Auditing

Chapter 25

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-1

Outline

* Overview

* What is auditing?

* What does an audit system look like?

* How do you design an auditing system?
* Auditing mechanisms

* Examples: NFSv2, LAFS

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-2

What is Auditing?

* Llogging: recording events or statistics to provide information about
system use and performance

* Auditing: analysis of log records to present information about the
system in a clear, understandable manner

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-3

Uses

* Describe security state
e Determine if system enters unauthorized state

* Evaluate effectiveness of protection mechanisms
* Determine which mechanisms are appropriate and working
* Deter attacks because of presence of record

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-4

Problems

* What do you log?

* Hint: looking for violations of a policy, so record at least what will show such
violations

* What do you audit?

* Need not audit everything
* Key: what is the policy involved?

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-5

Audit System Structure

* Logger: records information, usually controlled by parameters
* Analyzer: analyzes logged information looking for something
* Notifier: reports results of analysis

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-6

Logger

* Type, quantity of information recorded controlled by system or
program configuration parameters

* May be human readable or not
* |f not, usually viewing tools supplied
e Space available, portability influence storage format

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-7

Example: RACF

* Security enhancement package for IBM’s z/0S, 0S/390

* Logs failed access attempts, use of privilege to change security levels,
and (if desired) RACF interactions

e View events with LISTUSERS commands

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-8

COMPUTER
SECURITY

[ART and science]

L&

RACF: Sample Entry

USER=EW125004 NAME=S.J.TURNER OWNER=SECADM CREATED=88.004

DEFAULT-GROUP=HUMRES PASSDATE=88.004 PASS-INTERVAL=30
ATTRIBUTES=ADSP
REVOKE DATE=NONE RESUME-DATE=NONE

LAST-ACCESS=88.020/14:15:10

CLASS AUTHORIZATIONS=NONE

NO-INSTALLATION-DATA

NO-MODEL-NAME

LOGON ALLOWED (DAYS) (TIME)

ANYDAY ANYTIME

GROUP=HUMRES AUTH=JOIN CONNECT-OWNER=SECADM
CONNECT-DATE=88.004

CONNECTS= 15 UACC=READ LAST-CONNECT=88.018/16:45:06
CONNECT ATTRIBUTES=NONE

REVOKE DATE=NONE RESUME DATE=NONE
GROUP=PERSNL AUTH=JOIN CONNECT-OWNER=SECADM CONNECT-DATE:88.004
CONNECTS= 25 UACC=READ LAST-CONNECT=88.020/14:15:10
CONNECT ATTRIBUTES=NONE
REVOKE DATE=NONE RESUME DATE=NONE
SECURITY-LEVEL=NONE SPECIFIED
CATEGORY AUTHORIZATION
NONE SPECIFIED

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-9

Example: Windows 10

» Different logs for different types of events
» System event logs record system crashes, component failures, and other system events
* Application event logs record events that applications request be recorded

» Security event log records security-critical events such as logging in and out, system file
accesses, and other events

» Setup event log records events occurring during application installation
* Forwarded event log records entries forwarded from other systems

 Logs are binary; use event viewer to see them

* |f log full, can have system shut down, logging disabled, or logs overwritten

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-10

Windows 10 Sample Entry

Log Name: Security

Source: Microsoft Logged: 03/20/2017
Windows security 12:02:59 PM
Event ID: 4634 Task Category: Logoff
Level: Information Keywords: Audit Success
User: N/A Computer: McLaren
OpCode: Info
General:
An account was logged off.
Subject:
Security ID: MCLAREN\matt
Account Name: matt
Account Domain: MCLAREN
Logon ID: 0xACBA30
Details:
+ System
- EventData

TargetUserSID S-1-5-22-2039872233-608055118-4446661516-2001
TargetUserName matt

TargetDomainName MCLAREN

TargetLogonId Oxacba30

[would be in graphical format]

Version 1.0 Computer Security: Art and Science, 2" Edition

Slide 25-11

Analyzer

* Analyzes one or more logs
* Logs may come from multiple systems, or a single system
* May lead to changes in logging
* May lead to a report of an event

