

T

H E

 C S

H E L L

A N D

 U N I X P

R O C E S S E S

E C S 3 0 - A — S

P R I N G

 2 0 0 2

Version of April 20, 2002 9:51 am Page 1 of 10

The C Shell and UNIX Processes

Introduction

A shell is a command interpreter used to manage processes and the environment in which they execute. The
most widely used shell is the C Shell (

csh

(1)) or its variants, because it provides a very fine degree of control over the
environment and its subprocesses. For that reason, this handout discusses the C Shell syntax and commands along
with how to manage UNIX processes.

A shell is simply a process, and any command you run is executed on your behalf by the shell. So, let's start
with what a process is.

UNIX Processes

A UNIX process or job is the result of executing a UNIX command. Processes are created by UNIX com-
mands (including the commands that open windows in X), program executions (including

gcc

(1),

mail

(1) and pro-
grams you write and compile), and the C-shell command interpreter itself. At any moment a process may be either
running or stopped. The UNIX operating system provides many ways to control these processes, such as suspending,
resuming and terminating.

Every time you issue a command, the UNIX operating system starts a new process and suspends the current
process (the C-shell) until the new process completes. For example, consider compiling a program. When you type

gcc program.c

you cannot issue other commands in that same window (or to that same shell) until the compilation has completed.
The C-shell is waiting for

gcc

(1) to finish before continuing; we say that the compiler is executing or running in the
foreground. If we tell the shell to continue to accept new commands even while the compiler is running, we say that
the compiler is executing or running in the background. In the sections below we will discuss how to cause jobs to
run in the background.

Associated with each process is a unique Process Identification Number, or PID, which is assigned when the
process is initiated. When we want to perform an operation on a process we usually refer to it by its PID.

Determining Process Identification Numbers

The command

ps –x

tells the system to list all your jobs currently running on the machine that you are logged in to:

% ps –x
 PID TT STAT TIME COMMAND
 6799 co IW 0:01 -csh (csh)
 6823 co IW 0:00 /bin/sh /usr/bin/X11/startx
 6829 co IW 0:00 xinit /usr/lib/X11/xinit/xinitrc --
 6830 co S 0:12 X :0
 6836 co I 0:01 twm
 6837 co I 0:01 xclock -geometry 50x50-1+1
 6841 p0 I 0:01 -sh (csh)
 6840 p1 I 0:01 -sh (csh)
 6842 p2 S 0:01 -sh (csh)
 6847 p2 R 0:00 ps -x

T

H E

 C S

H E L L

A N D

 U N I X P

R O C E S S E S

E C S 3 0 - A — S

P R I N G

 2 0 0 2

Version of April 20, 2002 9:51 am Page 2 of 10

The meaning of the column titles is as follows:

The state of the job is given by a sequence of four letters, for example,

RWNA

. We will consider the meaning of the
first letter only.

The letters that you will see most often are

R

,

T

,

S

,

I

, and

Z

.

C Shell Variables

The environment in which a subprocess executes has two components: the local environment, which applies
only to that subprocess, and the global environment, which applies to all subprocesses. The shell's environment is
controlled by environment variables which may be local (and then apply only to that shell process) or global (and
apply not only to that shell process but also to all subprocesses).

C Shell distinguishes between the two very simply. To set a local environment variable called

THISVAR

 to
the value 12345, just say

set THISVAR=12345

If you run a subprocess, this value will be invisible to the subordinate processes (note that “#” begins a comment that
runs to the end of the line; when you try these, don’t type these comments):

% set THISVAR=12345
% echo $THISVAR
12345
% csh # start a subshell
% echo $THISVAR
THISVAR: Undefined variable.

 column meaning

PID

process identification number

TT

controlling terminal of the process

STAT

state of the job (see below for more information)

TIME

amount of CPU time the process has acquired

COMMAND

the command that the process represents

first letter runnability of the process

R

Runnable processes.

T

Terminated (stopped) processes which can be restarted.

P

Processes waiting for pages to be swapped in or out.

D

Processes in non-interruptible waits; typically short-
term waits for (disk or network) I/O.

S

Processes sleeping for less than about 20 seconds.

I

Processes that are idle (sleeping longer than about 20
seconds).

Z

Processes that have terminated but whose parents have
not yet been notified (zombie processes).

