
261

Chapter 15
Information Flow

BOTTOM: Masters, I am to discourse wonders: but
ask me not what; for if I tell you, I am no true

Athenian. I will tell you every thing, right as it
fell out.

—A Midsummer Night’s Dream, IV, ii, 30–33.

Although access controls can constrain the rights of a user, they cannot constrain the
flow of information about a system. In particular, when a system has a security pol-
icy regulating information flow, the system must ensure that the information flows do
not violate the constraints of the policy. Both compile-time mechanisms and runtime
mechanisms support the checking of information flows. Several systems implement-
ing these mechanisms demonstrate their effectiveness.

15.1 Basics and Background

Information flow policies define the way information moves throughout a system.
Typically, these policies are designed to preserve confidentiality of data or integrity
of data. In the former, the policy’s goal is to prevent information from flowing to a
user not authorized to receive it. In the latter, information may flow only to processes
that are no more trustworthy than the data.

Any confidentiality and integrity policy embodies an information flow policy.

EXAMPLE: The Bell-LaPadula Model describes a lattice-based information flow pol-
icy. Given two compartments A and B, information can flow from an object in A to a
subject in B if and only if B dominates A.

Let x be a variable in a program. The notation x refers to the information flow
class of x.

Bishop.book Page 261 Tuesday, September 28, 2004 1:46 PM

262 Chapter 15 Information Flow

EXAMPLE: Consider a system that uses the Bell-LaPadula Model. The variable x,
which holds data in the compartment (TS, { NUC, EUR }), is set to 3. Then x = 3 and
x = (TS, { NUC, EUR }).

Intuitively, information flows from an object x to an object y if the application
of a sequence of commands c causes the information initially in x to affect the infor-
mation in y.

Definition 15–1. The command sequence c causes a flow of information from
x to y if, after execution of c, some information about the value of x before c
was executed can be deduced from the value of y after c was executed.

This definition views information flow in terms of the information that the
value of y allows one to deduce about the value in x. For example, the statement

y := x;

reveals the value of x in the initial state, so information about the value of x in the ini-
tial state can be deduced from the value of y after the statement is executed. The
statement

y := x / z;

reveals some information about x, but not as much as the first statement.
The final result of the sequence c must reveal information about the initial

value of x for information to flow. The sequence

tmp := x;
y := tmp;

has information flowing from x to y because the (unknown) value of x at the begin-
ning of the sequence is revealed when the value of y is determined at the end of the
sequence. However, no information flow occurs from tmp to x, because the initial
value of tmp cannot be determined at the end of the sequence.

EXAMPLE: Consider the statement

x := y + z;

Let y take any of the integer values from 0 to 7, inclusive, with equal probability, and
let z take the value 1 with probability 0.5 and the values 2 and 3 with probability 0.25
each. Once the resulting value of x is known,the initial value of y can assume at most
three values. Thus, information flows from y to x. Similar results hold for z.

Bishop.book Page 262 Tuesday, September 28, 2004 1:46 PM

15.2 Compiler-Based Mechanisms 263

EXAMPLE: Consider a program in which x and y are integers that may be either 0 or
1. The statement

if x = 1 then y := 0;
else y := 1;

does not explicitly assign the value of x to y.
Assume that x is equally likely to be 0 or 1. Then H(xs) = 1. But H(xs | yt) = 0,

because if y is 0, x is 1, and vice versa. Hence, H(xs | yt) = 0 < H(xs | ys) = H(xs) = 1.
Thus, information flows from x to y.

Definition 15–2. An implicit flow of information occurs when information
flows from x to y without an explicit assignment of the form y := f(x), where
f(x) is an arithmetic expression with the variable x.

The flow of information occurs, not because of an assignment of the value of
x, but because of a flow of control based on the value of x. This demonstrates that
analyzing programs for assignments to detect information flows is not enough. To
detect all flows of information, implicit flows must be examined.

15.1.1 Information Flow Models and Mechanisms

An information flow policy is a security policy that describes the authorized paths
along which that information can flow. Each model associates a label, representing a
security class, with information and with entities containing that information. Each
model has rules about the conditions under which information can move throughout
the system.

In this chapter, we use the notation x ≤ y to mean that information can flow
from an element of class x to an element of class y. Equivalently, this says that infor-
mation with a label placing it in class x can flow into class y.

Earlier chapters usually assumed that the models of information flow policies
were lattices. We first consider nonlattice information flow policies and how their
structures affect the analysis of information flow. We then turn to compiler-based
information flow mechanisms and runtime mechanisms. We conclude with a look at
flow controls in practice.

15.2 Compiler-Based Mechanisms

Compiler-based mechanisms check that information flows throughout a program are
authorized. The mechanisms determine if the information flows in a program could
violate a given information flow policy. This determination is not precise, in that

Bishop.book Page 263 Tuesday, September 28, 2004 1:46 PM

264 Chapter 15 Information Flow

secure paths of information flow may be marked as violating the policy; but it is
secure, in that no unauthorized path along which information may flow will be
undetected.

Definition 15–3. A set of statements is certified with respect to an informa-
tion flow policy if the information flow within that set of statements does not
violate the policy.