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-12

Examples

* Using swatch to find instances of telnet from tcpd logs:
/telnet/&!/localhost/&!/*.site.com/

* Query set overlap control in databases
* |f too much overlap between current query and past queries, do not answer

* Intrusion detection analysis engine (director)
* Takes data from sensors and determines if an intrusion is occurring

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-13

Notifier

* Informs analyst, other entities of results of analysis
* May reconfigure logging and/or analysis on basis of results

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-14

Examples

e Using swatch to notify of telnets
/telnet/&!/localhost/&!/*.site.com/ mail staff

* Query set overlap control in databases
* Prevents response from being given if too much overlap occurs

* Three failed logins in a row disable user account
* Notifier disables account, notifies sysadmin

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-15

Designing an Audit System

* Essential component of security mechanisms

* Goals determine what is logged

* |dea: auditors want to detect violations of policy, which provides a set of
constraints that the set of possible actions must satisfy

* So, audit functions that may violate the constraints

* Constraint p; : action = condition

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-16

Example: Bell-LaPadula

Simple security condition and *-property
e Sreads O = L(S) =2 L(O)
* Swrites O = L(S) £ L(O)

* To check for violations, on each read and write, must log L(S), L(O),
action (read, write), and result (success, failure)

* Note: need not record S, O!

* |In practice, done to identify the object of the (attempted) violation and the
user attempting the violation

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-17

Remove Tranquility

* New commands to manipulate security level must also record
information
e Sreclassify Oto L(O") = L(O) £ L(S) and L(O") £ L(S)
e Log L(O), L(O"), L(S), action (reclassify), and result (success, failure)

* Again, need not record O or S to detect violation
* But needed to follow up ...

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-18

Example: Chinese Wall

e Subject S has COI(S) and CD(S)

* CD,(S) is set of company datasets that S has accessed

* Object O has COI(O) and CD(O)

* san(0) iff O contains only sanitized information

 Constraints
* Sreads O = COI(O) # COI(S) v AO'(CD(O’) € CD4(S))

e Swrites O = (S canread O) A —=30'(COI(0O) = COI(O’) A S canread O’ A
—san(0))

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-19

Recording

* Sreads O = COI(0) #z COI(S) v AO'(CD(O') € CD4(S))
* Record COI(0), COI(S), CD.(S), CD(O') if such an O’ exists, action (read), and
result (success, failure)

* Swrites O = (S canread O) A —30'(COI(0O) = COI(O’) A S canread O’ A
—san(0'))

* Record COI(0), COI(S), CD.(S), plus COI(O’) and CD(O') if such an O’ exists,
action (write), and result (success, failure)

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-20

Implementation Issues

* Show non-security or find violations?
* Former requires logging initial state as well as changes

* Defining violations
* Does “write” include “append” and “create directory”?

* Multiple names for one object

* Logging goes by object and not name

* Representations can affect this (if you read raw disks, you’re reading files; can
your auditing system determine which file?)

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-21

Syntactic Issues

e Data that is logged may be ambiguous
 BSM: two optional text fields followed by two mandatory text fields
* |f three fields, which of the optional fields is omitted?

 Solution: use grammar to ensure well-defined syntax of log files

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-22

Example

entry : date host prog [bad] user [“from” host] “to” user “on” tty
date : daytime

host : string

prog : string “:”

bad ¢ “FAILED"

user : string

tty : “/dev/"” string
* Log file entry format defined unambiguously

* Audit mechanism could scan, interpret entries without confusion

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-23

More Syntactic Issues

* Context
* Unknown user uses anonymous ftp to retrieve file “/etc/passwd”
* Logged as such

* Problem: which [etc/passwd file?
* One in system /etc directory

* One in anonymous ftp directory /var/ftp/etc, and as ftp thinks /var/ftp is the root
directory, /etc/passwd refers to /var/ftp/etc/passwd

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-24

Log Sanitization

» U set of users, P policy defining set of information C(U) that U cannot
see; log sanitized when all information in C(U) deleted from log