T

H E

 C S

H E L L

A N D

 U N I X P

R O C E S S E S

E C S 3 0 - A — S

P R I N G

 2 0 0 2

Version of April 20, 2002 9:51 am Page 3 of 10

On the other hand, if you want to make

THISVAR

 global (or, as is sometimes said, make it exportable, or visible to
subprocesses, or inherited), use the

setenv

 command:

setenv THISVAR 12345

Note there is no equals sign. Now:

% setenv THISVAR 12345
% echo $THISVAR
12345
% csh # start a subshell
% echo $THISVAR
12345

To clear a shell variable, so it is undefined, say

unset THISVAR

if it is a local environment variable or

unsetenv THISVAR

if it is a global environment variable.

One last point: there's no way for a subprocess to alter the environment of a parent (or any ancestor) process.
So, if you try to set something in a subshell, for example, it won't affect anything in the parent shell:

% setenv THISVAR 12345
% echo $THISVAR
12345
% csh # start a subshell
% echo $THISVAR
12345
% setenv THISVAR "hello, world"
% echo $THISVAR # new value in subshell, but …
hello, world
% exit # go back to the parent shell
% echo $THISVAR # the original value is intact
12345

Here are some useful built-in shell variables. For a few, the issue is whether or not they are set; the specific
value is unimportant. In this case, just say

set VARIABLE

or

setenv VARIABLE

depending on whether you want it to be inherited.

home

The user's home directory.

ignoreeof

If set (the value is unimportant), you must type

logout

 or exit to terminate the shell. If not set, typing
^D will also terminate the shell. This is a godsend to lousy typists like me.

mail

Set this to a list of files to watch for new mail; if the first word is an integer

n

, check for mail once every

n

 seconds. For example,

set mail=(300 /usr/spool/mail/account /usr/msgs)

will make the shell look for changes in the file “/usr/spool/mail/account” and in the directory “/usr/
msgs”, and report that

New mail has arrived in file

where file is the appropriate file (or directory) name.

path

Set this to a list of directories to search for executables. When you give a command that does not con-
tain a '/' character, the shell looks in each directory in this list for an executale file with the name you
typed. It checks the directories in the given order, and stops when it has found the first such file.

T

H E

 C S

H E L L

A N D

 U N I X P

R O C E S S E S

E C S 3 0 - A — S

P R I N G

 2 0 0 2

Version of April 20, 2002 9:51 am Page 4 of 10

prompt

Set this to what you want the shell to prompt you with. The default is '% '; an exclamation point '!' in
the value is replaced by the current command number, which is very useful for using the history mecha-
nism. Thus:

% set prompt="\! % "
34 %

(You need the backslash to keep the shell from interpreting the '!' as a history character in the set com-
mand. Read on!) By custom, if working as the superuser, the prompt includes the sharp sign '#' instead
of the percent '%'.

shell

The absolute path name of the shell you are executing.

status

When a UNIX command or program exits, its success or failure is indicated by its exit status code. If a
command is successful, by convention its exit status code is 0; if not, the exit status code is nonzero.
This code is stored in this variable, which is reset after the execution of each command. So, if you want
to see the exit satus code of a command, do it like this:

% pwd
/usr/bin
% echo $status
0

time

If this is set to

n

, then all commands which take over n seconds of CPU time to execute will have statis-
tics printed. By default, these are (in order):

• Number of seconds of CPU time devoted to the user's process
• Number of seconds of CPU time consumed by the kernel on behalf of the user's process
• Elapsed (wallclock) time for the command
• Total CPU time – U (user) plus S (system) – as a percentage of E (elapsed) time
• Average amount of shared memory used in Kilobytes
• Average amount of unshared data space used in Kilobytes
• Number of block input operations
• Number of block output operations
• Page faults

We'll mention other shell variables as we go along.

Foreground and Background Processes

If we want to execute a command or run a program, but do not want to wait for its completion to be able to
issue other commands we specify that it be executed in the background. There are two ways to have a job execute in
the background. The first is to specify that it be a background process when we submit it, the second is to tell the
shell to make it a background job after it has begun execution. To specify that a job be executed in the background we
append an ampersand '&' to the end of the command. For example

a.out < inputfile > outputfile &

will execute my compiled program while allowing me to submit other commands for execution while it is running. A
good example of an instance when we would like to execute a job in the background is when we start a window dur-
ing a X session. We would like to start the window from an existing window, but we still want to use the original win-
dow. We execute the command

xterm &

and this starts a new window while allowing us to keep using the current window. When you do this, the shell will tell
you the PID of the command after the job starts:

% xterm &
[1] 14638

means that

xterm

(1) has started and its PID is 14638. The “.X11Startup” file that you have on your account contains
lines like the following:

xclock -geom 144x66-0+0 &
xterm -geometry +1050+70 -fn 9x15 -fg white -bg black &

T

H E

 C S

H E L L

A N D

 U N I X P

R O C E S S E S

E C S 3 0 - A — S

P R I N G

 2 0 0 2

Version of April 20, 2002 9:51 am Page 5 of 10

xterm -geometry +450+450 -fn 8x13bold -bg white -fg black &
xterm -geometry +1050+370 -fn 9x15 -fg white -bg black &
xload -geom 300x120-0-0 -bg Red - fg White -update 5 -scale 2 &

The middle three lines tell the shell that you want three

xterm processes (with more specific information
being given by the options) and that they should be run in the background. The first and last line cause the clock and
the load indicator to be displayed, respectively ,and that they should both be run in the background.

If we start a job and we decide that we want to move it to the background there are a number of ways to do
it. The simplest way to move a job to the background is to use ^Z (control-Z) in the window that the job is executing,
which will suspend the job (not to be confused with ^C which kills the job). The message Stopped will appear on
the screen. We then resume the job in the background with the 'bg' command. For example, we want to compile the
program “bigprog.c” and we know that it will take a long time and we do not want to wait for its completion. We type
the command

gcc -ansi bigprog.c

but we forget to append the ampersand. We type

^Z

to suspend the job and then type

bg %gcc

which resumes the job in the background, allowing us to submit other commands while the compilation takes place.
The shell will tell us when the background job has completed with a statement like

[1] Done gcc -ansi bigprog.c

Normally, this message will appear only when the shell is ready to prompt you for another command. If you
want it to appear whenever a background job terminates, whether or not the shell is ready for you to type another
command, use the shell variable

notify Set this if you want the shell to notify you immediately upon the completion of a job rather than waiting
until just before prompting.

A job can be moved into the foreground with the fg command. For example, if we wanted to resume the
compilation of our program after we suspended it with ^Z we could use

fg %gcc

which would resume the job in the foreground (we would have to wait for it to complete before issuing other com-
mands).

When we run a job in the background the output will still come out on the screen as if we ran it in the fore-
ground. There are two ways to handle this. Issuing the command

stty tostop

will cause any background process to block before generating output to the screen; you will be told using the notifica-
tion mechanism described earlier in this section. You can then move the job into the foreground. As an alternative,
you can use redirection.

Redirection

To avoid having the output from our background job and foreground jobs being interspersed we can redirect
the output to a file. To send output to a file, use output redirection:

command > outputfile

If outputfile does not exist it will be created. If it does exist, what happens depends on the setting of an envi-
ronment variable:

noclobber If set and output is redirected to an existing file, the command is not executed and an error message is
given. If set and the file does not exist, it will be created. If this variable is not set, the output will be
sent to outputfile (erasing it if necessary).

If you append output to a file using

command >> outputfile

T H E C S H E L L A N D U N I X P R O C E S S E S E C S 3 0 - A — S P R I N G 2 0 0 2

Version of April 20, 2002 9:51 am Page 6 of 10

the sense of the noclobber variable is reversed; if noclobber is set, then you will get an error message if outputfile
does not exist; but if outputfile does exist, you will not get an error and the output will be appended to it. If noclobber
is not set, outputfile will be created if it does not exist.

In any case, if noclobber is set and you want the shell to pretend it isn't for one command, append the excla-
mation point '!' to the redirection:

command >! outputfile

overwrites outputfile whether or not noclobber is set, and

command >>! outputfile

will create outputfile if it does not exist. Notice there is no space between the '>' and '!'.

Input can also be redirected; for example,

wc < inputfile

will cause wc to act as though the contents of inputfile were typed at the keyboard.

In addition to redirecting the standard output (called stdout) of the background process we must also redi-
rect any error messages to a file. Error messages are sent to stderr (standard error), normally stderr is sent to
the screen so that you see the error messages as they occur. The following syntax is used to redirect the stderr infor-
mation to the same file that we redirect the standard output to

somecommand >& outputfile

We can combine it with input redirection, too:

somecommand < inputfile >& outputfile

causes all output from somecommand to be written to the file outputfile. Note that somecommand could be a UNIX
command, “a.out”, etc. This construct also responds to the setting of noclobber, and that can also be overridden by
placing an '!' right after the '&', with no intervening spaces.