EXAMPLE: Consider the program statement

if x = 1 then y := a;
else y := b;

By the rules discussed earlier, information flows from x and a to y or from x and b to
y, so if the policy says that a ≤ y, b ≤ y, and x ≤ y, then the information flow is secure.
But if a ≤ y only when some other variable z = 1, the compiler-based mechanism
must determine whether z = 1 before certifying the statement. Typically, this is infea-
sible. Hence, the compiler-based mechanism would not certify the statement. The
mechanisms described here follow those developed by Denning and Denning [247]
and Denning [242].

15.2.1 Declarations

For our discussion, we assume that the allowed flows are supplied to the checking
mechanisms through some external means, such as from a file. The specifications of
allowed flows involve security classes of language constructs. The program involves
variables, so some language construct must relate variables to security classes. One
way is to assign each variable to exactly one security class. We opt for a more liberal
approach, in which the language constructs specify the set of classes from which
information may flow into the variable. For example,

x: integer class { A, B }

states that x is an integer variable and that data from security classes A and B may
flow into x. Note that the classes are statically, not dynamically, assigned. Viewing
the security classes as a lattice, this means that x’s class must be at least the least
upper bound of classes A and B—that is, lub{A, B} ≤ x.

Two distinguished classes, Low and High, represent the greatest lower bound
and least upper bound, respectively, of the lattice. All constants are of class Low.

Information can be passed into or out of a procedure through parameters.
We classify parameters as input parameters (through which data is passed into
the procedure), output parameters (through which data is passed out of the pro-
cedure), and input/output parameters (through which data is passed into and out
of the procedure).

Bishop.book Page 264 Tuesday, September 28, 2004 1:46 PM

15.2 Compiler-Based Mechanisms 265

(* input parameters are named is; output parameters, os; *)
(* and input/output parameters, ios, with s a subscript *)
proc something(i1, ..., ik; var o1, ..., om, io1, ..., ion);
var l1, ..., lj; (* local variables *)
begin

S; (* body of procedure *)
end;

The class of an input parameter is simply the class of the actual argument:

is: type class { is }

Let r1, ..., rp be the set of input and input/output variables from which information
flows to the output variable os. The declaration for the type must capture this:

os: type class { r1, ..., rp }

(We implicitly assume that any output-only parameter is initialized in the procedure.)
The input/output parameters are like output parameters, except that the initial value
(as input) affects the allowed security classes. Again, let r1, ..., rp be defined as
above. Then:

ios: type class {r1, ..., rp, io1, ..., iok }

EXAMPLE: Consider the following procedure for adding two numbers.

proc sum(x: int class { x };
var out: int class { x, out });

begin
out := out + x;

end;

Here, we require that x ≤ out and out ≤ out (the latter holding because ≤ is reflexive).

The declarations presented so far deal only with basic types, such as integers,
characters, floating point numbers, and so forth. Nonscalar types, such as arrays,
records (structures), and variant records (unions) also contain information. The rules
for information flow classes for these data types are built on the scalar types.

Consider the array

a: array 1 .. 100 of int;

First, look at information flows out of an element a[i] of the array. In this case,
information flows from a[i] and from i, the latter by virtue of the index indicating

Bishop.book Page 265 Tuesday, September 28, 2004 1:46 PM

266 Chapter 15 Information Flow

which element of the array to use. Information flows into a[i] affect only the value
in a[i], and so do not affect the information in i. Thus, for information flows from
a[i], the class involved is lub{ a[i], i }; for information flows into a[i], the class
involved is a[i].

15.2.2 Program Statements

A program consists of several types of statements. Typically, they are

1. Assignment statements
2. Compound statements
3. Conditional statements
4. Iterative statements
5. Goto statements
6. Procedure calls
7. Function calls
8. Input/output statements.

We consider each of these types of statements separately, with two exceptions. Func-
tion calls can be modeled as procedure calls by treating the return value of the func-
tion as an output parameter of the procedure. Input/output statements can be modeled
as assignment statements in which the value is assigned to (or assigned from) a file.
Hence, we do not consider function calls and input/output statements separately.

15.2.2.1 Assignment Statements
An assignment statement has the form

y := f(x1, ..., xn)

where y and x1, ..., xn are variables and f is some function of those variables. Infor-
mation flows from each of the xi’s to y. Hence, the requirement for the information
flow to be secure is

• lub{x1, ..., xn} ≤ y

EXAMPLE: Consider the statement

x := y + z;

Then the requirement for the information flow to be secure is lub{ y, z } ≤ x.

Bishop.book Page 266 Tuesday, September 28, 2004 1:46 PM

15.2 Compiler-Based Mechanisms 267

15.2.2.2 Compound Statements
A compound statement has the form

begin
S1;
...
Sn;

end;

where each of the Si’s is a statement. If the information flow in each of the statements
is secure, then the information flow in the compound statement is secure. Hence, the
requirements for the information flow to be secure are

• S1 secure
• ...
• Sn secure

EXAMPLE: Consider the statements

begin
x := y + z;
a := b * c - x;

end;

Then the requirements for the information flow to be secure are lub{ y, z } ≤ x for S1
and lub{ b, c, x } ≤ a for S2. So, the requirements for secure information flow are
lub{ y, z } ≤ x and lub{ b, c, x } ≤ a.