* Two types of P
e C(U) can’t leave site
* Peopleinside site are trusted and information not sensitive to them

e C(U) can’t leave system
* People inside site not trusted or (more commonly) information sensitive to them
* Don’t log this sensitive information

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-25

Logging Organization

Logging System " Log —> U.ser.s
viewing

. ~ Users
Logging System —' Log] viewing

* Top prevents information from leaving site

* Users’ privacy not protected from system administrators, other
administrative personnel

* Bottom prevents information from leaving system
e Data simply not recorded, or data scrambled before recording

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 25-26

Reconstruction

* Anonymizing sanitizer cannot be undone
* No way to recover data from this

e Pseudonymizing sanitizer can be undone
* Original log can be reconstructed

* Importance
* Suppose security analysis requires access to information that was sanitized?

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-27

Issue

* Key: sanitization must preserve properties needed for security
analysis

* If new properties added (because analysis changes), may have to
resanitize information
* This requires pseudonymous sanitization or the original log

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-28

Example

 Company wants to keep its IP addresses secret, but wants a
consultant to analyze logs for an address scanning attack

* Connections to port 25 on IP addresses 10.163.5.10, 10.163.5.11, 10.163.5.12,
10.163.5.13, 10.163.5.14, 10.163.5.15

* Sanitize with random IP addresses

e Cannot see sweep through consecutive IP addresses
* Sanitize with sequential IP addresses

e Can see sweep through consecutive IP addresses

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-29

Generation of Pseudonyms

1. Devise set of pseudonyms to replace sensitive information

e Replace data with pseudonyms
e Maintain table mapping pseudonyms to data

2. Use random key to encipher sensitive data and use secret sharing
scheme to share key

e Used when insiders cannot see unsanitized data, but outsiders (law
enforcement) need to

e Requires t out of n people to read data

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-30

Anonymization May Not Be Enough

* Quasi-identifier: set of elements in data of entities that, considered as
a whole, are associated either with a specific entity or a very small set
of entities

* Example: Anonymized medical records released by Massachsetts for
state employees

* Included doctor visits, diagnoses, procedures, medications, and ZIP codes,
gender, and date of birth of patient

* Obtained with voter lists
* These contain name, address, party affiliation, gender, birth date

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-31

Attack

* Adversary looked up governor’s voting registration

* 6 people had same birth date as governor and lived in same city
* 3 were same gender as governor
* 1 had governor’s ZIP code

* So medical record could be associated with governor
e Quasi-identifier was (ZIP code, gender, birth date)

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-32

Relationships and Sanitization

* Key is to hide relationships!

* Example: Netflix contest to improve movie recommendations

 Circulated list of pseudonymized identifiers, movie titles, ratings, and dates; last 3
subject to some perturbation

* Training data had more than 100,000,000 records; test set (not released) had
3,000,000 ratings

e Large cash prize to anyone who could improve Netflix’s movie recommendation
system

* Attack: use IMDB and compare those records to the Netflix training data
set

* Worked with 50 IMDB users
* Concluded they could identify IMDB posting names for 2 pseudonymized customers

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-33

Application Logging

* Applications logs made by applications
* Applications control what is logged
* Typically use high-level abstractions such as:
su: bishop to root on /dev/ttyp0

* Does not include detailed, system call level information such as results,
parameters, etc.

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-34

System Logging

* Log system events such as kernel actions; typically, low-level events

3876 ktrace CALL execve (0xbfbff0c0,0xbfbff5cc,0xbfbff5d8)

3876 ktrace NAMI "/usr/bin/su"

3876 ktrace NAMI "/usr/libexec/ld-elf.so.l"

3876 su RET xecve 0

3876 su CALL __sysctl(0xbfbff47c,0x2,0x2805¢c928,0xbfbf£f478,0,0)
3876 su RET __sysctl O

3876 su CALL mmap(0,0x8000,0x3,0x1002,0xffffffff,0,0,0)

3876 su RET mmap 671473664/0x2805e000

3876 su CALL geteuid

3876 su RET geteuid 0

* Does not include high-level abstractions such as loading libraries (as
above)

