Chapter 18: Evaluating Systems

• Goals
• Trusted Computer System Evaluation Criteria
• FIPS 140
• Common Criteria
• SSE-CMM
Overview

• Goals
 – Why evaluate?

• Evaluation criteria
 – TCSEC (aka Orange Book)
 – FIPS 140
 – Common Criteria
 – SSE-CMM
Goals

• Show that a system meets specific security requirements under specific conditions
 – Called a *trusted* system
 – Based on specific assurance evidence

• *Formal evaluation methodology*
 – Technique used to provide measurements of trust based on specific security requirements and evidence of assurance
Evaluation Methodology

- Provides set of requirements defining security functionality for system
- Provides set of assurance requirements delineating steps for establishing that system meets its functional requirements
- Provides methodology for determining that system meets functional requirements based on analysis of assurance evidence
- Provides measure of result indicating how trustworthy system is with respect to security functional requirements
 - Called level of trust
Why Evaluate?

• Provides an independent assessment, and measure of assurance, by experts
 – Includes assessment of requirements to see if they are consistent, complete, technically sound, sufficient to counter threats
 – Includes assessment of administrative, user, installation, other documentation that provides information on proper configuration, administration, use of system

• Independence critical
 – Experts bring fresh perspectives, eyes to assessment
Bit of History

• Government, military drove early evaluation processes
 – Their desire to use commercial products led to businesses developing methodologies for evaluating security, trustworthiness of systems

• Methodologies provide combination of
 – Functional requirements
 – Assurance requirements
 – Levels of trust
TCSEC: 1983–1999

- Trusted Computer System Evaluation Criteria
 - Also known as the Orange Book
 - Series that expanded on Orange Book in specific areas was called *Rainbow Series*
 - Developed by National Computer Security Center, US Dept. of Defense
- Heavily influenced by Bell-LaPadula model and reference monitor concept
- Emphasizes confidentiality
 - Integrity addressed by *-property
Functional Requirements

- Discretionary access control requirements
 - Control sharing of named objects
 - Address propagation of access rights, ACLs, granularity of controls
- Object reuse requirements
 - Hinder attacker gathering information from disk or memory that has been deleted
 - Address overwriting data, revoking access rights, and assignment of resources when data in resource from previous use is present
Functional Requirements

• Mandatory access control requirements (B1 up)
 – Simple security condition, *-property
 – Description of hierarchy of labels

• Label requirements (B1 up)
 – Used to enforce MAC
 – Address representation of classifications, clearances,
 exporting labeled information, human-readable output

• Identification, authentication requirements
 – Address granularity of authentication data, protecting
 that data, associating identity with auditable actions
Functional Requirements

- Audit requirements
 - Define what audit records contain, events to be recorded; set increases as other requirements increase
- Trusted path requirements (B2 up)
 - Communications path guaranteed between user, TCB
- System architecture requirements
 - Tamperproof reference validation mechanism
 - Process isolation
 - Enforcement of principle of least privilege
 - Well-defined user interfaces
Functional Requirements

- Trusted facility management (B2 up)
 - Separation of operator, administrator roles
- Trusted recovery (A1)
 - Securely recover after failure or discontinuity
- System integrity requirement
 - Hardware diagnostics to validate on-site hardware, firmware of TCB
Assurance Requirements

- Configuration management requirements (B2 up)
 - Identify configuration items, consistent mappings among documentation and code, tools for generating TCB
- System architecture requirements
 - Modularity, minimize complexity, etc.
 - TCB full reference validation mechanism at B3
- Trusted distribution requirement (A1)
 - Address integrity of mapping between masters and on-site versions
 - Address acceptance procedures
Assurance Requirements

• Design specification, verification requirements
 – B1: informal security policy model shown to be consistent with its axioms
 – B2: formal security policy model proven to be consistent with its axioms, descriptive top-level specification (DTLS)
 – B3: DTLS shown to be consistent with security policy model
 – A1: formal top-level specification (FTLS) shown consistent with security policy model using approved formal methods; mapping between FTLS, source code
Assurance Requirements