15.2.2.3 Conditional Statements
A conditional statement has the form

if f(x1, ..., xn) then
S1;

else
S2;

end;

where x1, …, xn are variables and f is some (boolean) function of those variables.
Either S1 or S2 may be executed, depending on the value of f, so both must be secure.
As discussed earlier, the selection of either S1 or S2 imparts information about the
values of the variables x1, ..., xn, so information must be able to flow from those
variables to any targets of assignments in S1 and S2. This is possible if and only if the

Bishop.book Page 267 Tuesday, September 28, 2004 1:46 PM

268 Chapter 15 Information Flow

lowest class of the targets dominates the highest class of the variables x1, ..., xn. Thus,
the requirements for the information flow to be secure are

• S1 secure
• S2 secure
• lub{x1, ..., xn} ≤ glb{ y | y is the target of an assignment in S1 and S2 }

As a degenerate case, if statement S2 is empty, it is trivially secure and has no
assignments.

EXAMPLE: Consider the statements

if x + y < z then
a := b;

else
d := b * c - x;

end;

Then the requirements for the information flow to be secure are b ≤ a for S1 and
lub{ b, c, x } ≤ d for S2. But the statement that is executed depends on the values of x,
y, and z. Hence, information also flows from x, y, and z to d and a. So, the require-
ments are lub{ y, z } ≤ x , b ≤ a, and lub{ x, y, z } ≤ glb{ a, d }.

15.2.2.4 Iterative Statements
An iterative statement has the form

while f(x1, ..., xn) do
S;

where x1, ..., xn are variables and f is some (boolean) function of those variables.
Aside from the repetition, this is a conditional statement, so the requirements for
information flow to be secure for a conditional statement apply here.

To handle the repetition, first note that the number of repetitions causes infor-
mation to flow only through assignments to variables in S. The number of repetitions
is controlled by the values in the variables x1, ..., xn, so information flows from those
variables to the targets of assignments in S—but this is detected by the requirements
for information flow of conditional statements.

However, if the program never leaves the iterative statement, statements after
the loop will never be executed. In this case, information has flowed from the vari-
ables x1, ..., xn by the absence of execution. Hence, secure information flow also
requires that the loop terminate.

Bishop.book Page 268 Tuesday, September 28, 2004 1:46 PM

15.2 Compiler-Based Mechanisms 269

Thus, the requirements for the information flow to be secure are

• Iterative statement terminates
• S secure
• lub{x1, ..., xn} ≤ glb{ y | y is the target of an assignment in S }

EXAMPLE: Consider the statements

while i < n do
begin

a[i] := b[i];
i := i + 1;

end;

This loop terminates. If n ≤ i initially, the loop is never entered. If i < n, i is
incremented by a positive integer, 1, and so increases, at each iteration. Hence, after
n – i iterations, n = i, and the loop terminates.

Now consider the compound statement that makes up the body of the loop.
The first statement is secure if i ≤ a[i] and b[i] ≤ a[i]; the second statement is secure
because i ≤ i. Hence, the compound statement is secure if lub{ i, b[i] } ≤ a[i].

Finally, a[i] and i are targets of assignments in the body of the loop. Hence,
information flows into them from the variables in the expression in the while state-
ment. So, lub{ i, n } ≤ glb{ a[i], i }. Putting these together, the requirement for the
information flow to be secure is lub{ b[i], i, n } ≤ glb{ a[i], i } (see Exercise 2).

15.2.2.5 Goto Statements
A goto statement contains no assignments, so no explicit flows of information occur.
Implicit flows may occur; analysis detects these flows.

Definition 15–4. A basic block is a sequence of statements in a program that
has one entry point and one exit point.

EXAMPLE: Consider the following code fragment.

proc transmatrix(x: array [1..10][1..10] of int class { x };
var y: array [1..10][1..10] of int class { y });

var i, j: int class { tmp };
begin

i := 1; (* b1 *)
l2: if i > 10 goto l7; (* b2 *)

j := 1; (* b3 *)
l4: if j > 10 then goto l6; (* b4 *)

Bishop.book Page 269 Tuesday, September 28, 2004 1:46 PM

270 Chapter 15 Information Flow

y[j][i] := x[i][j]; (* b5 *)
j := j + 1;
goto l4;

l6: i := i + 1; (* b6 *)
goto l2;

l7: (* b7 *)
end;

There are seven basic blocks, labeled b1 through b7 and separated by lines. The sec-
ond and fourth blocks have two ways to arrive at the entry—either from a jump to the
label or from the previous line. They also have two ways to exit—either by the
branch or by falling through to the next line. The fifth block has three lines and
always ends with a branch. The sixth block has two lines and can be entered either
from a jump to the label or from the previous line. The last block is always entered
by a jump.

Control within a basic block flows from the first line to the last. Analyzing the
flow of control within a program is therefore equivalent to analyzing the flow of con-
trol among the program’s basic blocks. Figure 15–1 shows the flow of control among
the basic blocks of the body of the procedure transmatrix.

When a basic block has two exit paths, the block reveals information implic-
itly by the path along which control flows. When these paths converge later in the
program, the (implicit) information flow derived from the exit path from the basic
block becomes either explicit (through an assignment) or irrelevant. Hence, the class

b1 b2 b7
i > n

b3

b4

b6

b5

i ≤ n

j > n

j ≤ n

Figure 15–1 The control flow graph of the procedure transmatrix. The basic
blocks are labeled b1 through b7.The conditions under which branches are
taken are shown over the edges corresponding to the branches.

Bishop.book Page 270 Tuesday, September 28, 2004 1:46 PM

15.2 Compiler-Based Mechanisms 271

of the expression that causes a particular execution path to be selected affects the
required classes of the blocks along the path up to the block at which the divergent
paths converge.