A final type of redirection is the pipe. A pipe connects the output of one process to be the input of another.
For example,

date | wc

takes the output of the command date(1) and feeds it into the standard input of wc(1). As another example,

ps | head –4

prints the first four lines of the process status listing.

Terminating a Process

We can terminate a process using the kill(1) command. Let's say that we start a new xterm by executing the
command

xterm &

and later decide to get rid of it. We find out the PID (for example, by using ps –x); call this pid. Then we type

kill -9 pid

and the window will disappear. The option -9 ensures that job/process will be killed. A simplier way to kill a process
that you are running in the foreground in a window is to type ^C in the window that the job is running in. Next time
you log in try starting up a new window in the background and then killing it with the commands given above.

The Shell and Filename Substitution

The shell provides a convenient mechanism for naming files called wildcards. These characters are inter-
preted as pattern matching commands. For example,

ls chap*

lists all files in the current directory which begin with the letters “chap”. The ‘*’ metacharacter means to match 0 or
more ordinary characters.

Other metacharacters are '?', which means match one character; so the pattern

T H E C S H E L L A N D U N I X P R O C E S S E S E C S 3 0 - A — S P R I N G 2 0 0 2

Version of April 20, 2002 9:51 am Page 7 of 10

a?c

would list the files “abc”, “acc”, and “adc”, but not the file “abbc”. The characters '[' and ']' delimit a range, so the
pattern

a?c[0123]

matches the files “abc1”, “acc3”, and “axc1”, but not “abbc1”, “abc4”, or “azc9”. You can use a hyphen '–' to indicate
a contiguous range, so the above pattern could also have been written

a?c[0-3]

Be careful, though; the pattern “[A-z]” matches all the letters and several other characters, too, because the range is
over the ASCII character set!

The pattern matching matches file names; if no files matching the pattern exist, you get an error message:

% echo ab*ef
No match.

To change this behavior, you can use a shell variable:

nonomatch If set, return the filename substitution pattern rather than an error if the pattern is not matched. Note that
malformed patterns (for example, leaving a closing ']' out) will still result in errors.

You can also disable these metacharacters by setting another shell variable:

noglob If set, inhibit filename substitution; the metacharacters lose all special meaning. This is most often done
in shell scripts or startup files when the character strings involve the metacharacters, but require them to
be interpreted as regulatr characters.

If you just want them disabled for one command, you can put a '\' in front:

% echo a*
ab ac ad
% echo a*
a*

Two other metacharacters deserve mention. The character '~' expands either to your login directory (if it is
followed by a '/') or to the home directory of the named user, if he or she exists (if the tilde is not followed by a '/').
So,

~/.cshrc

refers to your “.cshrc” file, and

~bishop/.cshrc

refers to my “.cshrc” file. Also, the characters '{' and '}' enclose alternate substitutions; for example,

% echo ab{c,d,e}f
abcf abdf abef

Unlike the pattern matching metacharacters, there need be no files “abcf”, “abdf”, or “abef”.

History Substitution

The shell makes past commands available to you through the history mechanism. You can simply repeat the
commands, or extract portions of previous commands. For example:

% history # show the last few commands
131 date
132 vi write.c
133 gcc -g write.c
134 write root
135 diff write.c oldwrite.c
% !da # repeat the last command that

began with a 'da'
Tue Jan 18 11:58:01 PST 1994
% !! # repeat the last command

T H E C S H E L L A N D U N I X P R O C E S S E S E C S 3 0 - A — S P R I N G 2 0 0 2

Version of April 20, 2002 9:51 am Page 8 of 10

Tue Jan 18 11:58:30 PST 1994
% !132 # repeat command number 132
… vi write.c …
% !gcc:s/–g/–O/ # repeat the last gcc command,

 # but replace –g with –O
% !?root? # repeat last command containing

"root" anywhere (here, 134)
% mail root < !vi:$ # mail root the file last edited

with vi
% ^root^admin^ # same as !!:s/root/admin/
% mv write.c chat.c
% mv oldwrite.c oldchat.c
% !diff:gs/write/chat/ # diff the new file names; g

means global (everywhere);
default is to replace first
match

% !{diff}old # rerun the last command,
appending "old"; without the
curly braces it is read as
!diffold, which you didn't
mean.

Four variables control how the history is handled and saved:

histchars Set this to a string, the first character of which indicates history substitution (and by default is '!') and the
second of which indicates quick history substitutions (the default is '^').

history Set this to the number of commands you want the shell to remember.

savehist Because environments are not preserved when a process terminates, your history gets lost whenever you
log out. Set this variable to the number of commands to save across invocations; that many commands
will be saved in the file “.history” in your home directory, and when you start a new shell, those com-
mads will be read in.

verbose Print the command after history substitution is completed. This helps keep down the aggravation,
because you can see what the shell thinks you told it to do.