• Testing requirements
 – Address conformance with claims, resistance to penetration, correction of flaws
 – Requires searching for covert channels for some classes

• Product documentation requirements
 – Security Features User’s Guide describes uses, interactions of protection mechanisms
 – Trusted Facility Manual describes requirements for running system securely

• Other documentation: test, design docs
Evaluation Classes A and B

A1 *Verified protection*; significant use of formal methods; trusted distribution; code, FTLS correspondence

B3 *Security domains*; full reference validation mechanism; increases trusted path requirements, constrains code development; more DTLS requirements; documentation

B2 *Structured protection*; formal security policy model; MAC for all objects, labeling; trusted path; least privilege; covert channel analysis, configuration management

B1 *Labeled security protection*; informal security policy model; MAC for some objects; labeling; more stringent security testing
Evaluation Classes C and D

C2 *Controlled access protection*; object reuse, auditing, more stringent security testing

C1 *Discretionary protection*; minimal functional, assurance requirements; I&A controls; DAC

D Did not meet requirements of any other class
Evaluation Process

- Run by government, no fee to vendor
- 3 stages
 - Application: request for evaluation
 - May be denied if gov’t didn’t need product
 - Preliminary technical review
 - Discussion of evaluation process, schedules, development process, technical content, etc.
 - Determined schedule for evaluation
 - Evaluation phase
Evaluation Phase

- 3 parts; results of each presented to technical review board composed of senior evaluators *not* on evaluating team; must approve that part before moving on to next part
 - Design analysis: review design based on documentation provided; developed initial product assessment report
 - Source code not reviewed
 - Test analysis: vendor’s, evaluators’ tests
 - Final evaluation report
- Once approved, all items closed, rating given
RAMP

- Ratings Maintenance Program goal: maintain assurance for new version of evaluated product
- Vendor would update assurance evidence
- Technical review board reviewed vendor’s report and, on approval, assigned evaluation rating to new version of product
- Note: major changes (structural, addition of some new functions) could be rejected here and a full new evaluation required
Impact

• New approach to evaluating security
 – Based on analyzing design, implementation, documentation, procedures
 – Introduced evaluation classes, assurance requirements, assurance-based evaluation
 – High technical standards for evaluation
 – Technical depth in evaluation procedures

• Some problems
 – Evaluation process difficult, lacking in resources
 – Mixed assurance, functionality together
 – Evaluations only recognized in US
Scope Limitations

• Written for operating systems
 – NCSC introduced “interpretations” for other things such as networks (*Trusted Network Interpretation*, the Red Book), databases (*Trusted Database Interpretation*, the Purple or Lavender Book)

• Focuses on needs of US government
 – Most commercial firms do not need MAC

• Does not address integrity or availability
 – Critical to commercial firms
Process Limitations

• Criteria creep (expansion of requirements defining classes)
 – Criteria interpreted for specific product types
 – Sometimes strengthened basic requirements over time
 – Good for community (learned more about security), but inconsistent over time

• Length of time of evaluation
 – Misunderstanding depth of evaluation
 – Management practices of evaluation
 – As was free, sometimes lacking in motivation
Contributions

• Heightened awareness in commercial sector to computer security needs
• Commercial firms could not use it for their products
 – Did not cover networks, applications
 – Led to wave of new approaches to evaluation
 – Some commercial firms began offering certifications
• Basis for several other schemes, such as Federal Criteria, Common Criteria
FIPS 140: 1994–Present

• Evaluation standard for cryptographic modules (implementing cryptographic logic or processes)
 – Established by US government agencies and Canadian Security Establishment

• Updated in 2001 to address changes in process and technology
 – Officially, FIPS 140-2

• Evaluates only crypto modules
 – If software, processor executing it also included, as is operating system
Requirements

• Four increasing levels of security
• FIPS 140-1 covers basic design, documentation, roles, cryptographic key management, testing, physical security (from electromagnetic interference), etc.
• FIPS 140-2 covers specification, ports & interfaces; finite state model; physical security; mitigation of other attacks; etc.
Security Level 1

- Encryption algorithm must be FIPS-approved algorithm
- Software, firmware components may be executed on general-purpose system using unevaluated OS
- No physical security beyond use of production-grade equipment required
Security Level 2