Definition 15–5. An immediate forward dominator of a basic block b (writ-
ten IFD(b)) is the first block that lies on all paths of execution that pass
through b.

EXAMPLE: In the procedure transmatrix, the immediate forward dominators of each
block are IFD(b1) = b2, IFD(b2) = b7, IFD(b3) = b4, IFD(b4) = b6, IFD(b5) = b4, and
IFD(b6) = b2.

Computing the information flow requirement for the set of blocks along the
path is now simply applying the logic for the conditional statement. Each block
along the path is taken because of the value of an expression. Information flows from
the variables of the expression into the set of variables assigned in the blocks. Let Bi
be the set of blocks along an execution path from bi to IFD(bi), but excluding these
endpoints. (See Exercise 3.) Let xi1, ..., xin be the set of variables in the expression
that selects the execution path containing the blocks in Bi. The requirements for the
program’s information flows to be secure are

• All statements in each basic block secure
• lub{xi1, ..., xin} ≤ glb{ y | y is the target of an assignment in Bi }

EXAMPLE: Consider the body of the procedure transmatrix. We first state require-
ments for information flow within each basic block:

b1: Low ≤ i ⇒ secure
b3: Low ≤ j ⇒ secure
b5: lub{ x[i][j], i, j } ≤ y[j][i]; j ≤ j ⇒ lub{ x[i][j], i, j } ≤ y[j][i]
b6: lub{ Low, i } ≤ i ⇒ secure

The requirement for the statements in each basic block to be secure is, for i = 1, ..., n
and j = 1, ..., n, lub{ x[i][j], i, j } ≤ y[j][i]. By the declarations, this is true when
lub{x, i} ≤ y .

In this procedure, B2 = { b3, b4, b5, b6 } and B4 = { b5 }. Thus, in B2, state-
ments assign values to i, j, and y[j][i]. In B4, statements assign values to j and y[j][i].
The expression controlling which basic blocks in B2 are executed is i ≤ 10; the
expression controlling which basic blocks in B4 are executed is j ≤ 10. Secure infor-
mation flow requires that i ≤ glb{ i, j, y[j][i]} and j ≤ glb{ j, y[j][i] }. In other words,
i ≤ glb{ i, y } and i ≤ glb{ i, y }, or i ≤ y.

Combining these requirements, the requirement for the body of the procedure
to be secure with respect to information flow is lub{x, i} ≤ y .

Bishop.book Page 271 Tuesday, September 28, 2004 1:46 PM

272 Chapter 15 Information Flow

15.2.2.6 Procedure Calls
A procedure call has the form

proc procname(i1, ..., im : int; var o1, ..., on : int);
begin

S;
end;

where each of the ij’s is an input parameter and each of the oj’s is an input/output
parameter. The information flow in the body S must be secure. As discussed earlier,
information flow relationships may also exist between the input parameters and the
output parameters. If so, these relationships are necessary for S to be secure. The
actual parameters (those variables supplied in the call to the procedure) must also
satisfy these relationships for the call to be secure. Let x1, ..., xm and y1, ..., yn be the
actual input and input/output parameters, respectively. The requirements for the
information flow to be secure are

• S secure
• For j = 1, ..., m and k = 1, ..., n, if ij ≤ ok then xj ≤ yk

• For j = 1, ..., n and k = 1, ..., n, if oj ≤ ok then yj ≤ yk

EXAMPLE: Consider the procedure transmatrix from the preceding section. As we
showed there, the body of the procedure is secure with respect to information flow
when lub{x, tmp} ≤ y. This indicates that the formal parameters x and y have the
information flow relationship x ≤ y. Now, suppose a program contains the call

transmatrix(a, b)

The second condition asserts that this call is secure with respect to information flow
if and only if a ≤ b.

15.2.3 Exceptions and Infinite Loops

Exceptions can cause information to flow.

EXAMPLE: Consider the following procedure, which copies the (approximate) value
of x to y.1

proc copy(x: int class { x }; var y: int class Low);
var sum: int class { x };

z: int class Low;

1 From Denning [242], p. 306.

Bishop.book Page 272 Tuesday, September 28, 2004 1:46 PM

15.2 Compiler-Based Mechanisms 273

begin
z := 0;
sum := 0;
y := 0;
while z = 0 do begin

sum := sum + x;
y := y + 1;

end
end

When sum overflows, a trap occurs. If the trap is not handled, the procedure exits.
The value of x is MAXINT / y, where MAXINT is the largest integer representable as
an int on the system. At no point, however, is the flow relationship x ≤ y checked.

If exceptions are handled explicitly, the compiler can detect problems such as
this. Denning again supplies such a solution.

EXAMPLE: Suppose the system ignores all exceptions unless the programmer specif-
ically handles them. Ignoring the exception in the preceding example would cause
the program to loop indefinitely. So, the programmer would want the loop to termi-
nate when the exception occurred. The following line does this.

on overflowexception sum do z := 1;

This line causes information to flow from sum to z, meaning that sum ≤ z. Because z
is Low and sum is { x }, this is incorrect and the procedure is not secure with respect
to information flow.

Denning also notes that infinite loops can cause information to flow in unex-
pected ways.

EXAMPLE: The following procedure copies data from x to y. It assumes that x and y
are either 0 or 1.

proc copy(x: int 0..1 class { x };
var y: int 0..1 class Low);

begin
y := 0;
while x = 0 do

(* nothing *);
y := 1;

end.