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-35

Contrast

e Differ in focus

* Application logging focuses on application events, like failure to supply proper
password, and the broad operation (what was the reason for the access

attempt?)
» System logging focuses on system events, like memory mapping or file
accesses, and the underlying causes (why did access fail?)

e System logs usually much bigger than application logs
* Can do both, try to correlate them

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-36

Design

* A posteriori design
* Need to design auditing mechanism for system not built with security in mind

* Goal of auditing

* Detect any violation of a stated policy

* Focus is on policy and actions designed to violate policy; specific actions may not be
known

* Detect actions known to be part of an attempt to breach security
* Focus on specific actions that have been determined to indicate attacks

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-37

Detect Violations of Known Policy

* Goal: does system enter a disallowed state?

e Two forms

 State-based auditing
* Look at current state of system

* Transition-based auditing
* Look at actions that transition system from one state to another

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-38

State-Based Auditing

* Log information about state and determine if state allowed
e Assumption: you can get a snapshot of system state
* Snapshot needs to be consistent
* Non-distributed system needs to be quiescent

* Distributed system can use Chandy-Lamport algorithm, or some other
algorithm, to obtain this

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-39

Example

* File system auditing tools
* Thought of as analyzing single state (snapshot)
* In reality, analyze many slices of different state unless file system quiescent

* Potential problem: if test at end depends on result of test at beginning,
relevant parts of system state may have changed between the first test and
the last

e Classic TOCTTOU flaw

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-40

Transition-Based Auditing

* Log information about action, and examine current state and
proposed transition to determine if new state would be disallowed

* Note: just analyzing the transition may not be enough; you may need the
initial state

* Tend to use this when specific transitions always require analysis (for
example, change of privilege)

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-41

Example

* TCP access control mechanism intercepts TCP connections and checks
against a list of connections to be blocked
* Obtains IP address of source of connection
* Logs IP address, port, and result (allowed/blocked) in log file
* Purely transition-based (current state not analyzed at all)

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-42

Detect Known Violations of Policy

* Goal: does a specific action and/or state that is known to violate
security policy occur?
* Assume that action automatically violates policy
* Policy may be implicit, not explicit
* Used to look for known attacks

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-43

Example

 Land attack

e Consider 3-way handshake to initiate TCP connection (next slide)

* What happens if source, destination ports and addresses the same? Host
expects ACK(t+1), but gets ACK(s+1).

* RFC ambiguous:

* p. 36 of RFC: send RST to terminate connection

* p. 69 of RFC: reply with empty packet having current sequence number t+1 and ACK
number s+1—but it receives packet and ACK number is incorrect. So it repeats this ...
system hangs or runs very slowly, depending on whether interrupts are disabled

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-44

3-Way Handshake and Land

Normal:
[Source] 1. srcseq = s, expects ACK s+1
2. destseq = t, expects ACK t+1; src gets ACK s+1
3. srcseq = s+1, destseq = t+1; dest gets ACK t+1
SYN(t) ACK(t+1) | and:
1. srcseq = destseq = s, expects ACK s+1
’ ’ 2. srcseq = destseq = t, expects ACK t+1 but gets ACK
Destination s+1

3. Never reached; recovery from error in 2 attempted

Version 1.0 Computer Security: Art and Science, 2nd Edition Slide 25-45

Detection

* Must spot initial Land packet with source, destination addresses the
same
* Logging requirement:
e source port number, IP address
* destination port number, IP address
* Auditing requirement:

* If source port number = destination port number and source IP address =
destination IP address, packet is part of a Land attack

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-46

Auditing Mechanisms

» Systems use different mechanisms

* Most common is to log all events by default, allow system administrator to
disable logging that is unnecessary

* Two examples
* One audit system designed for a secure system
* One audit system designed for non-secure system

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-47

Secure Systems

* Auditing mechanisms integrated into system design and
implementation

* Security officer can configure reporting and logging:
* To report specific events
* To monitor accesses by a subject
* To monitor accesses to an object

* Controlled at audit subsystem
* Irrelevant accesses, actions not logged

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-48

Example 1: VAX VMM

* Designed to be a secure production system
* Audit mechanism had to have minimal impact
* Audit mechanism had to be very reliable