Aliasing

An alias is another way of saying something, and the C Shell offers you the ability to rename your most
common commands and options. For example, a very common alias is

alias ls ls –F

When you type the command ls(1), the shell looks at the first word in the command (if it were part of a pipeline, the
shell would look at each command in the pipeline) and sees if it is an alias. If so, it replaces the alias with its defini-
tion and repeats the process unless the first word of the new command is the same as the first word of the old one (this
prevents obvious loops). So, after the above command, the command “ls -a” would be replaced by “ls -a -F” and that
executed.

You can use the history mechanism to pull out parts of the command after the aliasing is applied. In this
case, the old (pre-alias) command is treated as the previous command. So:

% alias lookup grep \!^ /etc/passwd
% lookup root
root:x:0:0:root:/root:/bin/bash
operator:x:11:0:operator:/root:

Note the backslash '\' in fromt of the exclamation point '!'; this is needed to prevent the shell from treating !^ as a ref-
erence to the previous command, as history substitutions are done before alias substitutions.

T H E C S H E L L A N D U N I X P R O C E S S E S E C S 3 0 - A — S P R I N G 2 0 0 2

Version of April 20, 2002 9:51 am Page 9 of 10

Quotation Marks

There are three types of quotation marks. Strings enclosed by single quotes ''' are not interpreted further; this
turns off all substitutions except the history substitutions. The resulting string is seen as one entity, so if you ever
want to create a file with a blank in the name, do it like this:

touch 'this file has 8 words in its name'

Strings enclosed in back quotes '`' are treated as shell commands; they are executed, and the string is
replaced by the output. In the output, each contiguous sequence of blanks, tabs, and newlines is replaced by a single
blank, so (for example):

% cat XYZ
hi there
goodbye
% echo `cat XYZ`
hi there goodbye

Strings enclosed in double quotation marks '"' have any shell variables replaced by their value, history substitutions
done, and any commands in '`' executed as described above; otherwise, the string is left alone. For example,

% echo "$user files???d !32"
bishop files???d vi pwd.c

Note the filename pattern was not expanded, but that history substitution was done and the shell variable was evalu-
ated.

Startup Files

When you start the C Shell, it begins by reading the file “.cshrc” in your home directory and executing the
commands there as though you had typed them at your keyboard. If this is a login shell (that is, if you started the
shell by logging in), it will then read the “.login” file in your home directory.

Here is a sample “.cshrc” file:

set path=(/bin /usr/{bin,hosts} /usr/*/bin .)
alias term 'tset -s -n \!* > /tmp/t$user; \

source /tmp/t$user;\
/bin/rm /tmp/t$user'

set history=50
set noclobber ignoreeof
echo "Welcome to `hostname`, your friendly UNIX host\!"

The first line sets the search path; notice the use of file name metacharacters. The second line (which contin-
ues onto the third line) sets up an alias to run the program tset(1), which resets the terminal modes (use it if you think
your screen is messed up; a good clue is if pico(1), pine(1), or vi(1) refuses to work in anything other than open
mode). The third line says that the shell is to remember the last 50 commands, the fourth line sets two options dis-
cussed earlier, and the fifth line names the host you're on as it greets you.

The “.cshrc” file contains aliases and other things to be executed whenever a C Shell starts. For things like
initial terminal setup or setting global environment variables, the “.login” file is more appropriate, becasue it will only
be executed once during the session:

setenv EXINIT 'set ai'
set nonomatch
eval `tset -s -Q -m network:vt100`
set term=$TERM
setenv term $TERM
unset nonomatch

The first line sets an environment variable used by vi; whenever vi starts, autoindent mode is on. The rest of
the file sets the terminal type to vt100 if the user logs in over a network. The nonomatch variable prevents pattern
expansion (necessary because of the output of tset). Then tset is run. The next two lines set the terminal type both
locally and globally, and then pattern matching is turned back on. (You don't need to understand tset, but look in the

T H E C S H E L L A N D U N I X P R O C E S S E S E C S 3 0 - A — S P R I N G 2 0 0 2

Version of April 20, 2002 9:51 am Page 10 of 10

manual page, or ask an experienced user, if you want to.)

Acknowledgement

This document used parts of a handout on processes written by Kevin Rich.