If x is 0 initially, the procedure does not terminate. If x is 1, it does terminate, with y
being 1. At no time is there an explicit flow from x to y. This is an example of a
covert channel, which we will discuss in detail in the next chapter.

Bishop.book Page 273 Tuesday, September 28, 2004 1:46 PM

274 Chapter 15 Information Flow

15.2.4 Concurrency

Of the many concurrency control mechanisms that are available, we choose to study
information flow using semaphores [270]. Their operation is simple, and they can be
used to express many higher-level constructs [135, 718]. The specific semaphore
constructs are

wait(x): if x = 0 then block until x > 0; x := x - 1;
signal(x): x := x + 1;

where x is a semaphore. As usual, the wait and the signal are indivisible; once either
one has started, no other instruction will execute until the wait or signal finishes.

Reitman and his colleagues [33, 748] point out that concurrent mechanisms
add information flows when values common to multiple processes cause specific
actions. For example, in the block

begin
wait(sem);
x := x + 1;

end;

the program blocks at the wait if sem is 0, and executes the next statement when sem
is nonzero. The earlier certification requirement for compound statements is not suf-
ficient because of the implied flow between sem and x. The certification requirements
must take flows among local and shared variables (semaphores) into account.

Let the block be

begin
S1;
...
Sn;

end;

Assume that each of the statements S1, ..., Sn is certified. Semaphores in the signal do
not affect information flow in the program in which the signal occurs, because the
signal statement does not block. But following a wait statement, which may block,
information implicitly flows from the semaphore in the wait to the targets of succes-
sive assignments.

Let statement Si be a wait statement, and let shared(Si) be the set of shared
variables that are read (so information flows from them). Let g(Si) be the greatest
lower bound of the targets of assignments following Si. A requirement that the block
be secure is that shared(Si) ≤ g(Si). Thus, the requirements for certification of a com-
pound statement with concurrent constructs are

Bishop.book Page 274 Tuesday, September 28, 2004 1:46 PM

15.2 Compiler-Based Mechanisms 275

• S1 secure
• ...
• Sn secure
• For i = 1, ..., n [shared(Si) ≤ g(Si)]

EXAMPLE: Consider the statements

begin
x := y + z;
wait(sem);
a := b * c - x;

end;

The requirements that the information flow be secure are lub{ y, z } ≤ x for S1 and
lub{ b, c, x } ≤ a for S2. Information flows implicitly from sem to a, so sem ≤ a. The
requirements for certification are lub{ y, z } ≤ x, lub{ b, c, x } ≤ a, and sem ≤ a.

Loops are handled similarly. The only difference is in the last requirement,
because after completion of one iteration of the loop, control may return to the begin-
ning of the loop. Hence, a semaphore may affect assignments that precede the wait
statement in which the semaphore is used. This simplifies the last condition in the
compound statement requirement considerably. Information must be able to flow
from all shared variables named in the loop to the targets of all assignments. Let
shared(Si) be the set of shared variables read, and let t1, ..., tm be the targets of
assignments in the loop. Then the certification conditions for the iterative statement

while f(x1, ..., xn) do
S;

are

• Iterative statement terminates
• S secure
• lub{x1, ..., xn} ≤ glb{ t1, ..., tm }
• lub{shared(S1), ,,,, shared(Sn) } ≤ glb{ t1, ..., tm }

EXAMPLE: Consider the statements

while i < n do
begin

a[i] := item;
wait(sem);
i := i + 1;

end;

Bishop.book Page 275 Tuesday, September 28, 2004 1:46 PM

276 Chapter 15 Information Flow

This loop terminates. If n ≤ i initially, the loop is never entered. If i < n, i is
incremented by a positive integer, 1, and so increases, at each iteration. Hence, after
n – i iterations, n = i, and the loop terminates.

Now consider the compound statement that makes up the body of the loop.
The first statement is secure if i ≤ a[i] and item ≤ a[i].The third statement is secure
because i ≤ i. The second statement induces an implicit flow, so sem ≤ a[i] and sem ≤
i. The requirements are thus i ≤ a[i], item ≤ a[i], sem ≤ a[i], and sem ≤ i.

Finally, concurrent statements have no information flow among them per se.
Any such flows occur because of semaphores and involve compound statements (dis-
cussed above). The certification conditions for the concurrent statement

cobegin
S1;
...
Sn;

coend;

are

• S1 secure
• ...
• Sn secure

EXAMPLE: Consider the statements

cobegin
x := y + z;
a := b * c - y;

coend;

The requirements that the information flow be secure are lub{ y, z } ≤ x for S1 and
lub{ b, c, y } ≤ a for S2. The requirement for certification is simply that both of these
requirements hold.

15.2.5 Soundness

Denning and Denning [247], Andrews and Reitman [33], and others build their argu-
ment for security on the intuition that combining secure information flows produces
a secure information flow, for some security policy. However, they never formally
prove this intuition. Volpano, Irvine, and Smith [920] express the semantics of the

Bishop.book Page 276 Tuesday, September 28, 2004 1:46 PM

15.3 Execution-Based Mechanisms 277

above-mentioned information on flow analysis as a set of types, and equate certifica-
tion that a certain flow can occur to the correct use of types. In this context, checking
for valid information flows is equivalent to checking that variable and expression
types conform to the semantics imposed by the security policy.