- More physical security
 - Tamper-proof coatings or seals or pick-resistant locks
- Role-based authentication
 - Module must authenticate that operator is authorized to assume specific role and perform specific services
- Software, firmware components may be executed on multiuser system with OS evaluated at EAL2 or better under Common Criteria
 - Must use one of specified set of protection profiles
Security Level 3

- Enhanced physical security
 - Enough to prevent intruders from accessing critical security parameters within module
- Identity-based authentication
- Strong requirements for reading, altering critical security parameters
- Software, firmware components require OS to have EAL3 evaluation, trusted path, informal security policy model
 - Can use equivalent evaluated trusted OS instead
Security Level 4

- “Envelope of protection” around module that detects, responds to all unauthorized attempts at physical access
 - Includes protection against environmental conditions or fluctuations outside module’s range of voltage, temperatures
- Software, firmware components require OS meet functional requirements for Security Level 3, and assurance requirements for EAL4
 - Equivalent trusted operating system may be used
Impact

• By 2002, 164 modules, 332 algorithms tested
 – About 50% of modules had security flaws
 – More than 95% of modules had documentation errors
 – About 25% of algorithms had security flaws
 – More than 65% had documentation errors

• Program greatly improved quality, security of cryptographic modules
Common Criteria: 1998–Present

- Began in 1998 with signing of Common Criteria Recognition Agreement with 5 signers
 - US, UK, Canada, France, Germany
- As of May 2002, 10 more signers
 - Australia, Finland, Greece, Israel, Italy, Netherlands, New Zealand, Norway, Spain, Sweden; India, Japan, Russia, South Korea developing appropriate schemes
- Standard 15408 of International Standards Organization
- *De facto* US security evaluation standard
Evaluation Methodology

• CC documents
 – Overview of methodology, functional requirements, assurance requirements

• CC Evaluation Methodology (CEM)
 – Detailed guidelines for evaluation at each EAL; currently only EAL1–EAL4 defined

• Evaluation Scheme or National Scheme
 – Country-specific infrastructures implementing CEM
 – In US, it’s CC Evaluation and Validation Scheme; NIST accredits commercial labs to do evaluations
CC Terms

- **Target of Evaluation (TOE):** system or product being evaluated
- **TOE Security Policy (TSP):** set of rules regulating how assets managed, protected, distributed within TOE
- **TOE Security Functions (TSF):** set consisting of all hardware, software, firmware of TOE that must be relied on for correct enforcement of TSP
 - Generalization of TCB
Protection Profiles

- **CC Protection Profile (PP):** implementation-independent set of security requirements for category of products or systems meeting specific consumer needs
 - Includes functional requirements
 - Chosen from CC functional requirements by PP author
 - Includes assurance requirements
 - Chosen from CC assurance requirements; may be EAL plus others
 - PPs for firewalls, desktop systems, etc.
 - Evolved from ideas in earlier criteria
Form of PP

1. Introduction
 • PP Identification and PP Overview

2. Product or System Family Description
 • Includes description of type, general features of product or system

3. Product or System Family Security Environment
 • Assumptions about intended use, environment of use;
 • Threats to the assets; and
 • Organizational security policies for product or system
4. Security Objectives
 • Trace security objectives for product back to aspects of identified threats and/or policies
 • Trace security objectives for environment back to threats not completely countered by product or system and/or policies or assumptions not completely met by product or system

5. IT Security Requirements
 • Security functional requirements drawn from CC
 • Security assurance requirements based on an EAL
 • May supply other requirements without reference to CC
6. Rationale

- Security Objectives Rationale demonstrates stated objectives traceable to all assumptions, threats, policies
- Security Requirements Rationale demonstrates requirements for product or system and for environment traceable to objectives and meet them
- This section provides assurance evidence that PP is complete, consistent, technically sound
Security Target

• CC Security Target (ST): set of security requirements and specifications to be used as basis for evaluation of identified product or system
 – Can be derived from a PP, or directly from CC
 • If from PP, ST can reference PP directly
 – Addresses issues for specific product or system
 • PP addresses issues for a family of potential products or systems
How It Works