* Kernel is layered
* Logging done where events of interest occur
* Each layer audits accesses to objects it controls

* Audit subsystem processes results of logging from mechanisms in
kernel

* Audit subsystem manages system log
* Invoked by mechanisms in kernel

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-49

VAX VMM Audit Subsystem

 Calls provide data to be logged
* |dentification of event, result
* Auxiliary data depending on event
e Caller’s name

* Subsystem checks criteria for logging
* |f request matcher, data is logged

 Criteria are subject or object named in audit table, and severity level (derived
from result)

* Adds date and time, other information

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-50

Other Issues

* Always logged
* Programmer can request event be logged

* Any attempt to violate policy
* Protection violations, login failures logged when they occur repeatedly
* Use of covert channels also logged

* Log filling up
* Audit logging process signaled to archive log when log is 75% full
* If not possible, system stops

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-51

Example 2: CMW

* Compartmented Mode Workstation designhed to allow processing at
different levels of sensitivity
* Auditing subsystem keeps table of auditable events
* Entries indicate whether logging is turned on, what type of logging to use

* User level command chaud allows user to control auditing and what is
audited

* If changes affect subjects, objects currently being logged, the logging completes and
then the auditable events are changed

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-52

CMW Process Control

» System calls allow process to control auditing
* audit _on turns logging on, names log filke

* gudit_write validates log entry given as parameter, logs entry if logging for
that entry is turned on

* audit _suspend suspends logging temporarily
* audit_resume resumes logging after suspension
* audit off turns logging off for that process

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-53

System Calls

* On system call, if auditing on:
* System call recorded
* First 3 parameters recorded (but pointers not followed)

* How audit_write works
* If room in log, append new entry
* Otherwise halt system, discard new entry, or disable event that caused
logging

e Continue to try to log other events

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-54

Other Ways to Log

* Problem: some processes want to log higher-level abstractions
(application logging)
* Window manager creates, writes high-level events to log
* Difficult to map low-level events into high-level ones
* Disables low-level logging for window manager as unnecessary

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-55

CMW Auditing

* Tool (redux) to analyze logged events
* Converts binary logs to printable format

* Redux allows user to constrain printing based on several criteria

* Users

* Objects

e Security levels
* Events

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-56

Non-Secure Systems

* Have some limited logging capabilities
* Log accounting data, or data for non-security purposes
» Possibly limited security data like failed logins

e Auditing subsystems focusing on security usually added after system
completed

* May not be able to log all events, especially if limited kernel modifications to
support audit subsystem

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-57

Example: Basic Security Module

* BSM enhances SunQS, Solaris security

* Logs composed of records made up of tokens

* Token contains information about event: user identity, groups, file system information,
network, system call and result, etc. as appropriate

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-58

More About Records

* Records refer to auditable events
* Kernel events: opening a file
* Application events: failure to authenticate when logging in

* Grouped into audit event classes based on events causing record
generation

» Before log created: tell system what to generate records for
* After log created: defined classes control which records given to analysis tools

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-59

Example Record

* Logs are binary; this is from praudit

header,35,AUE EXIT,Wed Sep 18 11:35:28 1991, + 570000 msec,
process,bishop,root,root,daemon, 1234,
return,Error 0,5

trailer, 35

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-60

Auditing File Systems

* Network File System (NFS)
* Industry standard
* Server exports file system; client imports it
* Root of tree being exported called server mount point; place in client file tree
where exported file system imported called client mount point
* Logging and Auditing File System (LAFS)
* Built on NFS

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-61

NFS Version 2

* Mounting protocol
* Client kernel contacts server’s mount daemon
* Daemon checks client is authorized to mount file system
 Daemon returns file handle pointing to server mount point
* Client creates entry in client file system corresponding to file handle

e Access restrictions enforced
* On client side: server not aware of these
* On server side: client not aware of these

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-62

File Access Protocol

* Process tries to open file as if it were local

* Client kernel sends file handle for element of path referring to remote
file to server’s NFS server using LOOKUP request

* If file handle valid, server replies with appropriate file handle

* Client requests attributes with GETATTR
e Client then determines if access allowed; if not, denies

* [terate above three steps until handle obtained for requested file
* Or access denied by client

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-63

Other Important Details

* NFS stateless
* Server has no idea which files are being accessed and by whom

* NFS access control
* Most servers require requests to come from privileged programs
* Check that source port is 1023 or less

* Underlying messages identify user
* To some degree of certainty ...

