This computes a factorial recursively.
#include <stdio.h> /* * compute n! recursively */ int fact(int n) { /* error check */ if (n < 0) return(-1); /* base case */ if (n == 0) return(1); /* recursion */ return(n * fact(n-1)); } /* * convert string to int with error checking * no leading signs or magnitude checking */ int cvttoint(char *s) { int n = 0; /* integer being read */ /* skip leading white space */ while(isspace(*s)) s++; /* if it's not a digit, it's not an integer */ if (!isdigit(*s)) return(-1); /* read in the integer */ while(isdigit(*s)) n = n * 10 + *s++ - '0'; /* if it's ended by a NUL, it's an integer */ return(*s ? -1 : n); } int main(int argc, char *argv[]) { int i; /* counter in a for loop */ int n; /* number read in */ int rv = 0; /* exit status code */ /* * do each arg separately */ for(i = 1; i < argc; i++) if ((n = cvttoint(argv[i])) != -1) printf("%d! = %d\n", n, fact(n)); else{ /* error handler*/ rv++; printf("%s: invalid number\n", argv[i]); } /* * bye! */ return(rv); }
This computes the GCD recursively.
/* * gcd -- compute the GCD of pairs of integers * * History * 1.0 Matt Bishop; original program * 1.1 Matt Bishop; made it recursive */ #include <stdio.h> /* * macros */ #define BAD_GCD -1 /* error in arguments -- */ /* MUST be non-positive */ /* * recursive GCD */ int gcdr(int m, int n) { /* base case(s) */ if (m == 0) return(n); if (n == 0) return(m); /* now recurse */ return(gcd(n, m % n)); } /* * This function returns the greatest common divisor of its arguments * Notes: (1) if m = n = 0, the GCD is undefined -- so we return BAD_GCD * (2) if m < 0 or n < 0, then gcd(m,n) > 0; so we can just make * m and n both positive * (3) if m = 0 and n != 0, gcd(m,n) = n (and vice versa) */ int gcd(int m, int n) { int rem; /* remainder for Euclid's algorithm */ /* * special cases */ /* error check -- if both 0, undefined */ if (m == 0 && n == 0) return(BAD_GCD); /* make all negatives positive */ if (m < 0) m = -m; if (n < 0) n = -n; /* * now apply the recursive algorithm */ return(gcdr(m, n)); } /* * the main routine */ void main(void) { int m, n; /* numbers to take the GCD of */ int g; /* the GCD of m and n */ int c; /* used to gobble up rest of line */ /* * loop, asking for numbers and printing the GCD */ while(printf("Enter two numbers: "), scanf("%d %d", &m, &n) != EOF){ while((c = getchar()) != EOF && c != '\n') ; /* print the result -- note that if the input */ /* is invalid, gcd() simply returns BAD_GCD */ printf("The GCD of %d and %d is ", m, n); if ((g = gcd(m, n)) == BAD_GCD) printf("undefined.\n"); else printf("%d.\n", g); } /* * clean up output and exit */ putchar('\n'); exit(0); }
This is a very simple recursive sorting program.
#include <stdio.h> /* * the array and its size */ int list[] = { 13, 82, 0, 16, 5, -1, 99, 0 }; int nlist = sizeof(list)/sizeof(int); /* * recursive sort -- put smallest element at head of array * and then sort the rest */ void sort(int l[], int lsz) { int i; /* counter in a for loop */ int tmp; /* used to swap ints */ int min; /* index of minimum element */ /* base case */ if (lsz == 1) return; /* find index of smallest number in array */ min = 0; for(i = 1; i < lsz; i++) if (l[i] < l[min]) min = i; /* move smallest element to 0-th element */ tmp = l[0]; l[0] = l[min]; l[min] = tmp; /* recurse */ sort(&l[1], lsz-1); } int main(void) { int i; /* counter in a for loop */ /* print initial array */ printf("initial array: "); for(i = 0; i < nlist;i++) printf(" %3d", list[i]); putchar('\n'); /* now sort */ sort(list, nlist); /* print sorted array */ printf("final array: "); for(i = 0; i < nlist;i++) printf(" %3d", list[i]); putchar('\n'); return(0); }
ECS 30-A, Introduction to Programming Spring Quarter 2002 Email: cs30a@cs.ucdavis.edu |