• Find appropriate PP and develop appropriate ST based upon it
 – If no PP, use CC to develop ST directly
• Evaluate ST in accordance with assurance class ASE
 – Validates that ST is complete, consistent, technically sound
• Evaluate product or system against ST
Form of ST

1. Introduction
 • ST Identification, ST Overview
 • CC Conformance Claim
 • Part 2 (or part 3) conformant if all functional requirements are from part 2 (or part 3) of CC
 • Part 2 (or part 3) extended if uses extended requirements defined by vendor as well

2. Product or System Description
 • Describes TOE as aid to understanding its security requirement
Form of ST (con’t)

3. Product or System Family Security Environment
4. Security Objectives
5. IT Security Requirements
 • These are the same as for a PP
Form of ST (con’t)

6. Product or System Summary Specification
 • Statement of security functions, description of how these meet functional requirements
 • Statement of assurance measures specifying how assurance requirements met

7. PP Claims
 • Claims of conformance to (one or more) PP requirements
8. Rationale

- Security objectives rationale demonstrates stated objectives traceable to assumptions, threats, policies
- Security requirements rationale demonstrates requirements for TOE and environment traceable to objectives and meets them
- TOE summary specification rationale demonstrates how TOE security functions and assurance measures meet security requirements
- Rationale for not meeting all dependencies
- PP claims rationale explains differences between the ST objectives and requirements and those of any PP to which conformance is claimed
CC Requirements

• Both functional and assurance requirements
• EALs built from assurance requirements
• Requirements divided into *classes* based on common purpose
• Classes broken into smaller groups (*families*)
• Families composed of *components*, or sets of definitions of detailed requirements, dependent requirements and definition of hierarchy of requirements
Security Functional Requirements
SSE-CMM: 1997–Present

- Based on Software Engineering Capability Maturity Model (SE-CMM or just CMM)
- Defines requirements for process of developing secure systems, not for systems themselves
 - Provides maturity levels, not levels of trust
 - Used to evaluate an organization’s security engineering
SSE-CMM Model

- *Process capability*: range of expected results that can be achieved by following process
 - Predictor of future project outcomes
- *Process performance*: measure of actual results
- *Process maturity*: extent to which a process explicitly defined, managed, measured, controlled, and is effective
- Divides process into 11 areas, and 11 more for project and organizational practices
 - Each process area contains a goal, set of base processes
Process Areas

• Process areas:
 – Administer security controls
 – Assess impact, security risk, threat, vulnerability
 – Build assurance argument
 – Coordinate security
 – Monitor system security posture
 – Provide security input
 – Specify security needs
 – Verify, validate security

• Practices:
 – Ensure quality
 – Manage configuration, project risk
 – Monitor, control technical effort
 – Plan technical effort
 – Define, improve organization’s systems engineering process
 – Manage product line evolution
 – Provide ongoing skills, knowledge
 – Coordinate with suppliers
Example: Assess Threat

• Goal: threats to the security of the system will be identified and characterized

• Base processes:
 – Identify natural, man-made threats
 – Identify threat units of measure
 – Assess threat agent capability, threat likelihood
 – Monitor threats and their characteristics
Capability Maturity Levels

- *Performed informally:* perform base processes
- *Planned and tracked:* address project-level definition, planning, performance, verification issues
- *Well-defined:* focus on defining, refining standard practice and coordinating it across organization
- *Quantitatively controlled:* focus on establishing measurable quality goals, objectively managing their performance
- *Continuously improving:* improve organizational capability, process effectiveness
Using the SSE-CMM

• Begin with process area
 – Identify area goals, base processes
 – If all processes present, determine how mature base processes are
 • Assess them against capability maturity levels
 • May require interacting with those who use the base processes
 – Do this for each process area
 • Level of maturity for area is lowest level of the base processes for that area
 • Tabular representation (called Rating Profile) helps communicate results
Key Points

• First public, widely used evaluation methodology was TCSEC (Orange Book)
 – Criticisms led to research and development of other methodologies

• Evolved into Common Criteria

• Other methodologies used for special environments