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-64

Site Policy

1. NFS servers respond only to authorized clients
2. UNIX access controls regulate access to server’s exported file system
3. No client host can access a non-exported file system

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-65

Resulting Constraints

1. File access granted = client authorized to import file system, user
can search all parent directories, user can access file as requested,

file is descendent of server’s file system mount point
 From P1, P2, P3
2. Device file created or file type changed to device = user’s UID is O
e From P2; only UID O can do these actions

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-66

More Constraints

3. Possession of file handle = file handle issued to user

e From P1, P2; otherwise unauthorized client could access files in forbidden
ways

4. Operation succeeds = similar local operation would succeed
e From P2; mount should fail if requester UID not O

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-67

NFS Operations

* Transitions from secure to non-secure state can occur only when NFS
command occurs

* Example commands:
* MOUNT filesystem

* Mount the named file system on the requesting client, if allowed

* LOOKUP dir_handle file_name

e Search in directory with handle dir_handle for file named file_name; return file handle
for file_name

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-68

Logging Requirements

1. When file handle issued, server records handle, UID and GID of user
requesting it, client host making request
e Similar to allocating file descriptor when file opened; allows validation of
later requests
2. When file handle used as parameter, server records UID, GID of user
e Was user using file handle issued that file handle—useful for detecting spoofs

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-69

Logging Requirements

3. When file handle issued, server records relevant attributes of
containing object

e On LOOKUP, attributes of containing directory show whether it can be
searched

4. Record results of each operation
e Lets auditor determine result

5. Record file names used as arguments
e Reconstruct path names, purpose of commands

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-70

Audit Criteria: MOUNT

* Check that MOUNT server denies all requests by unauthorized clients
to import file system that host exports
e Obtained from constraints 1, 4

* Log requirements 1 (who requests it), 3 (access attributes—to whom can it be
exported), 4 (result)

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-71

Audit Criteria: LOOKUP

2. Check file handle comes from client, user to which it was issued
e Obtained from constraint 3
e Log requirement 1 (who issued to), 2 (who is using)

3. Check that directory has file system mount point as ancestor and
user has search permission on directory

e Obtained from constraint 1

 Log requirements 2 (who is using handle), 3 (owner, group, type, permissions
of object), 4 (result), 5 (reconstruct path name)

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-72

NFSv4 Pseudo-File System

e Client wants to read file on NFSv4 file server

* No MOUNT operation; instead, PUTROOTFH sets current file handle (CFH)
to that of root of pseudo-file system

e Audit requirements change slightly:

1. Check server denies all requests by unauthorized client hosts or users to execute
the PUTROOTFH operation

2. Check that directory being looked up in pseudo-file system can be searched by user

* Once server gets request to open file and read from it:

3. Check that the file being looked up is pseudo-file system and that the user has
search permission on the containing directory and read permission on the file

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-73

LAFS

* File system that records user level activities

* Uses policy-based language to automate checks for violation of
policies

* Implemented as extension to NFS
* You create directory with Imkdir and attach policy with lattach:
lmkdir /usr/home/xyzzy/project policy

lattach /usr/home/xyzzy/project /lafs/xyzzy/project

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-74

LAFS Components

* Name server
* File manager

e Configuration assistant

* Sets up required protection modes; interacts with name server, underlying file
protection mechanisms

* Audit logger

* Logs file accesses; invoked whenever process accesses file

* Policy checker
 Validates policies, checks logs conform to policy

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-75

How It Works

* No changes to applications

* Each file has 3 associated virtual files
* file%log: all accesses to file
* file%policy: access control policy for file
* file%audit: when accessed, triggers audit in which accesses are compared to
policy for file
* Virtual files not shown in listing
* LAFS knows the extensions and handles them properly

