Chapter 2: Access Control Matrix

- Overview
- Access Control Matrix Model
- Protection State Transitions
 - Commands
 - Conditional Commands
Overview

• Protection state of system
 – Describes current settings, values of system relevant to protection

• Access control matrix
 – Describes protection state precisely
 – Matrix describing rights of subjects
 – State transitions change elements of matrix
Description

<table>
<thead>
<tr>
<th>subjects</th>
<th>o_1</th>
<th>\ldots</th>
<th>o_m</th>
<th>s_1</th>
<th>\ldots</th>
<th>s_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\ldots</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Subjects $S = \{ s_1, \ldots, s_n \}$
- Objects $O = \{ o_1, \ldots, o_m \}$
- Rights $R = \{ r_1, \ldots, r_k \}$
- Entries $A[s_i, o_j] \subseteq R$
- $A[s_i, o_j] = \{ r_x, \ldots, r_y \}$ means subject s_i has rights r_x, \ldots, r_y over object o_j
Example 1

• Processes p, q
• Files f, g
• Rights r, w, x, a, o

<table>
<thead>
<tr>
<th></th>
<th>f</th>
<th>g</th>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>rwo</td>
<td>r</td>
<td>rwxo</td>
<td>w</td>
</tr>
<tr>
<td>q</td>
<td>a</td>
<td>ro</td>
<td>r</td>
<td>rwxo</td>
</tr>
</tbody>
</table>
Example 2

- Procedures *inc ctr*, *dec ctr*, *manage*
- Variable *counter*
- Rights +, −, *call*

| | counter | *inc ctr* | *dec ctr* | *manage*
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>inc ctr</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dec ctr</td>
<td>−</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>manage</td>
<td></td>
<td>call</td>
<td>call</td>
<td>call</td>
</tr>
</tbody>
</table>
State Transitions

- Change the protection state of system
- \(\models \) represents transition
 - \(X_i \models \tau \ X_{i+1} \): command \(\tau \) moves system from state \(X_i \) to \(X_{i+1} \)
 - \(X_i \models ^* \ X_{i+1} \): a sequence of commands moves system from state \(X_i \) to \(X_{i+1} \)
- Commands often called transformation procedures
Primitive Operations

- **create subject** s; **create object** o
 - Creates new row, column in ACM; creates new column in ACM
- **destroy subject** s; **destroy object** o
 - Deletes row, column from ACM; deletes column from ACM
- **enter** r **into** $A[s, o]$
 - Adds r rights for subject s over object o
- **delete** r **from** $A[s, o]$
 - Removes r rights from subject s over object o
Creating File

- Process p creates file f with r and w permission

```
command create_file(p, f)
    create object f;
    enter own into A[p, f];
    enter r into A[p, f];
    enter w into A[p, f];
end
```
Mono-Operational Commands

- Make process p the owner of file g

 \[
 \text{command } \text{make}\cdot\text{owner}(p, g) \\
 \text{enter own into } A[p, g]; \\
 \text{end}
 \]

- Mono-operational command
 - Single primitive operation in this command
Conditional Commands

• Let p give q r rights over f, if p owns f

$$\text{command} \ grant \cdot read \cdot file \cdot 1(p, f, q)$$

$$\text{if own in } A[p, f]$$

$$\text{then}$$

$$\text{enter } r \text{ into } A[q, f];$$

$$\text{end}$$

• Mono-conditional command
 – Single condition in this command
Multiple Conditions

- Let p give q r and w rights over f, if p owns f and p has c rights over q

 command $\text{grant} \cdot \text{read} \cdot \text{file} \cdot 2(p, f, q)$

 if own in $A[p, f]$ and c in $A[p, q]$
 then
 enter r into $A[q, f]$;
 enter w into $A[q, f]$;
 end
Key Points

• Access control matrix simplest abstraction mechanism for representing protection state
• Transitions alter protection state
• 6 primitive operations alter matrix
 – Transitions can be expressed as commands composed of these operations and, possibly, conditions