} = k_{priv} P$
- In what follows, $(x, y) \mod p = (x \mod p, y \mod p)$

Elliptic Curve El Gamal Cryptosystem

- Choose a point *P* on the curve, and a private key *kpriv*
- Compute $Q = k_{priv}P$
- Public key is (*P*, *Q*, *a*, *p*)

Encipher: express message as point *m* on curve; choose random number *k*

- $c_1 = kP; c_2 = m + kQ$
- Ciphertext is (c₁, c₂)

Decipher:

- $m = c_2 k_{priv}c_1$
- Message is *m*

Example: Encryption

- Alice, Bob agree to use the curve $y^2 = x^3 + 4x + 14 \mod 2503$ and the point P = (1002, 493)
- Bob chooses private key $k_{priv,Bob} = 1847$
 - Public key $k_{pub,Bob} = k_{priv,Bob}P = 1847(1002, 493) \mod 2503 = (460, 2083)$
- Alice wants to send Bob message *m* = (18, 1394)
 - She chooses random *k* = 717
 - $c_1 = kP = 717(1002, 493) \mod 2503 = (2134, 419)$
 - $c_2 = m + k k_{pub,Bob} = (18, 1394) + 717(460, 2083) \mod 2503 = (221, 1253)$

so she sends Bob c_1 and c_2

Example: Decryption

- From last slide, Alice, Bob agree to use the curve $y^2 = x^3 + 4x + 14$ mod 2503 and the point P = (1002, 493)
 - Bob's private key $k_{priv,Bob} = 1847$
 - Bob's public key *k*_{pub,Bob} (460, 2083)
- To decrypt $c_1 = (2134, 419), c_2 = (221, 1253)$, Bob computes:
 - $k_{priv,Bob}c_1 = 1847(2134, 419) \mod 2503 = (652, 1943)$
 - $m = c_2 c_1 = (221, 1253) (652, 1943) \mod 2503 = (18, 1394)$

obtaining the message Alice sent

Selection of Elliptic Curves

- For elliptic curves for cryptography, selection of parameters critical
 - Example: b = 0, p mod 4 = 3 makes the underlying discrete log problem significantly easier to solve
 - Example: so does a = 0, p mod 3 = 2
- Several such curves are recommended:
 - U.S. NIST: P-192, P-224, P-256, P-384, P-521 using a prime modulus and a binary field of degree 163, 233, 283 409, 571
 - Certicom: same, but degree 239 binary field instead of degree 233 binary field
 - Others: Curve1174, Curve25519

Cryptographic Checksums

- Mathematical function to generate a set of k bits from a set of n bits (where k ≤ n).
 - k is smaller then n except in unusual circumstances
- Example: ASCII parity bit
 - ASCII has 7 bits; 8th bit is "parity"
 - Even parity: even number of 1 bits
 - Odd parity: odd number of 1 bits

Example Use

- Bob receives "10111101" as bits.
 - Sender is using even parity; 6 1 bits, so character was received correctly
 - Note: could be garbled, but 2 bits would need to have been changed to preserve parity
 - Sender is using odd parity; even number of 1 bits, so character was not received correctly

Definition

- Cryptographic checksum $h: A \rightarrow B$:
 - 1. For any $x \in A$, h(x) is easy to compute
 - 2. For any $y \in B$, it is computationally infeasible to find $x \in A$ such that h(x) = y
 - 3. It is computationally infeasible to find two inputs $x, x' \in A$ such that $x \neq x'$ and h(x) = h(x')
 - Alternate form (stronger): Given any $x \in A$, it is computationally infeasible to find a different $x' \in A$ such that h(x) = h(x').

Collisions

- If $x \neq x'$ and h(x) = h(x'), x and x' are a collision
 - Pigeonhole principle: if there are *n* containers for *n*+1 objects, then at least one container will have at least 2 objects in it.
 - Application: if there are 32 files and 8 possible cryptographic checksum values, at least one value corresponds to at least 4 files

Keys

- Keyed cryptographic checksum: requires cryptographic key
 - AES in chaining mode: encipher message, use last *n* bits. Requires a key to encipher, so it is a keyed cryptographic checksum.
- Keyless cryptographic checksum: requires no cryptographic key
 - SHA-512, SHA-3 are examples; older ones include MD4, MD5, RIPEM, SHA-0, and SHA-1 (methods for constructing collisions are known for these)