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-76

Example Policies

prohibit:0900-1700:*:* :wumpus:exec
* No-one can execute wumpus between 9AM and 5PM

allow: *:Makefile:*:make:read
allow: *:Makefile:Owner:makedepend:write
allow:*:*,0,*.out:0Owner,Group:gcc,ld:write

allow:-010929:*.c,*.h:Owner:emacs,vi,ed:write
* Program make can read Makefile
* Owner can change Makefile using makedepend
* Owner, group member can create .o, .out files using gcc and Id
* Owner can modify .c, .h files using named editors up to Sep. 29, 2001

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-77

Comparison

* Security policy controls access
* Goalis to detect, report violations
* Auditing mechanisms built in

e LAFS “stacked” onto NFS

* If you access files not through LAFS, access not recorded

* NFS auditing at lower layer
* So if you use NFS, accesses recorded

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-78

Comparison

e Users can specify policies in LAFS
* Use %policy file
* NFS policy embedded, not easily changed

* |t would be set by site, not users

e Which is better?

* Depends on goal; LAFS is more flexible but easier to evade. Use both together,
perhaps?

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-79

Audit Browsing

* Goal of browser: present log information in a form easy to understand
and use

e Several reasons to do this:
* Audit mechanisms may miss problems that auditors will spot

* Mechanisms may be unsophisticated or make invalid assumptions about log
format or meaning

* Logs usually not integrated; often different formats, syntax, etc.

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-80

Browsing Techniques

* Text display

* Does not indicate relationships between events

* Hypertext display
* Indicates local relationships between events
* Does not indicate global relationships clearly

* Relational database browsing

* DBMS performs correlations, so auditor need not know in advance what
associations are of interest

* Preprocessing required, and may limit the associations DBMS can make

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-81

More Browsing Techniques

* Replay
* Shows events occurring in order; if multiple logs, intermingles entries
* Graphing
* Nodes are entities, edges relationships
e Often too cluttered to show everything, so graphing selects subsets of events

* Slicing
* Show minimum set of log events affecting object
* Focuses on local relationships, not global ones

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-82

Example: Visual Audit Browser

Frame Visualizer
* Generates graphical representation of logs

Movie Maker
* Generates sequence of graphs, each event creating a new graph suitably modified

Hypertext Generator
* Produces page per user, page per modified file, summary and index pages

Focused Audit Browser
* Enter node name, displays node, incident edges, and nodes at end of edges

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-83

Example Use

* File changed

* Use focused audit browser
* Changed file is initial focus
* Edges show which processes have altered file

* Focus on suspicious process
* lterate through nodes until method used to gain access to system determined

* Question: is masquerade occurring?
e Auditor knows audit UID of attacker

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-84

Tracking Attacker

* Use hypertext generator to get all audit records with that UID
* Now examine them for irregular activity
* Frame visualizer may help here
* Once found, work forward to reconstruct activity

* For non-technical people, use movie maker to show what happened
* Helpful for law enforcement authorities especially!

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-85

Example: Mielog

* Computes counts of single words, word pairs

* Auditor defines “threshold count”
* MielLog colors data with counts higher than threshold

* Display uses graphics and text together
* Tag appearance frequency area: colored based on frequency (e.g., red is rare)
* Time information area: bar graph showing number of log entries in that
period of time; click to get entries
* Outline of message area: outline of log messages, colored to match tag
appearance frequency area
* Message in text area: displays log entry under study

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-86

Example Use

* Auditor notices unexpected gap in time information area
* No log entries during that time!?!?

* Auditor focuses on log entries before, after gap
* Wants to know why logging turned off, then turned back on

* Color of words in entries helps auditor find similar entries elsewhere
and reconstruct patterns

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-87

Key Points

* Logging is collection and recording; audit is analysis
* Need to have clear goals when designing an audit system

* Auditing should be designed into system, not patched into system
after it is implemented

* Browsing through logs helps auditors determine completeness of
audit (and effectiveness of audit mechanisms!)

Version 1.0 Computer Security: Art and Science, 2" Edition Slide 25-88