Let x and y be two variables in the program. Let x’s label dominate y’s label. A
set of information flow rules is sound if the value in x cannot affect the value in y dur-
ing the execution of the program. Volpano, Irvine, and Smith use language-based
techniques to prove that, given a type system equivalent to the certification rules dis-
cussed above, all programs without type errors have the noninterference property
described above. Hence, the information flow certification rules of Denning and of
Andrews and Reitman are sound.

15.3 Execution-Based Mechanisms

The goal of an execution-based mechanism is to prevent an information flow that
violates policy. Checking the flow requirements of explicit flows achieves this result
for statements involving explicit flows. Before the assignment

y = f(x1, ..., xn)

is executed, the execution-based mechanism verifies that

lub(x1, ..., xn) ≤ y

If the condition is true, the assignment proceeds. If not, it fails. A naïve approach,
then, is to check information flow conditions whenever an explicit flow occurs.

Implicit flows complicate checking.

EXAMPLE: Let x and y be variables. The requirement for certification for a particular
statement y op x is that x ≤ y. The conditional statement

if x = 1 then y := a;

causes a flow from x to y. Now, suppose that when x ≠ 1, x = High and y = Low. If
flows were verified only when explicit, and x ≠ 1, the implicit flow would not be
checked. The statement may be incorrectly certified as complying with the informa-
tion flow policy.

Fenton explored this problem using a special abstract machine.

Bishop.book Page 277 Tuesday, September 28, 2004 1:46 PM

278 Chapter 15 Information Flow

15.3.1 Fenton’s Data Mark Machine

Fenton [313] created an abstract machine called the Data Mark Machine to study han-
dling of implicit flows at execution time. Each variable in this machine had an associ-
ated security class, or tag. Fenton also included a tag for the program counter (PC).

The inclusion of the PC allowed Fenton to treat implicit flows as explicit
flows, because branches are merely assignments to the PC. He defined the semantics
of the Data Mark Machine. In the following discussion, skip means that the instruc-
tion is not executed, push(x, x) means to push the variable x and its security class x
onto the program stack, and pop(x, x) means to pop the top value and security class
off the program stack and assign them to x and x, respectively.

Fenton defined five instructions. The relationships between execution of the
instructions and the classes of the variables are as follows.

1. The increment instruction

x := x + 1

is equivalent to

if PC ≤ x then x := x + 1; else skip

2. The conditional instruction

if x = 0 then goto n else x := x – 1

is equivalent to

if x = 0 then { push(PC, PC); PC = lub(PC, x); PC := n; }
else { if PC ≤ x then { x := x – 1; } else skip }

This branches, and pushes the PC and its security class onto the program
stack. (As is customary, the PC is incremented so that when it is popped,
the instruction following the if statement is executed.) This captures the
PC containing information from x (specifically, that x is 0) while following
the goto.

3. The return

return

is equivalent to

pop(PC, PC);

Bishop.book Page 278 Tuesday, September 28, 2004 1:46 PM

15.3 Execution-Based Mechanisms 279

This returns control to the statement following the last if statement.
Because the flow of control would have arrived at this statement, the PC no
longer contains information about x, and the old class can be restored.

4. The branch instruction

if’ x = 0 then goto n else x := x – 1

is equivalent to

if x = 0 then { if x ≤ PC then { PC := n; } else skip }
else { if PC ≤ x then { x := x – 1; } else skip }

This branches without saving the PC on the stack. If the branch occurs, the
PC is in a higher security class than the conditional variable x, so adding
information from x to the PC does not change the PC’s security class.

5. The halt instruction

halt

is equivalent to

if program stack empty then halt execution

The program stack being empty ensures that the user cannot obtain
information by looking at the program stack after the program has halted
(for example, to determine which if statement was last taken).

EXAMPLE: Consider the following program, in which x initially contains 0 or 1.2

1. if x = 0 then goto 4 else x := x – 1
2. if z = 0 then goto 6 else z := z – 1
3. halt
4. z := z + 1
5. return
6. y := y + 1
7. return

This program copies the value of x to y. Suppose that x = 1 initially. The following
table shows the contents of memory, the security class of the PC at each step, and the
corresponding certification check.

2 From Denning [242], Figure 5.7, p. 290.

Bishop.book Page 279 Tuesday, September 28, 2004 1:46 PM

280 Chapter 15 Information Flow

x y z PC PC stack certification check
1 0 0 1 Low —
0 0 0 2 Low — Low ≤ x
0 0 0 6 x (3, Low)
0 1 0 7 x (3, Low) PC ≤ y
0 1 0 3 Low —

Fenton’s machine handles errors by ignoring them. Suppose that, in the pro-
gram above, y ≤ x. Then at the fifth step, the certification check fails (because PC = x).
So, the assignment is skipped, and at the end y = 0 regardless of the value of x. But if
the machine reports errors, the error message informing the user of the failure of the
certification check means that the program has attempted to execute step 6. It could
do so only if it had taken the branch in step 2, meaning that z = 0. If z = 0, then the
else branch of statement 1 could not have been taken, meaning that x = 0 initially.

To prevent this type of deduction, Fenton’s machine continues executing in
the face of errors, but ignores the statement that would cause the violation. This satis-
fies the requirements. Aborting the program, or creating an exception visible to the
user, would also cause information to flow against policy.