HMAC

- Make keyed cryptographic checksums from keyless cryptographic checksums
- h keyless cryptographic checksum function that takes data in blocks of b bytes and outputs blocks of l bytes. k' is cryptographic key of length b bytes
 - If short, pad with 0 bytes; if long, hash to length b
- *ipad* is 00110110 repeated *b* times
- opad is 01011100 repeated b times
- HMAC- $h(k, m) = h(k' \oplus opad || h(k' \oplus ipad || m))$
 - \oplus exclusive or, || concatenation

Strength of HMAC-*h*

- Depends on the strength of the hash function *h*
- Attacks on HMAC-MD4, HMAC-MD5, HMAC-SHA-0, and HMAC-SHA-1 recover partial or full keys
 - Note all of MD4, MD5, SHA-0, and SHA-1 have been broken

Digital Signature

- Construct that authenticates origin, contents of message in a manner provable to a disinterested third party (a "judge")
- Sender cannot deny having sent message (service is "nonrepudiation")
 - Limited to *technical* proofs
 - Inability to deny one's cryptographic key was used to sign
 - One could claim the cryptographic key was stolen or compromised
 - Legal proofs, *etc.*, probably required; not dealt with here

Common Error

- Symmetric: Alice, Bob share key k
 - Alice sends *m* || { *m* } *k* to Bob
 - { *m* } *k* means *m* enciphered with key *k*, || means concatenation
 - Claim: This is a digital signature

<u>WRONG</u>

This is not a digital signature

• Why? Third party cannot determine whether Alice or Bob generated message

Classical Digital Signatures

- Require trusted third party
 - Alice, Bob each share keys with trusted party Cathy
- To resolve dispute, judge gets { m } k_{Alice}, { m } k_{Bob}, and has Cathy decipher them; if messages matched, contract was signed

Public Key Digital Signatures

- Basically, Alice enciphers the message, or its cryptographic hash, with her private key
- In case of dispute or question of origin or whether changes have been made, a judge can use Alice's public key to verify the message came from Alice and has not been changed since being signed

RSA Digital Signatures

- Alice's keys are (e_{Alice}, n_{Alice}) (public key), d_{Alice} (private key)
 In what follows, we use e_{Alice} to represent the public key
- Alice sends Bob

 $m \mid \mid \{ m \} e_{Alice}$

• In case of dispute, judge computes

 $\{ \{ m \} e_{Alice} \} d_{Alice} \}$

- and if it is *m*, Alice signed message
 - She's the only one who knows d_{Alice} !

RSA Digital Signatures

- Use private key to encipher message
 - Protocol for use is *critical*
- Key points:
 - Never sign random documents, and when signing, always sign hash and never document
 - Don't just encipher message and then sign, or vice versa
 - Changing public key and private key can cause problems
 - Messages can be forwarded, so third party cannot tell if original sender sent it to her

Attack #1

- Example: Alice, Bob communicating
 - $n_A = 262631, e_A = 154993, d_A = 95857$
 - $n_B = 288329, e_B = 22579, d_B = 138091$
- Alice asks Bob to sign 225536 so she can verify she has the right public key:
 - $c = m^{d_B} \mod n_B = 225536^{138091} \mod 288329 = 271316$
- Now she asks Bob to sign the statement AYE (002404):
 - $c = m^{d_B} \mod n_B = 002404^{138091} \mod 288329 = 182665$

Attack #1

- Alice computes:
 - new message NAY (130024) by (002404)(225536) mod 288329 = 130024
 - corresponding signature (271316)(182665) mod 288329 = 218646
- Alice now claims Bob signed NAY (130024), and as proof supplies signature 218646
- Judge computes $c^{e_B} \mod n_B = 218646^{22579} \mod 288329 = 130024$
 - Signature validated; Bob is toast

Preventing Attack #1

- Do not sign random messages
 - This would prevent Alice from getting the first message
- When signing, always sign the cryptographic hash of a message, not the message itself

Attack #2: Bob's Revenge

- Bob, Alice agree to sign contract LUR (112017)
 - But Bob really wants her to sign contract EWM (042212), but knows she won't
- Alice enciphers, then signs:
 - $(m^{e_B} \mod n_A)^{d_A} \mod n_A = (112017^{22579} \mod 288329)^{95857} \mod 262631 = 42390$
- Bob now changes his public key
 - Computes *r* such that 042212^{*r*} mod 288329 = 112017; one such *r* = 9175
 - Computes $re_B \mod \phi(n_B) = (9175)(22579) \mod 287184 = 102661$
 - Replace public key with (102661,288329), private key with 161245
- Bob claims contract was EWM
- Judge computes:
 - (42390¹⁵⁴⁹⁹³ mod 262631)¹⁶¹²⁴⁵ mod 288329 = 042212, which is EWM
 - Verified; now Alice is toast

Preventing Attack #2

- Obvious thought: instead of encrypting message and then signing it, sign the message and then encrypt it
 - May not work due to surreptitious forwarding attack
 - Idea: Alice sends Cathy an encrypted signed message; Cathy deciphers it, reenciphers it with Bob's public key, and then sends message and signature to Bob – now Bob thinks the message came from Alice (right) and was intended for him (wrong)
- Several ways to solve this:
 - Put sender and recipient in the message; changing recipient invalidates signature
 - Sign message, encrypt it, then sign the result

El Gamal Digital Signature

- Relies on discrete log problem
 - Choose *p* prime, *g*, *d* < *p*; compute $y = g^d \mod p$
- Public key: (y, g, p); private key: d
- To sign contract m:
 - Choose k relatively prime to p-1, and not yet used
 - Compute $a = g^k \mod p$
 - Find b such that $m = (da + kb) \mod p-1$
 - Signature is (*a*, *b*)
- To validate, check that
 - $y^a a^b \mod p = g^m \mod p$

Example

- Alice chooses *p* = 262643, *g* = 9563, *d* = 3632, giving *y* = 274598
- Alice wants to send Bob signed contract PUP (152015)
 - Chooses *k* = 601 (relatively prime to 262642)
 - This gives $a = g^k \mod p = 9563^{601} \mod 29 = 202897$
 - Then solving 152015 = (3632×202897 + 601*b*) mod 262642 gives *b* = 225835
 - Alice sends Bob message *m* = 152015 and signature (*a*,*b*) = (202897, 225835)
- Bob verifies signature: $g^m \mod p = 9563^{152015} \mod 262643 = 157499$ and $y^a a^b \mod p = 27459^{202897}202897^{225835} \mod 262643 = 157499$
 - They match, so Alice signed

Attack

- Eve learns k, corresponding message m, and signature (a, b)
 - Extended Euclidean Algorithm gives *d*, the private key
- Example from above: Eve learned Alice signed last message with k = 5 $m = (da + kb) \mod p - 1 \Rightarrow 152015 = (202897d + 601 \times 225835) \mod 262642$ giving Alice's private key d = 3632

El Gamal Digital Signature Using Elliptic Curve Cryptography

- As before, curve is $y^2 = x^3 + ax + b \mod p$ with *n* integer points on it
 - Choose a point P on the curve
 - Choose private key kpriv; compute Q = k_{priv}P, and the corresponding public key is (P, Q, a, b)
- To digitally sign, choose random integer k with $1 \le k < n$
 - Compute R = kP and $s = k^{-1}(m k_{priv}x) \mod n$, where x is first component of R
 - Digital signature is (m, R, s)
- To validate, recipient computes:
 - $V_1 = xQ + sR$
 - $V_2 = mP$
 - If $V_1 = V_2$, signature valid

Example

- Alice, Bob use elliptic curve y² = x³ + 4x + 14 mod 2503, point P = (1002, 493)
 - Curve has *n* = 2477 integer points on it
 - Bob chooses $k_{priv,Bob} = 1874$, so $Q = 1847(1002, 493) \mod 2503 = (460, 2083)$
- Bob digitally signs message *m* = 379
 - Chooses *k* = 877
 - Computes *R* = *kP* = 877(1002,493) = (1014, 788)
 - Computes $s = k^{-1}(m k_{priv,Bob}x) \mod n = 877^{-1}(379 1847 \times 1014) \mod 2477 = 2367$
 - Sends Alice (379, (1014, 788), 2367)

Example

- To validate signature, Alice computes:
 - $V_1 = xQ + sR = 1014(460,2083) + 2367(1014,788) = (535,1015)$
 - $V_2 = mP = 379(1002,493) = (535, 1015)$
- As $V_1 = V_2$, the signature is validated

Key Points

- Two main types of cryptosystems: classical and public key
- Classical cryptosystems encipher and decipher using the same key
 - Or one key is easily derived from the other
- Public key cryptosystems encipher and decipher using different keys
 - Computationally infeasible to derive one from the other
- Cryptographic checksums provide a check on integrity
- Digital signatures provide integrity of origin and content Much easier with public key cryptosystems than with classical cryptosystems