The problem with reporting of errors is that a user with lower clearance than
the information causing the error can deduce the information from knowing that
there has been an error. If the error is logged in such a way that the entries in the log,
and the action of logging, are visible only to those who have adequate clearance, then
no violation of policy occurs. But if the clearance of the user is sufficiently high, then
the user can see the error without a violation of policy. Thus, the error can be logged
for the system administrator (or other appropriate user), even if it cannot be dis-
played to the user who is running the program. Similar comments apply to any
exception action, such as abnormal termination.

15.3.2 Variable Classes

The classes of the variables in the examples above are fixed. Fenton’s machine alters
the class of the PC as the program runs. This suggests a notion of dynamic classes,
wherein a variable can change its class. For explicit assignments, the change is
straightforward. When the assignment

y := f(x1, …, xn)

occurs, y’s class is changed to lub(x1, …, xn). Again, implicit flows complicate matters.

EXAMPLE: Consider the following program (which is the same as the program in the
example for the Data Mark Machine).3

3 From Denning [242], Figure 5.5, p. 285.

Bishop.book Page 280 Tuesday, September 28, 2004 1:46 PM

15.4 Example Information Flow Controls 281

proc copy(x : integer class { x };
var y : integer class { y });

var z : integer class variable { Low };
begin

y := 0;
z := 0;
if x = 0 then z := 1;
if z = 0 then y := 1;

end;

In this program, z is variable and initially Low. It changes when something is
assigned to z. Flows are certified whenever anything is assigned to y. Suppose y < x.

If x = 0 initially, the first statement checks that Low ≤ y (trivially true). The second
statement sets z to 0 and z to Low. The third statement changes z to 1 and z to lub(Low, x)
= x. The fourth statement is skipped (because z = 1). Hence, y is set to 0 on exit.

If x = 1 initially, the first statement checks that Low ≤ y (trivially true). The
second statement sets z to 0 and z to Low. The third statement is skipped (because x =
1). The fourth statement assigns 1 to y and checks that lub(Low, z) = Low ≤ y (again,
trivially true). Hence, y is set to 1 on exit.

Information has therefore flowed from x to y even though y < x. The program
violates the policy but is nevertheless certified.

Fenton’s Data Mark Machine would detect the violation (see Exercise 4).
Denning [239] suggests an alternative approach. She raises the class of the

targets of assignments in the conditionals and verifies the information flow require-
ments, even when the branch is not taken. Her method would raise z to x in the third
statement (even when the conditional is false). The certification check at the fourth
statement then would fail, because lub(Low, z) = x ≤ y is false.

Denning ([242], p. 285) credits Lampson with another mechanism. Lampson
suggested changing classes only when explicit flows occur. But all flows force certi-
fication checks. For example, when x = 0, the third statement sets z to Low and then
verifies x ≤ z (which is true if and only if x = Low).

15.4 Example Information Flow Controls

Like the program-based information flow mechanisms discussed above, both special-
purpose and general-purpose computer systems have information flow controls at the
system level. File access controls, integrity controls, and other types of access
controls are mechanisms that attempt to inhibit the flow of information within a sys-
tem, or between systems.

The first example is a special-purpose computer that checks I/O operations
between a host and a secondary storage unit. It can be easily adapted to other purposes.

Bishop.book Page 281 Tuesday, September 28, 2004 1:46 PM

282 Chapter 15 Information Flow

A mail guard for electronic mail moving between a classified network and an unclas-
sified one follows. The goal of both mechanisms is to prevent the illicit flow of infor-
mation from one system unit to another.

15.4.1 Security Pipeline Interface

Hoffman and Davis [428] propose adding a processor, called a security pipeline
interface (SPI), between a host and a destination. Data that the host writes to the des-
tination first goes through the SPI, which can analyze the data, alter it, or delete it.
But the SPI does not have access to the host’s internal memory; it can only operate
on the data being output. Furthermore, the host has no control over the SPI. Hoffman
and Davis note that SPIs could be linked into a series of SPIs, or be run in parallel.

They suggest that the SPI could check for corrupted programs. A host requests
a file from the main disk. An SPI lies on the path between the disk and the host (see
Figure 15–2.) Associated with each file is a cryptographic checksum that is stored on
a second disk connected to the first SPI. When the file reaches the first SPI, it com-
putes the cryptographic checksum of the file and compares it with the checksum
stored on the second disk. If the two match, it assumes that the file is uncorrupted. If
not, the SPI requests a clean copy from the second disk, records the corruption in a
log, and notifies the user, who can update the main disk.

The information flow being restricted here is an integrity flow, rather than the
confidentiality flow of the other examples. The inhibition is not to prevent the corrupt
data from being seen, but to prevent the system from trusting it. This emphasizes
that, although information flow is usually seen as a mechanism for maintaining con-
fidentiality, its application in maintaining integrity is equally important.

15.4.2 Secure Network Server Mail Guard

Consider two networks, one of which has data classified SECRET4 and the other of
which is a public network. The authorities controlling the SECRET network need to

4 For this example, assume that the network has only one category, which we omit.

main disk

second disk

SPIhost

Figure 15–2 Use of an SPI to check for corrupted files.

Bishop.book Page 282 Tuesday, September 28, 2004 1:46 PM

15.4 Example Information Flow Controls 283

allow electronic mail to go to the unclassified network. They do not want SECRET
information to transit the unclassified network, of course. The Secure Network
Server Mail Guard (SNSMG) [844] is a computer that sits between the two net-
works. It analyzes messages and, when needed, sanitizes or blocks them.

The SNSMG accepts messages from either network to be forwarded to the
other. It then applies several filters to the message; the specific filters may depend on
the source address, destination address, sender, recipient, and/or contents of the mes-
sage. Examples of the functions of such filters are as follows.

• Check that the sender of a message from the SECRET network is
authorized to send messages to the unclassified network.

• Scan any attachments to messages coming from the unclassified network
to locate, and eliminate, any computer viruses.

• Require all messages moving from the SECRET to the unclassified
network to have a clearance label, and if the label is anything other than
UNCLASS (unclassified), encipher the message before forwarding it to
the unclassified network.

The SNSMG is a computer that runs two different message transfer agents
(MTAs), one for the SECRET network and one for the unclassified network (see Fig-
ure 15–3). It uses an assured pipeline [700] to move messages from the MTA to the
filter, and vice versa. In this pipeline, messages output from the SECRET network’s
MTA have type a, and messages output from the filters have a different type, type b.
The unclassified network’s MTA will accept as input only messages of type b. If a
message somehow goes from the SECRET network’s MTA to the unclassified net-
work’s MTA, the unclassified network’s MTA will reject the message as being of the
wrong type.

The SNSMG is an information flow enforcement mechanism. It ensures that
information cannot flow from a higher security level to a lower one. It can perform
other functions, such as restricting the flow of untrusted information from the unclas-
sified network to the trusted, SECRET network. In this sense, the information flow is
an integrity issue, not a confidentiality issue.

workstation workstation

SECRET network UNCLASSIFIED
network

MTA MTA

queue out queue in

filters

SNS Mail Guard

Figure 15–3 Secure Network Server Mail Guard. The SNSMG is processing a
message from the SECRET network. The filters are part of a highly trusted
system and perform checking and sanitizing of messages.

Bishop.book Page 283 Tuesday, September 28, 2004 1:46 PM

284 Chapter 15 Information Flow

15.5 Summary

Two aspects of information flow are the amount of information flowing and the way
in which it flows. Given the value of one variable, entropy measures the amount of
information that one can deduce about a second variable. The flow can be explicit, as
in the assignment of the value of one variable to another, or implicit, as in the ante-
cedent of a conditional statement depending on the conditional expression.

Traditionally, models of information flow policies form lattices. Should the
models not form lattices, they can be embedded in lattice structures. Hence, analysis
of information flow assumes a lattice model.

A compiler-based mechanism assesses the flow of information in a program
with respect to a given information flow policy. The mechanism either certifies that the
program meets the policy or shows that it fails to meet the policy. It has been shown
that if a set of statements meet the information flow policy, their combination (using
higher-level language programming constructs) meets the information flow policy.

Execution-based mechanisms check flows at runtime. Unlike compiler-based
mechanisms, execution-based mechanisms either allow the flow to occur (if the flow
satisfies the information flow policy) or block it (if the flow violates the policy).
Classifications of information may be static or dynamic.

Two example information flow control mechanisms, the Security Pipeline
Interface and the Secure Network Server Mail Guard, provide information flow con-
trols at the system level rather than at the program and program statement levels.

15.6 Further Reading

The Decentralized Label Model [660] allows one to specify information flow poli-
cies on a per-entity basis. Formal models sometimes lead to reports of flows not
present in the system; Eckmann [290] discusses these reports, as well as approaches
to eliminating them. Guttmann draws lessons from the failure of an information flow
analysis technique [385].

Foley [327] presented a model of confinement flow suitable for nonlattice
structures, and models nontransitive systems of infoormation flow. Denning [240]
describes how to turn a partially ordered set into a lattice, and presents requirements
for information flow policies.

The cascade problem is identified in the Trusted Network Interpretation [258].
Numerous studies of this problem describe analyses and approaches [320, 441, 631];
the problem of correcting it with minimum cost is NP-complete [440].

Gendler-Fishman and Gudes [351] examine a compile-time flow control
mechanism for object-oriented databases. McHugh and Good describe a flow analy-
sis tool [606] for the language Gypsy. Greenwald et al. [379], Kocher [522], Sands

Bishop.book Page 284 Tuesday, September 28, 2004 1:46 PM

15.7 Exercises 285

[787], and Shore [826] discuss guards and other mechanisms for control of informa-
tion flow.

A multithreaded environment adds to the complexity of constraints on infor-
mation flow [842]. Some architectural characteristics can be used to enforce these
constraints [462].

15.7 Exercises

1. Extend the semantics of the information flow security mechanism in
Section 15.2.1 for records (structures).

2. Why can we omit the requirement lub{ i, b[i] } ≤ a[i] from the
requirements for secure information flow in the example for iterative
statements (see Section 15.2.2.4)?

3. In the flow certification requirement for the goto statement in Section
15.2.2.5, the set of blocks along an execution path from bi to IFD(bi)
excludes these endpoints. Why are they excluded?

4. Prove that Fenton’s Data Mark Machine described in Section 15.3.1 would
detect the violation of policy in the execution time certification of the copy
procedure.

5. Discuss how the Security Pipeline Interface in Section 15.4.1 can prevent
information flows that violate a confidentiality model. (Hint: Think of
scanning messages for confidential data and sanitizing or blocking that
data.)

Bishop.book Page 285 Tuesday, September 28, 2004 1:46 PM

Bishop.book Page 286 Tuesday, September 28, 2004 1:46 PM

